This chapter presents the design and development of an energy management system (EMS), which guarantees a secure operation of an islanded microgrid under possible imbalances between generation capacity and loads demand. The EMS performs an optimal calculation of low priority loads to be shed, as well as charging and discharging cycles of batteries within the microgrid. A nonlinear model‐predictive control (NMPC) algorithm is selected for implementing the EMS, which processes a data set composed of loads measurements, generation capacity, batteries state of charge (SOC), and a set of operation constraints. The EMS is designed under the assumption of having an advanced metering infrastructure (AMI) installed in the microgrid. The EMS is tested in a simulation platform that integrates models of the microgrid components, as well as their distributed controllers (DCs). Simulation results show the effectiveness of the proposed approach, since critical variables as the microgrid’s frequency and voltage magnitude operate within a secured interval even under the presence of faults in one of the DCs.
Part of the book: Development and Integration of Microgrids