This work presents a review of surfactant-enhanced bioremediation of hydrophobic organic contaminants in the soil with a focus on ex situ method. Conventional strategies of disposal methods in secure landfill and incineration have become cost prohibitive and environmentally risky and do not restore the contaminated soil, whereas chemical and physical methods have shown very limited success and can also be expensive.Traditional bioremediation pertaining to remedial technology of hydrophobic organic contaminants in soil has empirically demonstrated limited success due to their low aqueous solubility. Addition of single synthetic surfactant or biosurfactant, or in combination, has the potential to increase their mass transfer phase, hence their bioavailability. Surfactant-enhanced biodegradation represents a promising cost-effective alternative to complete mineralization of hydrophobic organic contaminants in soil. In this work, the potential of surfactants on the remediation of contaminated soil in an ex situ approach is reviewed with considerations given to the practical aspects of field components. Surfactant-enhanced biodegradation represents a promising cost-effective alternative to complete mineralization of hydrophobic organic contaminants in soil. In this work, the potential of surfactants on the remediation of contaminated soil in an ex situ approach is reviewed with considerations given to the practical aspects of field components.
Part of the book: Soil Contamination
Prediction of fate and behavior of radionuclides in the environment is largely governed by sorption processes. Radionuclides physico-chemical species interacting with prevailing abiotic properties of the environment vary widely among varying constituting environmental components. Herein, this work discussed the most significant aspects of sorption processes and properties at the solid-water interface. Main sorption mechanisms were investigated using kinetic, thermodynamic analyses, and various mathematical models in current use for description of sorption–desorption processes in the environment. Knowledge of environmental transport, environmental pathways, and exposure pathways to radionuclides is also an important aspect of any strategy to protect the public and the natural ecosystems. In the final analysis, the choice of a functional sorption equation model will be dictated by the risk-based under consideration, the level of information available, and the intrinsic accuracy of the predictive model.
Part of the book: Principles and Applications in Nuclear Engineering