\r\n\r\n
\r\n\r\nThis project was co-financed by the European Regional Development Fund under the Operational Programme "Innovative Economy".\r\n',isbn:null,printIsbn:"978-953-51-1734-6",pdfIsbn:"978-953-51-4230-0",doi:"10.5772/59798",price:119,priceEur:129,priceUsd:155,slug:"storage-stability-of-fuels",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,hash:"bc73beb5dc74410e15c8ee19ee4de722",bookSignature:"Krzysztof Biernat",publishedDate:"February 4th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4751.jpg",numberOfDownloads:16920,numberOfWosCitations:11,numberOfCrossrefCitations:10,numberOfDimensionsCitations:21,hasAltmetrics:1,numberOfTotalCitations:42,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 30th 2014",dateEndSecondStepPublish:"November 20th 2014",dateEndThirdStepPublish:"February 24th 2015",dateEndFourthStepPublish:"May 25th 2015",dateEndFifthStepPublish:"June 24th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"155009",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat",profilePictureURL:"https://mts.intechopen.com/storage/users/155009/images/system/155009.jfif",biography:"Krzysztof Biernat Ph.D. (Mech.Eng.) is a professor of the Automotive Industry Institute (PIMOT), acting as President of the Polish Biomethane Council, a Coordinator of Polish Technology Platform for Biofuels, and a member of the Coordinating Committee of Society Cluster of Bioeconomy. He is also a lead expert of the International Renewable Energy Agency and an expert in many operational programs. He specialized in chemical thermodynamics of environmental processes as well as obtaining technologies, quality evaluation, and the use of exploitative liquids, including biofuels, and biorefinery systems. He is an author of above 200 publications in the area of properties and exploitative conditionings of fuels, biofuels, and other liquids as well as environmental protection. He is a member of many national and international scientific societies including the American Chemical Society and American Association for the Advancement of Science.",institutionString:"Łukasiewicz R&D Network - Automotive Industry Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"768",title:"Petroleum Engineering",slug:"engineering-energy-engineering-petroleum-engineering"}],chapters:[{id:"47905",title:"The Influence of Engine Fuel Manufacturing Processes on Their Performance Properties in Operating Conditions",doi:"10.5772/59800",slug:"the-influence-of-engine-fuel-manufacturing-processes-on-their-performance-properties-in-operating-co",totalDownloads:1868,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47905",previewPdfUrl:"/chapter/pdf-preview/47905",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47911",title:"Criteria for the Quality Assessment of Engine Fuels in Storage and Operating Conditions",doi:"10.5772/59801",slug:"criteria-for-the-quality-assessment-of-engine-fuels-in-storage-and-operating-conditions",totalDownloads:1407,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47911",previewPdfUrl:"/chapter/pdf-preview/47911",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47819",title:"Biofuels in Storage and Operating Conditions",doi:"10.5772/59802",slug:"biofuels-in-storage-and-operating-conditions",totalDownloads:1564,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47819",previewPdfUrl:"/chapter/pdf-preview/47819",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47914",title:"Liquid Fuel Ageing Processes in Long-term Storage Conditions",doi:"10.5772/59799",slug:"liquid-fuel-ageing-processes-in-long-term-storage-conditions",totalDownloads:2450,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Marlena Owczuk and Krzysztof Kołodziejczyk",downloadPdfUrl:"/chapter/pdf-download/47914",previewPdfUrl:"/chapter/pdf-preview/47914",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47919",title:"Corrosiveness of Fuels During Storage Processes",doi:"10.5772/59803",slug:"corrosiveness-of-fuels-during-storage-processes",totalDownloads:2960,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Monika Ziółkowska and Dorota Wardzińska",downloadPdfUrl:"/chapter/pdf-download/47919",previewPdfUrl:"/chapter/pdf-preview/47919",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47921",title:"Autoxidation of Fuels During Storage",doi:"10.5772/59807",slug:"autoxidation-of-fuels-during-storage",totalDownloads:2064,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Joanna Czarnocka, Anna Matuszewska and Małgorzata\nOdziemkowska",downloadPdfUrl:"/chapter/pdf-download/47921",previewPdfUrl:"/chapter/pdf-preview/47921",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47922",title:"A Review of Selected Methods of Measurement Used for the On-Line Analysis of Liquid Fuels",doi:"10.5772/59804",slug:"a-review-of-selected-methods-of-measurement-used-for-the-on-line-analysis-of-liquid-fuels",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Artur Malinowski, Paweł Wrzosek, Anna Turlej and Dorota\nWardzińska",downloadPdfUrl:"/chapter/pdf-download/47922",previewPdfUrl:"/chapter/pdf-preview/47922",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47923",title:"Analysis of Changes in the Properties of Selected Chemical Compounds and Motor Fuels Taking Place During Oxidation Processes",doi:"10.5772/59805",slug:"analysis-of-changes-in-the-properties-of-selected-chemical-compounds-and-motor-fuels-taking-place-du",totalDownloads:1320,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Marta Skolniak, Paweł Bukrejewski and Jarosław Frydrych",downloadPdfUrl:"/chapter/pdf-download/47923",previewPdfUrl:"/chapter/pdf-preview/47923",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47924",title:"Environmental Aspects in the Life Cycle of Liquid Biofuels with Biocomponents, Taking into Account the Storage Process",doi:"10.5772/59806",slug:"environmental-aspects-in-the-life-cycle-of-liquid-biofuels-with-biocomponents-taking-into-account-th",totalDownloads:1731,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Izabela Samson-Bręk, Barbara Smerkowska and Aleksandra Filip",downloadPdfUrl:"/chapter/pdf-download/47924",previewPdfUrl:"/chapter/pdf-preview/47924",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null}],productType:{id:"3",title:"Monograph",chapterContentType:"chapter",authoredCaption:"Authored by"}},relatedBooks:[{type:"book",id:"4542",title:"Biofuels",subtitle:"Status and Perspective",isOpenForSubmission:!1,hash:"cbcf6eb3ffef503058cdf579d9d7fc63",slug:"biofuels-status-and-perspective",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/4542.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6784",title:"Biofuels",subtitle:"State of Development",isOpenForSubmission:!1,hash:"9a31143f106bba91ce8430f49d3339af",slug:"biofuels-state-of-development",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/6784.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5087",title:"Alternative Fuels",subtitle:"Technical and Environmental Conditions",isOpenForSubmission:!1,hash:"d384e15f7ac163a7323b08fede906b7a",slug:"alternative-fuels-technical-and-environmental-conditions",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/5087.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"8150",title:"Elements of Bioeconomy",subtitle:null,isOpenForSubmission:!1,hash:"f5a930b0695ff23259fe96f219ff9a15",slug:"elements-of-bioeconomy",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/8150.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5811",title:"Recent Insights in Petroleum Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"33b7777178f4a179ba475e3e15405427",slug:"recent-insights-in-petroleum-science-and-engineering",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/5811.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6466",title:"Shale Gas",subtitle:"New Aspects and Technologies",isOpenForSubmission:!1,hash:"02763c6398f049c222acf6a774dd38ee",slug:"shale-gas-new-aspects-and-technologies",bookSignature:"Ali Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/6466.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7609",title:"Enhanced Oil Recovery Processes",subtitle:"New Technologies",isOpenForSubmission:!1,hash:"62359d9c21b76f899be04fa0f8b46668",slug:"enhanced-oil-recovery-processes-new-technologies",bookSignature:"Ariffin Samsuri",coverURL:"https://cdn.intechopen.com/books/images_new/7609.jpg",editedByType:"Edited by",editors:[{id:"120519",title:"Prof.",name:"Ariffin",surname:"Samsuri",slug:"ariffin-samsuri",fullName:"Ariffin Samsuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7314",title:"Exploitation of Unconventional Oil and Gas Resources",subtitle:"Hydraulic Fracturing and Other Recovery and Assessment Techniques",isOpenForSubmission:!1,hash:"2eba15587cac74206f978e72a0cef2f9",slug:"exploitation-of-unconventional-oil-and-gas-resources-hydraulic-fracturing-and-other-recovery-and-assessment-techniques",bookSignature:"Kenneth Imo-Imo Eshiet",coverURL:"https://cdn.intechopen.com/books/images_new/7314.jpg",editedByType:"Edited by",editors:[{id:"195037",title:"Dr.",name:"Kenneth Imo-Imo Israel",surname:"Eshiet",slug:"kenneth-imo-imo-israel-eshiet",fullName:"Kenneth Imo-Imo Israel Eshiet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72181",slug:"corrigendum-to-potassium-channels-as-a-potential-target-spot-for-drugs",title:"Corrigendum to: Potassium Channels as a Potential Target Spot for Drugs",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72181.pdf",downloadPdfUrl:"/chapter/pdf-download/72181",previewPdfUrl:"/chapter/pdf-preview/72181",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72181",risUrl:"/chapter/ris/72181",chapter:{id:"71907",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",signatures:"Vladimir Djokic and Radmila Novakovic",dateSubmitted:"October 13th 2019",dateReviewed:"March 18th 2020",datePrePublished:"April 28th 2020",datePublished:"December 16th 2020",book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313382",title:"Ph.D.",name:"Radmila",middleName:null,surname:"Novakovic",fullName:"Radmila Novakovic",slug:"radmila-novakovic",email:"radmila.novakovic@med.bg.ac.rs",position:null,institution:null}]}},chapter:{id:"71907",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",signatures:"Vladimir Djokic and Radmila Novakovic",dateSubmitted:"October 13th 2019",dateReviewed:"March 18th 2020",datePrePublished:"April 28th 2020",datePublished:"December 16th 2020",book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313382",title:"Ph.D.",name:"Radmila",middleName:null,surname:"Novakovic",fullName:"Radmila Novakovic",slug:"radmila-novakovic",email:"radmila.novakovic@med.bg.ac.rs",position:null,institution:null}]},book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10714",leadTitle:null,title:"Spinal Decompression Surgery - Indications, Results And Complications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tDecompressive procedures, elective or urgent, are perhaps the most widely performed operations in spinal surgery. Over the last two decades due to the rapid propagation of different kinds of fusion and not-fusion operations, the role of ‘standard’ decompression as sole procedure has been somewhat scotomized. Nevertheless it must be kept in mind that, when delivering an operation to treat several spinal diseases (e.g., stenosis), the first target is decompression of neural structures.
\r\n\r\n\tCervical spine laminoplasty is currently one of the most widely accepted procedures to treat diseases such as cervical spondylotic myelopathy due to degenerative stenosis; moreover other interventions (e.g., microsurgical hemilaminectomy) have gained a place in the surgeon’s armamentarium to relieve compression of neural structures.
\r\n\r\n\tAt the thoracic level anterior and lateral surgical approaches, sometimes realized by means of endoscopic instrumentarium, are nowadays more and more performed, having often replaced the traditional multi-level laminectomy.
\r\n\r\n\tConcerning lumbar spine, experimental studies and subsequent development of related surgical techniques such as interspinous spacer implant (ISI) or extreme lateral interbody fusion (XLIF) have renewed the concept of ‘decompression’, therefore introducing the idea of ‘indirect’ neural decompression.
\r\n\r\n\tThe aim of this book is to analyze the ‘galaxy’ of most frequently performed spinal decompressive operations, trying to clear clinical indications, surgical techniques, expected results and tricks to avoid related complications.
",isbn:"978-1-83969-573-5",printIsbn:"978-1-83969-572-8",pdfIsbn:"978-1-83969-574-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"35feb59e657f8c7a2a8eb5e262bcd0a0",bookSignature:"Dr. Claudio Irace",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10714.jpg",keywords:"Decompression, Endoscopic Surgery, Microsurgery, Laminectomy, Laminoplasty, Interspinous Spacer, Minimally Invasive Surgery, Spine Surgery Complications, CSF Leakage, Spondylolisthesis, Stenosis, Cervical Spondylotic Myelopathy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 23rd 2021",dateEndThirdStepPublish:"May 22nd 2021",dateEndFourthStepPublish:"August 10th 2021",dateEndFifthStepPublish:"October 9th 2021",remainingDaysToSecondStep:"21 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Consultant Neurosurgeon at several spinal surgery departments in Northern Italy, Professor of Neurosurgery at board-certifying schools of osteopathy, Author of more than 80 publications with a long-lasting career dedicated to neurosurgery, particularly to spinal surgery.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"148645",title:"Dr.",name:"Claudio",middleName:null,surname:"Irace",slug:"claudio-irace",fullName:"Claudio Irace",profilePictureURL:"https://mts.intechopen.com/storage/users/148645/images/system/148645.jpg",biography:"Claudio IRACE, MD, received Italian Board certification in Neurosurgery (1988). He worked as ‘moniteur de clinique’ at the Dept of Neurosurgery of Notre-Dame Hospital (Montreal, Canada; 1985); subsequently he went on his neurosurgical activity in Italy at Santobono Paediatric Hospital (Naples), Niguarda Ca’ Granda Hospital (Milan), Igea credited-hospital (Milan), ‘I Cedri’ credited-hospital (Novara). Currently he works as consultant neurosurgeon at several spinal surgery departments in Northern Italy. He is professor of neurosurgery at board-certifying schools of osteopathy. He is board-certified Auditor for Quality Systems (ISO 9001:2015). He has (co)-authored more than 80 publications and has given a multitude of scientific presentations; some years ago he described and published an original method (the so-called ‘IRACE method’) to avoid wrong-level in spinal surgery. He is European consultant for some industrial medical companies.",institutionString:"Ospedale Humanitas Gradenigo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ospedale Humanitas Gradenigo",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49829",title:"Advanced Nanomatericals for Solar Photocatalysis",doi:"10.5772/62206",slug:"advanced-nanomatericals-for-solar-photocatalysis",body:'Ever-increasing environmental issues and consumption of fossil fuels have stimulated extensive research on the utilization of sustainable solar energy [1]. The extensive use of fossil fuels has led to a serious energy crisis and environmental pollution, which are the two major challenges facing the world in the 21st century. Among the many advanced technologies available today, heterogeneous photocatalysis in view of semiconductors taking advantage of regeneration solar energy has been identified as one of the most prospective strategies for resolving both the environmental and energy problems and has thus caused much attention during the recent decades [2–4]. In the past decades, numerous results have been reported for photocatalysis and their applications to produce hydrogen from water (see Fig.1 a) [5–8], convert solar energy into electric energy (see Fig.1 b) [9,10], degrade organic pollutants (see Fig.1 c) [11–13] and reduce CO2 into organic fuels (see Fig.1 d) [13–15]. Besides the naturally abundant in nonrenewable energy sources such as solar energy can be renewed into chemical or electrical and thermal energies by using semiconductors having persisting materials in the process of photocatalysis [17-20]. Generally speaking, the mechanism of a typical power-driven photocatalysis process is mainly owing to three critical related synergistic steps: (i) light absorption and charge excitation; (ii) charge separation and transport from the semiconductor particle to its surface active sites; (iii) surface photocatalytic chemical reactions, and this process is similar to the fundamental mechanism of photocatalysis in power systems.
Photocatalytic mechanisms of water splitting, solar cell, degradation of pollutants, CO2 reduction via one-step photoexcitation. CB and VB represent the conduction and valence bands, respectively [16].
Typically, the electron-hole pair with specific reduction and oxidation potential will be created on its conduction band (CB) and valence band (VB) under the irradiation of incident light with energy greater than the band gap of a given semiconductor. Here, the band gap of the semiconductor determines the utilization rate of the energy of the incident light, and the CB and VB values are the origin of the reduction and oxidation abilities of the photoexcited electrona and holes [21]. However, in practical process, the performance of photocatalysts is mainly related to two conditions: (i) the energy (hv) of the incident photon should be larger than the energy gap (Eg) of the photocatalyst; (ii) the redox potential of reactants should be located between the CB and VB of the semiconductor photocatalyst. One the one hand, the former condition indicates a narrow band gap, which can facilitate the efficient utilization of incident solar-light. On the other hand, the latter condition demonstrate that a more higher CB potential and a more lower VB potential, which are thermodynamically beneficial for the reduction and oxidation reactions of the reactants, respectively. But a high CB and low VB potential means a broad band gap of a photocatalyst, which leads to the poor solar−light utilization as discussed in condition (i). It is obvious that these conditions above are mutually contradiction, and it is important to find the balance point to design the photocatalyst. However, for a single component photocatalyst, it is difficult to possess both wide light−absorption range and strong redox ability concurrently. Besides, in the single-component structure, the photogenerated electrons in the CB can easily return to the VB or trap in the defect state and recombine with the holes, which seriously reduces the utilization efficiency of solar energy [22-24]. Hence, designing appropriate heterogeneous photocatalytic systems should be an effective way to overcome this problem.
The chapter is divided into four main sections. In the first part, we describe the importance of binary oxide system photocatalytic matericals in the case of two prominent and widely studied matel oxides: Titania (TiO2), hematite (α-Fe2O3). In the second part, we do focus on materials with a specific ternary oxide photocatalytic matericals, such as Bi systems photocatalytic materials. In the third part, we discuss the semiconducting materials and its composites which have promising applications in the area of energy and environment especially in photocatalysis. In the end, we highlight the challenges and opportunities on the way to implement photocatalytic materials to help on the development of energy research and finding ways to approach for the major problems. Hence, we believe that a comprehensive chapter on advanced nanomatericals for solar photocatalytic is desirable for the further development of the novel photocatalytic materials and deeper understanding of photocatalytic mechanisms will be achieved in the near future, through more fundamental interdisciplinary research.
TiO2 has turned out to be one of the most commonly investigated semiconductors due to its low cost, long−term thermodynamic stability in aqueous solution, low toxicity, and high efficiency in the removal of pollutants in water and air as well as hydrogen generation [25-28]. There following are the four commonly known polymorphs of TiO2 found in nature: anatase (tetragonal), rutile (tetragonal), brookite (orthorhombic), and TiO2(B) (monoclinic) [29,30]. Rutile TiO2 has a tetragonal crystal structure and contains six atoms per unit cell as shown in Fig. 2 [31]. Rutile is the most thermodynamically stable polymorph of TiO2 at all temperatures, exhibiting lower total free energy than metastable phases of anatase and brookite. Anatase TiO2 has a crystalline structure that corresponds to the tetragonal system but the distortion of the TiO6 octahedron is slightly larger for the anatase phase. Anatase is the most commonly used in photocatalytic applications due to its inherent superior photocatalytic properties [32-34].
Representations of the TiO2 anatase and rutile forms [31].
Anatase is the least thermodynamically stable TiO2 polymorph as a bulk phase, although, from energy calculations, it appears as the most stable phase when the grain size is below 10−20 nm [35,36]. The crystalline structure of the TiO2 oxides can be described in terms of TiO6 octahedral chains. These differ by the distortion of each octahedron and the assembly pattern of the resulting octahedral chains. The Ti−Ti distances in the anatase structure are greater than in rutile, while the Ti−O distances are shorter [37]. These structural differences lead to different mass densities as well as different electronic band structures. As a result, the anatase phase is 9% less dense than rutile and it presents more pronounced localization of the Ti 3d states and further a narrower 3d band. Also, the O 2p−Ti 3d hybridization is different in the two structures. Anatase exhibits a valence and conduction band with more pronounced O 2p−Ti 3d character and less nonbonding self-interaction between similar ions (e.g., anion-anion and cation-cation interactions) [38]. The importance of the covalent vs ionic contributions to the metal-oxygen bond has already been discussed in a more general context for Ti oxides [39,40]. Therefore, it could be claimed that differential structural characteristics between anatase and rutile of TiO2 are possibly attributed to the difference in the mobility of the charge carriers upon light excitation.
In 1972, K. Honda and A. Fujishima discovered the photosensitization effect of a TiO2 electrode on the electrolysis of H2O into H2 and O2 using a Pt metal electrode as cathode and a TiO2 photoanode irradiated with UV light. They found that, under UV light irradiation of the TiO2 electrode, the electrolysis of H2O proceeded at a much lower bias voltage as compared with normal electrolysis [41]. From then on, the TiO2-based photocatalyst have been extensively studied in the past few decades due to its proper energy bandgap that matches the UV−visible light irradiation, which favors many light-driven applications [42-47]. Moreover, TiO2 has got many advantages and the nature of this material is naturally abundant, commercially available, economically viable, chemically stable, non-toxic and environmental eco−friendly [44]. However, TiO2 has also faced few problems as photocatalysts in applying solar energy processes due to its low sunlight spectrum matching, limited activity and reduced sensitivity [48]. To overcome this shortage, recently many researchers have developed many different modification methods to TiO2 material to make it as a potential challenging material for highly active photocatalyst [48-55]. Among these works, crystal growth, doping and heterostructuring of semiconductor photocatalysts are commonly used and can substantial tune the light-response range, redox potentials of photoinduced charge carriers, and electron-hole pair separation probability within the photocatalysts. Specifically, crystal growth can be critical in controlling the phase, shape, and size of photocatalysts, as well as their crystallinity and specific surface area. By rationally controlling crystal growth, the intrinsic surface atomic structure and resultant surface states of the derived photocatalysts can be adjusted. For materials design, doping effect can exert a substantial influence on modifying the electronic structure and the construction of heteroatomic surface structures of the aiming material. In particular, nonmetal doping (N [56,57], C [58-60], S [61,62], B [63-65], F [66-68], Br [69], I [70-73], P [74]) in photocatalyst has attracted increasing attention due to its effectiveness in realizing visible−light photocatalytic activity of wide bandgap semiconductor photocatalysts. The chemical states and locations of dopants are considered to be key factors in adjusting the spectral distribution of the induced electronic states of those dopants and reconstructing favorable surface structure for photocatalysis. The hybrids of two or more semiconductor systems, that is, heterostructures, seem to be possess advantageous in more efficiently utilizing solar light by combining different electronic structures when compared with sing-phase semiconductor photocatalysts. Furthermore, an efficient photo-excited electron or hole transfer from one component to another with proper band edge matching can greatly decrease the electron-hole recombination probability and increase the lifetime of charge carriers, which further promoting the photocatalytic efficiency. In addition to the basic requirements of electronic structure for each unit in the integrated photocatalytic systems, a favorable interface contact between the two materials is essential in promoting interface charge carrier transfer through different pathways. Fig. 3 demonstrates the connection between crystal growth, doping and hetero-structure of semiconductors for heterogeneous photocatalysis, (CB: conduction band; VB: valence band) [75].
Correlation of key factors in crystal growth, doping and heterostructuring of semiconductors for photocatalysis. (CB: conduction band; VB:valence band) [75].
According to the Wulff construction and calculated surface energy, the shape of anatase under equilibrium conditions is a slightly truncated tetragonal bipyramid enclosed with eight isosceles trapezoidal surfaces of {101} and two top squares of {001}, as shown in Fig. 4 [76] It is predicted that the percentage of {101} is as high as 94%. Although the surface energy of {010} (0.53 J m −2) was calculated to be between {001} (0.90 J m−2) and {101} (0.44 J m −2) [77], it is surprising that no {010} will appears in the equilibrium shape of anatase. Anatase TiO2 is usually exposed with low-index facets. Theoretical calculations indicate that the (101) surface (0.44 J m−2) is the thermodynamically the most stable surface, the (001) surface (0.90 J m−2) is the most active and the (100) and (110) surfaces are between the (101) and (001) surfaces. As a consequence, facets that have a high surface energy diminish quickly in the minimization of surface energy during the crystal-growth process. Therefore, a large percentage of high active facets has become a popular target in the synthesis of anatase TiO2 crystals. In the case of rutile, the predicted equilibrium shape of a macroscopic crystal was constructed with (110), (100), (001) and (011) faces (see Fig. 4) [78]. It is found that in the equilibrium shape, the most stable (110) face with the lowest surface energy of 15.6 meV au- 2 dominates the shape, whereas (001) with the highest surface energy of 28.9 meV au−2 does not exist at all. Gong et al. demonstrated the systematic results of the structures and energetics of 10 stoichiometric 1×1 low-index surfaces with different possible terminations of brookite [79]. The determining factors of the relative stabilities of different faces are found to be negatively related to the concentration of exposed coordinatively unsaturated Ti atoms. The equilibrium shape of brookite crystal is shown in Fig. 4, we can observe that the most of it is composed of (111), (210), (010) and reconstructed (001) facets. It is worth noting that brookite (210) is one of the most stable facets, which has a very similar atomic structure to the most stable facet (101) of anatase. However, their electronic states are different, which may result in different chemical reactivities [80].
The equilibrium shape of a TiO2 crystal in the anatase, rutile and brookite, according to the Wulff construction and the calculated surface energies [76, 78,79].
Usually, different facets of a single−crystalline material possess distinctive adsorption, catalytic reactivity and selectivity, which are caused by its different geometric and electronic structures [81]. Since Lu and his coworkers first reported that the uniform anatase single crystals with 47% {001} facets displayed superior photoactivity [82], crystal facet engineering has proven to be an effective strategy to finely tune the efficiency and selectivity of heterogeneous photocatalysts for different applications. Besides, different crystal facets can also facilitate the separation of electrons and holes [83]. To date, many improved synthesis procedures have been successfully developed and lots of exciting advances have been achieved [84-99]. Lu and coworkers demonstrated that, under UV light irradiation, the sheet-like anatase TiO2 crystal dominated by {001} facets is capable of producing OH that is more than five times higher than that of Degussa P25 TiO2 [85]. They concluded that the high density unsaturated five-fold Ti and their unique electronic structures of the {001} facets should be responsible for the improved photoactivity. Similar results also have been reported by other groups. For example, Han et al. [84] reported that the photocatalytic ability of TiO2 nanosheets with {001} facets was higher than that of P25 in the degradation of methyl orange(MO) molecules. Zhang et al. [86] successfully synthesized the a remarkable 80% level of reactive {001} facets microsheet anatase TiO2 single−crystal photocatalyst, which exhibited much better photocatalytic performance in the oxidative decomposition of organic pollutant. By tuning the percentage of the {001} facets, the photoreactivity was enhanced from 40.0% to 84.5%. The reactive {001} facets played an important role in the photocatalytic reaction owing to their strong ability to dissociatively adsorb water to form hydrogen peroxide and peroxide radicals. Although high-energy {001} facets have been widely studied, anatase TiO2 crystals with higher-energy {100} facets have been less well developed. Recently, Li and Xu [100] reported a facile hydrothermal route for the synthesis of tetragonal−faceted nanorods (NRs) of anatase TiO2 with highly exposed higher-energy {100} facets, which exhibited higher reactivity owing to the large percentage of {100} facets compared with crystals that have normal majority {101} facets.
These results discussed above demonstrated that a higher density of surface−unsaturated atoms will lead to a high surface energy of the crystal facets, which generally exhibit better photocatalytic performance. However, recent studies have shown that a high surface energy does not always make the crystal facets highly reactive in photocatalytic reactions. For example, Liu et al. [97] demonstrated a raised conduction band of nanosized single crystals of anatase TiO2 with 82% {101} facets compared to the crystals with 72% {001} facets, which is determined by UV/Vis adsorption spectroscopy. This different electronic−band difference will further lead to a difference in atomic coordination, and this decrease will result in an enhanced photoactivity in the splitting of water into hydrogen. This example shows that the band-gap of crystal facets or crystal plates will change as the change in the arrangement of surface atoms. As a result, the redox power of the photoexcited electrons and holes will be correspondingly changed.
Generally speaking, the {101} facets are more reductive than {001} facets, which could act as possible tanks of photogenerated electrons, while {001} facets act as oxidation sites, which play a major role in the photooxidative processes [101,102]. For example, Pan et al. reported that low−index facets of anatase TiO2 follow the photoreactivity order of {001} < {101} < {010} for photocatalytic hydrogen evolution and⋅OH radical generation [103]. Similarly, a seeded growth technique also demonstrated that the {101} facets of anatase TiO2 are more active than the {001} facets for photocatalytic water splitting [104]. Surprisingly, it was even found that the photocatalytic activity for H2 production over the {111} facet exposed anatase TiO2 is about 5, 9, and 13 times higher than that of the TiO2 sample exposed with dominant {010}, {101}, and {001} facets, respectively [105]. However, most researchers ignored the synergetic effects of various co-exposed facets in one sample. More attention has to be paid to finding special facets rather than the balanced ratio of different exposed facets for the best photocatalytic efficiency of water splitting.
Recently, Yu’s group found that an optimal ratio of the exposed {101} and {001} facets of TiO2 played a significant role in the enhancement of photocatalytic performance for the reduction of CO2 [106]. As shown in Fig. 5, the surplus electrons on the {101} facets will overflow onto the {001} facets and then have a fast recombination with the holes on the {001} facets if the percentage of {101} facets is too low to hold all the photoexcited electrons, this process will lead to a decrease in the photocatalytic activity. The results clearly showed that it is of great importance to find the balanced ratio of different exposed facets in achieving the best photocatalytic efficiency [107]. This finding may shed light on the design and fabrication of advanced nanosheet-based semiconductors for water splitting.
The electron overflow effect on the {101} facets of TiO2 [107].
In 2011, crystal facet dependence of TiO2 photocatalysis has been evidenced by using single-molecule imaging and kinetic analysis [108]. Single−particle spectroscopy (microscopy) has been used to explore the structural and kinetic features of “bulk” catalysis because of its high sensitivity and selectivity. This study demonstrated that the reaction sites for the effective reduction of the probe molecules were preferentially located on the {101} facets of the crystal rather than on the high surface energy {001} facets. This preference originated from the unique properties of the {101} facets in terms of their electron-trapping probability induced by the specific facet. This observation emphasizes the important role of the {101} surfaces as the reductive site in TiO2 photocatalysis and is in agreement with the conclusion that the reactivity of the {001} facets towards oxidation is higher than that of the {101} facets.
This aforementioned investigation shows that the reactivity of a photocatalyst can be controlled by tuning the exposed facets. Another tool-morphology control, which means the formation of different surface facets with different surface atomic structures, also provides an effective method to tune the selectivity of the photocatalysts. For example, Liu et al. [95] reported a fluoride-mediated self-transformation method for fabricating hollow TiO2 microspheres (HTS) with anatase polyhedra with about 20% exposed {001} facets. The fluorinated HTS exhibited preferential decomposition of methyl orange (MO) compared with methyl blue (MB). In contrast, surface-modified HTS that was either washed with NaOH or calcined at 600°C favored the decomposition of MB over MO. This example demonstrated the importance of the surface structure in modifying the catalytic selectivity of titania. Therefore, it is expected that, by controlling the exposed facets, we can design photocatalysts with both high reactivity and high selectivity. The photocatalysts that are terminated by specific facets allow the same adsorption states of reactant molecules and generate photoexcited electrons of similar energies on the specific facets. It is worth noting that these properties will be beneficial for the solar-induced selective photoconversion of carbon dioxides into specific valuable fuels because this process typically requires an undesired separation process and produces mixed hydrocarbons, including CH4, CH3OH, and HCOOH. It is believed that the breakthrough in making specific facets will intensify the development of selective organic transformations that are based on semiconductor photocatalysts.
High-index facets of nanomaterials usually have unique surface atomic structures, such as a high density of atomic steps, dangling bonds, kinks, and ledges, which can all act as active sites. Unfortunately, these unique surface atomic structures always have a high surface energy and high crystal growth rate, which is not naturally preferential growth and is easy to rapidly diminish during the crystal-growth process, so it is quite challenging to synthesize tailor−made crystals.
Yang and coworkers first reported the formation of anatase TiO2 crystals that are exposed by high−index {105} facets [109]. They produced the product with well−faceted surface by a modified high−temperature gas−phase oxidation route with titanium tetrachloride (TiCl4) as the Ti source. During the TiCl4 oxidization process, the co−adsorption of oxygen, chlorine, or other related species will occur and may specifically lower the Gibbs free energy of the {105} facets thus the typical atomic configuration on the {105} facets can be stabilized and reserved. The unique stepped atomic configuration on the high−index {105} facets makes these materials promising candidates in the areas of renewable clean energy and environmental remediation.
Rutile is the thermodynamically stable phase of TiO2 polymorphs, which can be obtained by typically three methods: (i) the hydrolysis of Ti precursors and subsequent crystallization; (ii) the post−transformation from anatase/brookite phase via thermal treatment (phase transformation temperature required depends on the particle size of TiO2) [110] and (iii) mechanical processing [111]. Although rutile is considered to be less active in photocatalytic reactions compared to anatase, nanostructured rutile has also been used photocatalysis applications and in some cases show even higher activity than anatase. Band gap of rutile TiO2 is 0.2 eV smaller than anatase one and further results in a wider absorption range, which may be the advantage of this phase.
Afterwards, various morphologies of rutile have been developed [112-119], with the nanorod being is a common morphology. The synthesis routes of such rutile nanorods with a high aspect ratio have been well documented in the literature [114,119,120-129]. Generally speaking, the presence of Cl ions as mineralizer in the synthesis system is favourable for rutile TiO2, regardless of the source of Cl. In the case of the specific synthesis routes of controlling morphology of rutile, there are two representative examples demonstrate the formation of faceted rutile crystals. One is the rapid formation of self-assembled microspheres with rutile nanorods by microwave heating of TiCl3 at 200°C for only 1 min [115]. The nanorods are exposed with {110} and {111} facets, but because of the extremely rapid growth rate, the surface is not smooth. Interestingly, the synthetic rutile nanorods have a smaller bandgap of 2.8 eV compared with the conventional 3.0 eV, which may facilitate the photocatalysis ability under visible light irradiation. The other one is reported by Kakiuchi et al. [116], who observed the dependence of degree of perfection of facets on hydrothermal temperature, where TiCl3 was also used as a precursor together with NaCl additive. For example, at low temperature (80°C), only needle−like nanorods without well−recognized facets were formed. However, when elevating the temperature to 200°C, well−developed lateral {110} and top {111} facets can be observed. Apparently, this result indicates that a higher temperature is favorable for growing crystals with well-developed facets.
Compared with anatase and rutile, brookite phase TiO2 has attracted little interest due to the generally considered lack of photocatalytic activity. However, increasing literatures have shown that brookite is also photocatalytically active and even has unique photocatalytic properties in some cases [130-133]. However, among the synthetic brookites, crystal facets are usually non-recognizable. Interestingly, Buonsanti et al. [134] developed a nonhydrolytic synthesis route to successfully prepare high−quality anisotropically shaped brookite nanorods with a length of 30−200 nm. These rods are determined to be dominantly enclosed with the longitudinal {210}/{100} and basal {001} facet, which is in agreement with the equilibrium shape of brookite crystals predicted from the Wulff construction.
Hematite (α-Fe2O3) is the most thermodynamically stable form of iron oxide under ambient conditions and it is also the most common form of crystalline iron oxide. The iron and oxygen atoms are naturally arranged in the corundum structure, which is trigonal−hexagonal scalenohedral (3 2/m) with space group R−3c, lattice parameters a = 5.0356 Å, c = 13.7489 Å, and six formula units per unit cell [135,136]. It is easy to understand hematite’s structure based on the packing of the anions, O2-, which are arranged in a hexagonal closed−packed lattice along the [001] direction. The cations (Fe3+) occupy the two−thirds of the octahedral interstices (regularly, with two filled followed by one vacant) in the (001) basal planes, and the tetrahedral sites remain unoccupied. The arrangement of cations can also be considered as producing pairs of FeO6 octahedra that share edges with three neighboring octahedra in the same plane and one face with an octahedron in an adjacent plane in the [001] direction (Fig. 6). The face−sharing is responsible for a trigonal distortion of the octahedra as the proximal iron atoms are repelled to optimize the crystal’s Madelung energy. As a result, hematite exhibits a C3v symmetry and there are two different Fe−O bond lengths (Figure 6). However, the electronic structures of the distorted FeO6 octahedral are thought to be similar to undistorted clusters [133,136]. Hematite is antiferromagnetic at temperatures below 260 K and is a weak (parasitic) ferromagnet at room temperatures. While the magnetic properties of hemitate are not particularly dependent on its photo electrochemical performance, the iron spin configuration does influence the optoelectronic and carrier transport properties of hematite. The absorption of photons by hematite starts from the near−infrared spectral region where weak absorption bands (with absorption coefficients, a, of the order 103 cm−1) are due to transition states electrons between two d orbital energy levels of the Fe3+ ion, which are split by an intrinsic crystal field [136,138]. Analysis by means of a Tauc plot shows the indirect nature of the band gap for the α-Fe2O3 involving d orbital to d orbital transition sand a direct transitions from O (2p) to Fe (3d), which occurs only for band gaps > 3.2 eV [139-141].
The unit cell (left) of hematite shows the octahedral face−sharing Fe2O9 dimers forming chains in the c direction. A detailed view (right) of one Fe2O9 dimer shows how the electrostatic repulsion of the Fe3+ cations produce long (light grey) and short (dark grey) Fe−O bonds [136,137].
Hematite (α-Fe2O3), an environmental friendly n-type semiconductor (Eg = 2.1 eV), has been widely used in many fields such as lithium−ion batteries [142], gas sensors [143–145], photocatalysis [146,147], water treatment [148] and water splitting for generating H2. Hematite is one promising candidate for photocatalytic applications due to its narrow band gap of about 2.0−2.2 eV. Further, hematite absorbs light up to 600 nm, collects up to 40% of the solar spectrum energy, is stable in most aqueous solutions (pH > 3), and is one of the cheapest semiconductor materials available. Due to the band gap value α-Fe2O3 and the fact that it,s valence band edge is substantially lower than the water oxidation potential, it is a promising photoanode material for photoelectrochemical (PEC) water splitting. Photochemical water splitting involves a dispersed material in pure water and accordingly produces hydrogenand oxygen homogeneously throughout the solution [149]. The theoretical photocurrent density of α-Fe2O3 is ~12.6 mA/cm2 under AM 1.5 G solar irradiation, and the solar energy conversion efficiency is ~15.5% in an ideal tandem PEC cell [150,151]. However, the photocatalytic performance of α-Fe2O3 is limited by certain factors such as high recombination rate of electrons and holes, low diffusion lengths of holes (2−4 nm), and poor conductivity, which led to both low efficiencies and a larger requisite over potential for photo-assisted water oxidation [152-156]. Many attempts have been made by researchers to overcome these anomalies of α-Fe2O3 such as lowering the recombination rate by forming nanostructures, enhancement in conductivity by doping with suitable metals and improving the charge transfer ability [157,158]. Apart from water-splitting applications, the photocatalytic activity of hematite can be used for the elimination of organic compounds in water treatment applications.
As the surface area plays an important role in determining the photocatalytic activity of materials, researchers have attempted to reduce the size of photocatalytic materials and enhance the photocatalytic properties of these materials by producing hematite in a nanoscale powder form. Many methods have been followed to synthesize α-Fe2O3 in a nanocrystalline form and in different shapes including hydrolysis [159], co-precipitation [160,161], hydrothermal methods [162–164], solvothermal methods [165,166], ionic liquid-assisted synthesis [167], thermal decomposition [168], combustion methods [169], and a combination reflex condensation and hydrothermal method [170].
Hosseinian et al. [171] synthesized nanostructured iron oxide of different morphologies and different phase compositions (α-Fe2O3 and Fe3O4) by a solid−state reaction (SSR) route. The photocatalytic activity was checked with respect to degradation of rhodamine B(RhB), and it was observed that the samples containing a mixture of α-Fe2O3 and Fe3O4 showed better photocatalytic activity than that of the pure α-Fe2O3. The higher photocatalytic activity observed for a mixed-phase sample was attributed to the higher transfer of electrons and holes generated during the photoreaction of α-Fe2O3 to the valence band of Fe3O4, which limits the recombination rates [172]. Yang et al. [173] synthesized α-Fe2O3 nanoparticles of uniform size (170nm to 2μm) by a hydrothermal route to study both magnetic as well as photocatalytic properties. The α-Fe2O3 powders with the smaller crystallite sizes show the highest photocatalytic degradation efficiency than that of the powders with larger crystallite sizes. Further, all the samples showed higher efficiency for degradation of the dye than that of the commercially available Degussa P25. Apte et al. [169] synthesized nano structured α-Fe2O3 powders in size ranging 25−55nm and their photocatalytic activity was analyzed with respect to the decomposition of hydrogen sulfide (H2S) gas. α-Fe2O3 (necked structures) showed good photocatalytic properties and production of H2. Zhou et al. [174] synthesized nanorods of α-Fe2O3 by thermal dehydration and compared the photocatalytic activity with microrods. The authors reported a higher degradation rate for rhodamine B(RhB) for nanodimensional α-Fe2O3 than that of the corresponding micron-sized rods. Higher Fe−O bond stretching frequencies were proposed as one of the key factors behind the enhanced photocatalytic activity. Particle size, composition, porosity, and the local structures are also the key factors that affect the photocatalytic properties of materials. Townsend et al. [159] compared the photocatalytic activity of three forms of Fe2O3 including bulk (crystallite size 120 nm), ultrasonicated bulk (crystallite size 40 nm), and nanopowders of α-Fe2O3 (crystallite size 5.4 nm). They found that the rate of oxygen evolution is higher when the crystallite size becomes smaller, and the highest rate was reported for α-Fe2O3 nanopowders (1072 μmol/h g). In the case of α-Fe2O3 nanopowders, the hole diffusion length is comparable to the crystallite size, which results in more availability of holes to react with water. Dang et al. [160] reported the effects of calcination temperature, reaction temperature, amount of catalyst, and duration of reaction on the catalytic properties. They reported an increase in photocatalytic activity with increasing calcination temperature, reaction temperature, and catalytic amount up to a certain extent, after which the activity decreases. Similar effects were also reported by Pawar et al. [175] for α-Fe2O3 nanoparticles synthesized by a sol-gel technique followed by the heat treatment at different calcination temperatures. The efficiency of the catalyst was analyzed with respect to various experimental variables such as calcination temperature, pH, light intensity, and concentration of dye and catalyst. Samples calcined at 600°C show the highest photocatalytic activity because of the formation of the more dominant α-Fe2O3 phase. The photocatalytic properties were analyzed for the 3−10 pH range, and the reactions at higher pH conditions showed better photocatalytic properties. In basic pH conditions, formation of OH⋅ radical is more favored and electrostatic abstractive effects between cationic malachite green dye and negatively charged surface of α-Fe2O3 increases, which results in a higher probability of dye degradation. Light intensity shows a linear effect on the photocatalytic properties of α-Fe2O3 due to the increased availability of photons for the reaction. Similar effects were also reported by Liu et al. [176] for α-Fe2O3 nanorods. These authors examined the effect of the amount of catalyst and initial dye concentration on the photocatalytic properties. The optimum catalyst amount was reported to be 50 mg/L to achieve the highest photocatalytic activity. However, the photocatalytic activity degrades with increasing dye concentration. This effect was justified in terms of a decrease in transparency with an increase in dye and catalyst concentration after a particular value.
In a photoreaction, the porosity of the catalyst plays a major role in enhancing the photocatalytic properties. Sundarmurthy et al. [177] synthesized 1D α-Fe2O3 nanobraids and nanoporous structures by electrospinning to analyze the photocatalytic properties. The nanostructures show superior photocatalytic activity for the degradation of Congo red dye (CR) in a small fraction of time due to the porous surface and nanosized crystallites of α-Fe2O3, which provide more active catalytic centers and allow effective interaction between organic dye and α-Fe2O3, thereby enhancing photocatalytic degradation performance. α-Fe2O3 porous structures were prepared by Zhang et al. [162] and the photocatalytic activity was analyzed by the degradation of methylene blue(MB). They analyzed the effect of porosity and the amount of catalyst on photocatalytic activity. It has been reported that an optimized amount of catalyst (20 mg) is required for getting the highest rate of degradation of MB, less or more than this amount leads to lower photocatalytic activity. Large amounts of catalyst result in lesser illumination, and when the amount of catalyst is insufficient, the active sites are not sufficient to degrade the organic dye. Geng et al. [178] followed a number of Ni2+/surfactant system routes for synthesizing α-Fe2O3 with a porous structure and rough surface which shows better photocatalytic properties than that of the α-Fe2O3 nanoparticles in the degradation of MB as a result of higher surface area. Gang et al. [147] prepared α-Fe2O3 micro/nano spheres synthesized by hydrothermal synthesis followed by the thermal treatment. The micro/nano spheres show a better dye degradation efficiency than that of the nanopowders. The calculated reaction rate for spherical structures is more than twice than that of the reaction rate of nanopowders and 12 times the reaction rate of the micron-sized powders. The better photocatalytic activityis the result of the higher specific surface area and porous structures.
Photocatalytic degradation rate of RhB over the α-Fe2O3 nanostructures under visible light illumination in the presence of H2O2 additive (a),and SEM/TEM images of the α-Fe2O3 nanostructures: (b,c)S1;(d,e)S2;(f,g)S3;and(h,i)S4 [179].
Xu et al. [179], Zhou et al. [180] and Bharathi et al. [170] reported the effect of the surface morphology of α-Fe2O3 on its photocatalytic activity. α-Fe2O3 nanostructures with different morphologies such as microflowers, nanospindles, nanoparticles and nanorhombohedra were synthesized (Fig. 7) [179]. The photocatalytic activity was analyzed by monitoring the degradation of RhB in the presence of the catalyst. The best photocatalytic activity was observed for the samples with highest surface area and porosity. Similar surface area effects were also reported by Cheng et al. [181] for flower-like α-Fe2O3 nanostructures synthesized by a biphasic interfacial reaction route. The photocatalytic properties of α-Fe2O3 were evaluated by measuring the degradation of RhB. The results were compared with the commercial α-Fe2O3 powders and nanoflowers were found to have a better photocatalytic property than the commercial powders. The enhancement was related to the increase in crystallinity and increase in the surface area, which is also supported by results of other authors for TiO2 [182] and Fe2O3 [183]. Similar surface area effects were also reported by Cao et al. [184], Xu et al. [166], and Li et al. [163] for α-Fe2O3 hollow microspheres prepared by solvothermal and hydrothermal methods. The photocatalytic activity was analyzed by the degradation of salicylic acid. The hollow spheres associated with nanosheets show better photocatalytic activity than that of then anoparticles of α-Fe2O3. Similar results were also reported by Majiet al. [168], where α-Fe2O3 powders prepared at 500°C show better photocatalytic activity for the degradation of rose Bengal dye than that of the powders prepared at 600°C and commercially available TiO2(Degussa−25) as a result of higher surface area. α-Fe2O3 hollow spindles and spheres were prepared by Li et al. [164] and Xu et al. [167], respectively. These authors reported an enhancement in photocatalytic degradation efficiency as a result of the enhancement in specific surface area, which results in more unsaturated surface coordination sites exposed to the solution. The hollow microsphere facilitates more electron-hole transport and lowers the recombination rate. Hollow microspheres allow multiple reflections of visible light within the interior that encourage a more efficient use of the light source and enhance light−harvesting, leading to an increased quantity of ⋅OH available to participate in the photo-catalytic reaction. Along with this, the hollow spheres also provide ideal channels for the dye molecules and increase the probability of interaction.
Apart from crystallite size, the orientation of crystallites also plays a major role in enhancing the photocatalytic properties. This effect has been reported by Wu et al. [185], in which the authors prepared α-Fe2O3 nanocubes by a solvothermal method and reported a higher photocatalytic property for the {104} planes than that of the samples with {012} planes. The photocatalytic properties involve Fenton’s reaction. The amount of Fe3+ on the surfaces of the catalyst play a very important role in the Fenton reaction in which the reduction of Fe3+ to Fe2+ generates hydroxyl radicals (⋅OH) [186]. It has been reported by Lv et al. [187] that {104} planes of α-Fe2O3 contain 10.3 atoms/nm2 of exposed Fe3+ ions, whereas the {012} planes contain 7.33 atoms/nm2 of exposed Fe3+ ions. This explains the higher reactivity of {104} planes than that of the {012} planes. Along with the surface morphology, oxygen pressure and amount of the catalyst also play a major role in enhancing the photocatalytic properties. Isaev et al. [188] reported an enhancement in the photocatalytic activity with an increase in the quantity of Fe2O3 up to a certain point, after that, the photocatalytic activity is decreased. Similarly, the authors reported an enhancement in dye degradation with increased oxygen content. The reason behind the enhancement in photocatalytic behavior is due to the formation of more oxygen-containing active species such as HO⋅, O2⋅, and HO2⋅ oxidizing species. Zhou et al. [189] investigate visible−light−induced photodegradation of model dye rhodamine B (RhB) in the presence of hydrogen peroxide (H2O2) over hematite architectures, namely 1D nanorods, 2D nanoplates, and 3D nanocubes (Fig. 8), and the reactivity trend can be rationalized as exposed facets in the order {110} > {012} >> {001}. This photocatalytic activity order can be well explained by different facets of α-Fe2O3 surface atomic and electronic structures.
Representative morphologies and structures of α-Fe2O3 architectures.(a) TEM image and (b) HRTEM image of 2D α-Fe2O3 nanoplates. Insets: FFT pattern and drawing of a plate. (c) TEM image and (d) HRTEM image of 3D α-Fe2O3 nanocubes. Insets: FFT pattern and drawing of a cube. (e) TEM image and f) HRTEM image of 1D α-Fe2O3 nanorods. Insets: FFT pattern and drawing of a rod. Side views of surface terminations of α-Fe2O3. (g) {001}, (h) {012}, and (i) {110}. Large black spheres are oxygen and small gray spheres are iron. The coordinatively unsaturated iron atoms on the {012} and {110} surfaces are shown by arrows [189].
Bismuth vanadate (BiVO4), which is an n−type semiconductor, has been identified as one of the most promising photocatalytic materials. As it is well known, BiVO4 exists in three polymorphs of monoclinic scheelite, tetragonal scheelite, and tetragonal zircon structures, with bandgaps of 2.4, 2.34, and 2.9 eV, respectively. BiVO4 exists naturally as the mineral pucherite with an orthorhombic crystal structure [190]. However, BiVO4 prepared in the laboratory does not adopt the pucherite structure but crystallizes either in a scheelite or a zircon-type structure (Fig. 9) [191,192]. The scheelite structure can have a tetragonal crystal system (space group: I41/a with a = b = 5.1470 Å, c = 11.7216 Å) or a monoclinic crystal system (space group: I2/b with a = 5.1935 Å, b = 5.0898 Å, c = 11.6972 Å, and b = 90.3871) [192,193] while the zircon-type structure has a tetragonal crystal system (space group: I41/a with a = b = 7.303 Å and c = 6.584 Å) [192,194].
Crystal structures of (a) tetragonal scheelite and (b) zircon-type BiVO4 (red: V, purple: Bi, and gray: O). The crystal structure of monoclinic scheelite is very similar to what is shown in (a) with the exception being the subtle changes in atomic positions of Bi, V, and O. Local coordination of V and Bi ions in (c) tetragonal scheelite, (d) monoclinic scheelite, (e) and zircon−type BiVO4 structure with bond lengths shown in Å [192,194].
In the scheelite structure, four O atoms coordinate each V ion within a tetrahedral site and eight O atoms from eight different VO4 tetrahedral units coordinate each Bi ion [192,193]. Fig. 9(a) shows the four−coordinated V center and the eight−coordinated Bi center alternating along the [001] direction. Two Bi centers and one V center coordinate each O atom in this structure, and a three−dimensional structure was formed by holding the Bi and V centers. The only difference between the tetragonal and monoclinic scheelite structure is that the local environments of V and Bi ions are more significantly distorted in the monoclinic structure, which removes the fourfold symmetry necessary for a tetragonal system. For example, in the tetragonal scheelite, all four V−O bond lengths were equal (1.72 Å), while in a monoclinic scheelite structure, there are two different V−O bond lengths(1.77 Å and 1.69 Å). In the same manner, in the tetragonal scheelite structure, only two very similar Bi−O distances exist (2.453 Å and 2.499 Å), while in the monoclinic scheelite structure, the Bi−O distances change significantly (2.354 Å, 2.372 Å, 2.516 Å and 2.628 Å) [192,193]. The significant distortion of the Bi−polyhedra indicates that the Bi 6s alone is more sterically expressed in the monoclinic scheelite structure.
It should be noted that the monoclinic scheelite structure of BiVO4 was originally reported with the space group I2/b, which is a nonstandard space group [192,193]. Some recent studies of BiVO4 have used a standard space group C2/c, which is converted from I2/b. Changes in the crystallographic axes via the conversion of a monoclinic I−centered (body-centered) cell to a monoclinic C-centered cell are shown in Fig. 10 [195]. With this cell conversion, the new cell parameters for C2/c are a\' = 7.2472 Å, b\' = 11.6972 Å, c\' = 5.0898 Å, and β\' = 134.225°. The choice of the I−centered monoclinic cell has the advantage of easily showing its structural relationship to the tetragonal scheelite structure that was reported in a body−centered space group, I41/a, using the identical unit cell choice and crystallographic axes. Since both I2/b and C2/c space groups, which have different unit cell choices and crystallographic axes, are commonly used to describe the monoclinic scheelite structure of BiVO4, it is necessary to clarify the space group used when referring to specific atomic planes or crystal directions as well as the hkl indices of X-ray diffraction peaks in order to prevent any possible confusion [192].
Cell conversion of (a) I−centered monoclinic to (b) C−centered monoclinic. a, b, c, and β represent the unit cell parameters for the I−centered cell and a, b0, c0, and b0 for the C−centered cell [195].
In the zircon−type structure, V is still stabilized by four O atoms and Bi is coordinated by eight O atoms. However, since two VO4 units provide two O atoms to Bi, each Bi is surrounded by only six VO4 units, as shown in Fig. 9 (e). To form a 3D structure, two Bi centers and one V center are connected by all oxygen atoms, which holds the V and Bi centers together [192].
It was reported that the low temperature synthesis (e.g., precipitation at room temperature) can form a zircon−type structure [192,196,197]. However, in this process, kinetics plays a critical role in the determination of final products, so the structure type obtained at low temperatures may change with different synthesis methods used and detailed conditions. A phase transition from tetragonal zircon to monoclinic scheelite was reported to occur irreversibly at 670−770 K [192,196]. Among scheelite structures, the tetragonal phase is a high temperature phase and the phase transition between monoclinic scheelite BiVO4 and tetragonal scheelite BiVO4 was observed to occur reversibly at 528 K [192,196].
In the zircon−type BiVO4, the charge-transfer transition from O 2p orbitals to empty V 3d is mainly responsible for the bandgap transition. In the scheelite structure, the bandgap is reduced because the 6s state of Bi3+ appears above the O 2p and the transition from Bi 6s2 (or hybrid Bi 6s2−O 2p orbitals) to the V 3d becomes possible. Among scheelite BiVO4 structures, Tokunaga et al. reported that monoclinic scheelite structure shows much higher photocatalysis activity for the photocatalytic water oxidation compared with tetragonal scheelite structure [192,198]. The bandgap energies of the tetragonal and monoclinic scheelite BiVO4 shows little difference and the more severe distortion of the metal polyhedra present in the monoclinic scheelite BiVO4is the reason why the photocatalytic performance is different [192,198]. As discussed earlier, the local environment of Bi in the monoclinic scheelite structure is much more distorted than that in the tetragonal scheelite structure (Fig. 9 (c) and (d)).
(a) Mechanism for the formation of BiVO4 quantum tubes. (b) Optical absorption edge of BiVO4 quantum tubes (top and bottom insets:photodegradation of RhB vs. irradiation time under visible light). (c) TEM image of BiVO4 quantum tubes after the photodegradation [205]
Morphology control is an efficient method to facilitate carrier transportation and light harvesting, accelerate charge movement within the material structure and assist the collection and separation of electron-hole pairs at the interface of the materials [199-202]. Controllable synthesis of BiVO4 with controlled morphologies has been notable developed (such as nanorods, nanowires, nanotubes (NTs), nanobelts, nanoellipsoids, hollow spheres, and even some hierarchical architectures) and corresponding morphology-dependent photocatalytic properties have also been extensively studied [203-211]. For example, Tada et al. first fabricated BiVO4 nanorods (NRs) using polyethylene glycol (PEG) as a shape−directing agent [203]. Yu et al. developed a template−free solvothermal method to synthesize BiVO4 nanotubes (NTs) [203]. Xie et al. reported a novel assembly−fusion strategy for the synthesis of BiVO4 quantum tubes with an ultra-narrow diameter of 5 nm, ultrathin wall thickness down to 1 nm, and exposed {010} facets (Fig. 11 (a), (c)) [206]. As the increase of the reaction time, optical absorption edge and band energy of the BiVO4 quantum tubes are significantly blue−shifted compared with bulk BiVO4, which is due to the well-known quantum size confinement effect (Fig. 11 (b)).
Nanosized building blocks, such as nanowires, nanobelts, nanosheets, and nanotubes possess interesting properties, and the self-assembling of them into hierarchical architectures is much more interesting and has attracted great attention [199]. Liu et al. and Chen et al. synthesized BiVO4 porous hollow microspheres composed of single−crystalline nanosheets using a solvothermal−induced self-assembling method (Fig. 12 (a), (b)) [207,209]. These hollow microspheres exhibited excellent photocatalytic activity due to the increased specific surface area and light harvesting ability. Xie et al. also reported the multi-responsive function of ellipsoidal BiVO4 assembled from many small nanoparticles with major exposed {101} facets [210]. Similarly, Zhao et al. synthesized uniform hyperbranched BiVO4 via a surfactant−free hydrothermal route (Fig. 12 (c)) [211]. The crystal consists of four trunks with branches distributed on opposite sides, this unique structure is beneficial from the different growth rates along a, b, and c axes: preferentially along the [100] direction at the beginning and subsequently along the [010] and [001] directions. The loosely packed building units of the hyperbranched structure exhibits excellent photocatalytic activity, because (i) the small crystal size allows the inside generated electron-hole pairs efficiently transporting from inside out to the surface and (ii) the large surface area provides abundant active sites for the photocatalytic reaction and promotes light harvesting as well as reactant adsorption.
(a) Formation mechanism, UV−Vis absorption, and RhB photodegradation of hollow BiVO4 microspheres [207]. (b) Morphology evolution of BiVO4 hollow spheres via a hydrothermal method using urea as the guiding surfactant (I: 2 h; II: 4 h; III: 8 h; IV: 12 h; V: 24 h; scale bar is 2 μm) [208]. (c) Morphology evolution of hyperbranched BiVO4 at intervals of 10 min (I), 20 min (II), 30 min (III), 45 min (IV), 1 h (V), and 3 h (VI), respectively (the scale bars are 100, 200, 200, 200, 400 and 500 nm, respectively) [210].
One of the main reasons for the charge recombination in BiVO4 is the long diffusion length of the photo−induced electrons [212-214]. Tailoring porous BiVO4, especially ordered porous structures, can shorten the diffusion length and thus facilitate charge migration, providing a readily accessible channel and increasing the adsorption of reactants and the supply of more surface active sites [214,210]. Yu et al. reported that ordered mesoporous BiVO4 shows a higher photoactivity than conventional BiVO4, and this mesoporous BiVO4 was fabricated by nanocasting using mesoporous silica KIT−6 as the replica parent template (Fig. 13 (a)) [210]. Ordered macroporous BiVO4 with controllable dual porosity was synthesized by Xie et al. for efficient solar water splitting and the relationship between the geometrical characteristics and the charge migration was also demonstrated (Fig. 13 (b)) [215]. There are mainly two factors that determined by the geometrical characteristics of periodically ordered macroporous structures (Fig. 13 (b), (i)): the diameter of the macropores surrounded by the final skeletal walls (denoted as D1) and the diameter of the pores between neighboring macropores (denoted as D2). Previously, Lee et al. observed an efficient photo-induced charge drift mobility within the proper D1 size [216]. Based on this, Xie et al. further synthesized ordered macroporous BiVO4 architectures with controllable dual porosity (aforementioned as D1 and D2) via a modified colloidal crystal templating method (Fig. 13 (b), (i) and (ii)), and verified that charge migration in periodically ordered macroporous architectures has a strong dependence on D1 and D2 (Fig. 13 (b), (iii)) [215]. On the one hand, no matter in the bulk and on the surface, it is believed that a smaller D2 is favorable for charge migration. On the other hand, a smaller D1 blocks bulk charge migration but facilitates surface charge migration.
(a) Proposed process for the fabrication of ordered mesoporous BiVO4 [211]. (b) (i)Schematic representation of dual porosity in periodically ordered porous BiVO4; (ii) typical SEM images of corresponding BiVO4; (iii) relationship between PEC performance and dual porosity [216].
Typical crystal of BiVO4 exposed with the {010}, {011}, {110} and {111} facets.
The specific crystal facet determines the surface active sites and even the electronic structure, as a result crystal facets play a critical role in photocatalysis. [198,217], and consequently, it is of great importance to develop the crystals exposed with highly reactive facets [217-223]. Xi et al. synthesized well-defined BiVO4 nanosheets exposed with {001} facets using a straightforward hydrothermal route without any template or organic surfactant (Fig. 15 (a)) [218]. Typically, BiVO4 crystals show a regular decahedron shape with controllable exposed facets of {010}, {011}, {110} and {111}, as shown in Fig. 14. Li et al. Synthesized BiVO4 with a highly exposed (010) facet using TiCl3 as a directing agent, and correlated this to the high activity in O2 evolution on BiVO4 (Fig. 15 (b)) [219]. Inspired by this work, facet-dependent photocatalytic activity for water oxidization on BiVO4 was investigated by density functional theory (DFT) calculations, particularly between the (010) and (011) facets (Fig. 14 (c)) [220]. The (010) facet has a higher activity compared with the (011) facet due to its higher charge carriers mobility, easier adsorption of water, and lower overall potential energy of O2 evolution.
(a) SEM and HRTEM images of BiVO4 nanoplates exposed with the {001} facets [213]. (b) Facet(010/110)-dependent photoactivity of oxygen evolution on BiVO4 [214].
(a) Charge separation between the {010} and {110} facets confirmed by Pt and PbO2 photodeposition on BiVO4 [218]. (b) Selective deposition of dual redox co-catalysts on specific facets of BiVO4 [219]. (c, d) Photoelectrocatalytic and photocatalytic water oxidation activity of BiVO4 with selectively deposited co-catalysts on specific facets and randomly distributed co-catalysts [220].
Recently, many studies have reported that photo−induced electrons and holes may be drifted to different crystal facets [217,221-223], which means photo-reduction and oxidation may happen preferentially on different facets. Therefore, the cooperation of different facets is very important to obtain high quantum efficiency. Using photochemical labeling, Li et al. discovered that photo-excited electrons-driven reduction reaction (Pt−photodeposition) and photo-excited holes-driven oxidation reaction (MnOx-photodeposition) take place on the {010} and {110} facets, respectively (Fig 16a) [222], which implies that the photo-induced electrons and holes move to the {010} and {110} facets, respectively. Notably, it provides a very useful inspiration to selectively deposited co-catalyst on specific facets via photodeposition (Fig. 16 (b)) [223]. Using this concept, the photocatalyst with Pt on the {010} facets and MnOx on the {110} facets exhibits a much higher activity in both photocatalytic and PEC water oxidation, compared with the counterparts with randomly distributed Pt and PbO2 co−catalysts (Fig. 16 (c), (d)). The coupling of co−catalysts on selected semiconductor facets may open up a new strategy for developing highly efficient photocatalysts.
The Aurivillius family have a general formula of Bi2An−1BnO3n+3 (A = Ca, Sr, Ba, Pb, Bi, Na, K and B = Ti, Nb, Ta, Mo, W, Fe), and Bi2WO6 is the simplest member of this family (where n = 1) and usually have the layer structures and unique properties [224]. Fig. 17 shows a schematic structure of the Bi2WO6 crystalline with orthorhombic structures constructed by alternating (Bi2O2)n2n+ layers and perovskite−like(WO4)n2n- layers [225]. More recently, many Aurivillius-based compounds have been reported which exhibit interesting properties suitable for photocatalytic applications. Of these, Bi2WO6 is the simplest and probably the most studied example within this family. In this bismuth tungstate, the perovskite−like structure is defined by WO6 units which form a layer perpendicular to the (100) direction and sandwiched between the (Bi2O2)2+ units. Layers sandwiched structure favors the efficient separation of photogenerated electron-hole pairs and then improves the photocatalytic activity, which can be ascribed to the formed internal electric fields between the slabs [226,227]. Due to its preferable band composition and unique layered structure, Bi2WO6 possesses several advantages as photocatalysts over the competing materials, especially in the view of practical applications, including its desirable visible− light absorption, relatively high photocatalytic activity and good stability.
Structure of Bi2WO6 showing the WO42- and Bi2O22+ layers [225].
Bi2WO6 consists of accumulated layers of corner-sharing WO6 octahedral sheets and bismuth oxide sheets [228,229]. The conduction band of Bi2WO6 is composed of the W5d orbital; its valence band is formed by the hybridization of the O2p and Bi6s orbitals, which not only makes the VB largely dispersed and thus results in a narrowed band gap of Bi2WO6 (2.8 eV) capable of absorbing visible light (λ > 400 nm), but also favors the mobility of photogenerated holes for specific oxidation reactions [230]. Such a band structure indicates that charge transfer in Bi2WO6 upon photoexcitation occurs from the O2p + Bi6s hybrid orbitals to the empty W5d orbitals, as illustrated in Fig. 18 [231].
Band structure of the Bi2WO6 photocatalyst. [231]
As early as in 1999, the solid−state method was first used by Kudo et al. to synthesize Bi2WO6 photocatalyst [232], but the particle sizes of the product are in micrometers and the specific surface area is very small, which greatly limit its application in the photocatalysis. In the aim of obtaining micro or nanosized Bi2WO6 structures with enhanced photocatalytic activity, several groups have developed many advanced synthetic methods including sol−gel method [233], combustion synthesis method [234], ultrasonic method [235], co-precipitation method [236], sol-gel method/calcining method [237], and hydro/solvothermal method [238-245].
Bi2WO6 micro/nano−structures with diverse shapes exhibit different photocatalytic activities, and currently some of them have been used not only for the photodegradation of other organic pollutants but also for the photocatalytic disinfection. In 2005, Zhu’s group have developed a Bi2WO6 nanoplates [246,247] applied in the photodegradation of rhodamine B (RhB) under visible−light irradiation. Notably, the photocatalytic reaction constant (k) of the best quality Bi2WO6 nanoplates is three times higher than that of the sample prepared by solid−state reaction [246]. In addition, they found a significantly pH-dependence of the photo-assisted degradation of RhB in aqueous Bi2WO6 as the pH varies from 5.03 to 9.89, where the highest degradation rate was achieved at pH 6.53. It is proposed that the pH of the solutions can affect the mode and extent of adsorption of RhB on the Bi2WO6 surface and further the transformation rate of RhB indirectly. They further used the total organic carbon measurement to determine the high mineralized degree of RhB [247]. Further studies on the mechanism shows that a photocatalytic process and a photosensitized process is involved in the the Bi2WO6−assisted photodegradation of RhB [247]. However, the contribution of RhB photodegradation driven by the light−excited RhB was much slower than by the light−excited Bi2WO6. The experimental results show that only 19% of RhB was degraded by photosensitized action, while 81% of RhB was degraded by a photocatalytic process [247].
In order to further improve the photocatalytic activity of Bi2WO6, some groups have developed Bi2WO6 nanoplates superstructures [248,249-253]. Zhang group also prepared Bi2WO6 micro/nanostructures, including nanoplates, tyre/helixlike, disintegrated−flower−like and flower−like superstructures [238,239]. The photodegradation results of RhB show that these Bi2WO6 micro/nanostructures exhibit different photocatalytic activities under visible-light (λ > 400 nm) irradiation, as shown in Fig. 19 (a). Among these photocatalysts, the uncalcined flower-like Bi2WO6 superstructure prepared with pH = 1 processes an improved photocatalytic performance, which can degrade 84% of RhB in 60 min [238]. Besides, the photocatalytic performance can be further improved by the calcination process, and the result calcined flower−like Bi2WO6 superstructure has a higher photocatalytic activity, which can degrade 97% of RhB in 60 min (Fig. 19 (b)). This performance is also superior to other traditional photocatalysts such as TiO2 (P25) and bulk SSR-Bi2WO6 powder prepared by solid−state reaction [239].
(a) The photodegradation efficiencies of RhB as a function of irradiation time by different Bi2WO6 nano/micro−structures: (A) the uncalcined flower−like Bi2WO6 superstructure prepared with pH = 1, (B) the uncalcined disintegrated flower-like Bi2WO6 superstructure prepared with pH = 2.5, (C) the calcined tyre/helix−like Bi2WO6 superstructures prepared with pH = 1 and P123, (D) the uncalcined Bi2WO6 nanoplates prepared with pH = 7.5; [239] (b) the photodegradation efficiencies of RhB as a function of irradiation time by photocatalyst samples: (A) the calcined flower-like Bi2WO6 superstructure, (B) the uncalcined flower-like Bi2WO6 superstructure, (C) TiO2 (P25), (D)bulk SSR-Bi2WO6 powder, and (E) blank [238].
The novel flower-like superstructures of the uncalcined or calcined Bi2WO6 is mainly responsible for the highly improved photocatalytic activity. At the same time, as shown in SEM images (Fig. 20), there are plenty of meso− or macro−diameter sized pores in the flower-like superstructures, which can be considered as electron transport paths that also contributes to the photocatalysis process. [254]. It is generally believed that it is an integral part of the architectural design if the reactant molecules can easily move in or out of the nanostructured materials, the efficiency of the photocatalysis can be improved, and here, meso− or macro−diameter sized pores provides the important transport paths [254,255]. They also believe that the introduction of textural transport paths in the uncalcined or calcined Bi2WO6 superstructures facilitate the reactant molecules to easily incorporate with the reactive sites on the framework walls of photocatalysts, which leads to excellent photocatalytic performance for the degradation of RhB [239]. On the other hand, fewer defects, which acting as electron-hole recombination centers, can be significantly reduced by improved crystallinity of Bi2WO6 through the calcination process of Bi2WO6 [238]. This has been proved by Amano et al. [256] who experimentally investigated the influence of crystallization on the lifetime of photoexcited electrons from Bi2WO6. The recombination rate of electrons decay with holes can be characterized by the intensity of transient IR absorption after a 355 nm laser pulse [256]. If an appreciable absorbance at 100 μs in Bi2WO6 crystalline can be observed, it means a slow recombination rate and a long lifetime of photogenerated carriers, which is beneficial for driving appreciable photocatalytic reactions. However, no transient absorption for amorphous Bi2WO6 samples was observed implying a fast recombination of electron-hole pairs, leading to negligible photocatalytic activity. Therefore, the higher photocatalytic activity of the calcined Bi2WO6 is explicable in several cases [238,251,256].
SEM (A) and TEM (B) images of an individual flower−like Bi2WO6 superstructure (inset: SEAD pattern recorded at the corner of this individual sphere); (C) SEM image of a broken Bi2WO6 sample; (D) TEM image of a peeled fragment (inset: SEAD pattern recorded at this individual nanoplate) (conditions: pH = 1, hydrothermally treated at 160 °C for 20 h, no surfactant, uncalcined) [238].
It is worth noting that Amano et al. [256] have demonstrated a high photocatalytic activity of crystalline Bi2WO6 under visible-light (λ > 400 nm) irradiation for oxidative decomposition of gaseous acetaldehyde (AcH) to produce CO2, however, amorphous Bi2WO6 sample exhibits negligible photocatalytic activity under same condition. Because the mineralization of colorless AcH does not involve a dye−sensitized process, this result provides an solid conclusion that crystalline Bi2WO6 has excellent visible−light−driven photocatalytic activity. Furthermore, the photocatalytic activity of crystalline Bi2WO6 has been finely evidenced by its diffuse reflectance photoabsorption spectrum and action spectrum, that is, 8% apparent quantum efficiency at wavelength of 400 nm [256]. In the future, much more clear evidence needs to be provided to explore the mechanism of visible−light−driven photocatalytic activity of Bi2WO6. [256].
Recently, Amano et al. [252] reported the preparation of Bi2WO6 superstructures with similar hierarchical architecture, secondary particle size, crystalline shape, exposed crystalline lattice planes, and crystalline content. The only difference is that as the increasing hydrothermal reaction temperature, their specific surface areas of the products were different due to the increase thickness of crystalline rectangular platelets. The specific surface area of the product is very important, because when levels of crystalline content of Bi2WO6 flake-ball particles is similar, the higher the specific surface area is, the better the photocatalysis ability it shows. This proportional relation could be explained by the fact that the initial rate of AcH decomposition was expressed by first-order kinetics with respect to the amount of surface-adsorbed AcH, which is proportional to the specific surface area of Bi2WO6 samples.
(a) TEM, (b) HRTEM, and (c) structural model of Bi2WO6 square nanoplates. (d) CH4 generation over nanoplates and the SSR sample under visible−light irradiation (λ > 420 nm) [257].
In 2011, Zou and coworkers reported a remarkable increase in the CO2 reduction with water to yield CH4 over Bi2WO6 square nanoplates (Fig. 21 (a)−(c)) under visible-light irradiation as compared with yield over Bi2WO6 made by solid-state reaction (SSR) [257]. In detail, the CH4 production rate increases from 0.045 mmol g -1 h -1 for the SSR sample to 1.1 mmol g -1 h -1 for the nanoplate catalyst (Fig. 21 (d)) [257]. Considering that the band gap of B2WO6 nanoplates and SSR sample is very close, geometrical factors of the photocatalyst is mainly responsible for the photoactivity enhancement. Firstly, reducing lateral dimension of the nanoplate to the nanometer scale offers a higher specific surface area. Secondly, the ultrathin geometry of the nanoplate facilitates the transfer of the charge carriers from the bulk onto the surface, where they participate in the photoreduction reaction. Thirdly, the preferentially exposed (001) crystal plane of the nanoplates is more effective than other crystal planes [257].
Another new class of interesting layered materials, Bismuth oxyhalides (BiOX; X = Cl, Br, and I), shows promising photocatalytic energy conversion and environment remediation ability, because of their unique layered−structure−mediated fascinating physicochemical properties and suitable band structures, along with their high chemical and optical stability, nontoxicity, low cost, and corrosion resistance [258-260]. The layered BiOX (X = Cl, Br and I) semiconductor materials, as members of the Sillen−Aurivillius family, have a tetragonal PbFCl−type structure (space group P4/nmm), which consists of [X−Bi−O−Bi−X] slices stacked together by the nonbonding (van der Waals) interactions through halogen atoms along the c-axis [261]. In each [X−Bi−O−Bi−X] layer, a bismuth center is surrounded by four oxygen and four halogen atoms, creating an asymmetric decahedral geometry. The covalent bonds is the interaction bond within the [Bi2O2] layers, whereas the [X] layers are stacked together by van der Waals, forces (nonbonding interactions) between the X atoms along the c-axis. The strong intralayer covalent bonding and the weak interlayer van der Waals interaction can induce the formation of layered structures. For BiOX crystals, the valance band maximum mainly comprises of O2p and X np states (n = 3, 4, and 5 for X = Cl, Br and I, respectively) and the Bi 6p states dominate the conduction band minimum [262-266]. As the atomic numbers of X increases, the contribution of X ns states increases remarkably, and the dispersive characteristic of band energy level becomes more and more striking, thereby narrowing the band gap. Taking BiOCl, for example, as illustrated in Fig. 22, BiOX (X = Cl, Br, I) are characterized by the layered structure that are composed of [Bi2O2] slabs interleaved with double halogen atom slabs along the [001] direction. A highly anisotropic structural, electrical, optical, and mechanical properties of this material origin from the nature of its strong intralayer covalent bonding and the weak interlayer van der Waals, interaction, this unique structure allows BiOX to apply in many promising potential applications including photocatalytic wastewater and indoor-gas purification, water splitting, organic synthesis, and selective oxidation of alcohol [267-277].
The schematic diagram of crystal structure of BiOCl (green, Cl atoms;yellow, Bi atoms; red, O atoms) [278].
One−dimensional nanostructures (1D), which refers to the materials with nanoscaled thickness and width, while the length can be several micrometers or longer, is considered to be promising in photocatalysis application. The prolonged length scale may allow the 1D nanomaterials to contact the macroscopic world for various measurements [279,280]. Besides, the high aspect ratio of 1D nanostructured semiconductors also facilitates the fast photoexcited electron-hole separation, which is favorable for highly efficient photocatalytic reactions.
SEM images of the prepared (A) PAN/BiCl3 nanofibers and (B) BiOCl nanofibers [281].
BiOX (X = Cl, Br and I) material is naturally preferentially grow into nanoplates/sheets with 2D features due to its highly anisotropic layered structures. As a result, hard templates for the synthesis of the 1D bismuth oxyhalide nanostructures is commonly used, becaused the template can be easily removed by subsequent thermal or chemical treatments [281-283]. For example, Liu et al. [281] developed the electrospinning method to synthesize BiOCl nanofibers, as shown in Fig. 23. After thermal removal of the polyacrylonitrile (PAN) template at 500°C for 10 h, they can obtain the BiOCl nanofibers with diameters ranging from 80 to 140 nm. Interestingly, the as-prepared BiOCl nanofibers showed high activity towards rhodamine B (RhB) degradation under the UV irradiation, and the photodegradation rate was found to be about three times faster than that of Bi2O3 nanofibers obtained in the same way. In addition to PAN, some other templates involving activated carbon fibers (ACFs) [282] and anodic aluminium oxide (AAO) [283] have also been used to prepare BiOCl nanofibers/nanowire arrays, which displayed efficient photocatalytic performance in the degradation of organic dyes.
In the past few years, 2D nanomaterials, such as graphene, transition metal dichalcogenides and layered double hydroxides (LDHs), have gained great attention for their extraordinary physical/chemical features and promising applications in a great deal of applications [284-287]. Intrinsically, van der Waals bonds or electrostatic forces between the layer structure in such 2D nanostructures is the origin of its lamellar structure. Similarly, the layered structure makes BiOX (X = Cl, Br and I) tend to the intrinsic 2D nanostructures, such as nanoplates, nanosheets and nanoflakes. The formed intra-electric field between [Bi2O2] layers and halogen atom layers could accelerate the transfer of the photo-induced carriers and enhance the photocatalytic activity of BiOX (X = Cl, Br and I) [288].
To date, numerous synthetic methodologies have been exploited for the preparation of 2D BiOX nanomaterials, such as hydrolysis, [288-292] hydrothermal/solvothermal synthesis, [293-295] and thermal annealing [296]. For instance, recently, Zhang\'s group [293] has synthesized 2D BiOCl nanosheets with predominantly exposed {001} and {010} facets by selective addition of the mineralizing agent NaOH. Interestingly, BiOCl nanosheets with exposed {001} facets displayed higher UV−induced photocatalytic degradation of MO dye, while the counterpart with exposed {010} facets exhibited higher degradation activity under visible light. On the one hand, the generated internal electric field along the [001] direction is more favorable for direct semiconductor photoexcitation under UV irradiation as shown in Fig. 24, which was also confirmed by the higher photocurrent of {001} facets than that of {010} facets from the transient photocurrent responses. On the other hand, compared with {001} facets, the larger surface area and open channel feature of {010} facets facilitate the adsorption of dye molecules, which further results in its better indirect dye photosensitization performance under visible light irradiation.
(a) Crystal structure of BiOCl. (b) Model showing the direction of the internal electric field in each of the BiOCl nanosheets. (c) Photocurrent responses of the BiOCl nanosheets in 0.5 M Na2SO4 aqueous solutions under UV-vis irradiation [293].
Researches have also using density functional theory (DFT) computations to reveal the nature of such a facet-dependent photocatalytic property in BiOX (X = Cl, Br and I) [297]. The halogen X−terminated {001} facets shows great thermodynamic stability and could efficiently separate photo-generated electron−hole pairs, whereas the formation of deep defect levels in the band gap of BiX−terminated {110} and other facets with surface O vacancies are bad for the carrier separation. This finding reveals the insight into the fundamental facet determined photocatalysis of BiOX (X = Cl, Br and I), which explains the superior photocatalytic performance of BiOX (X = Cl, Br and I) nanosheets with higher percentage of {001} facets than those with lower ones [289,290,296].
Self-assembly is a strong tool in nanotechnology fabrication of making low dimensional (e.g., 1D nanorods, 2D nanosheets, etc.) materials into their higher−dimension (3D) multifunctional superstructures, which plays a major role in material synthesis and device engineering and has been paid much attention recently [298-302]. Comparison with 1D and 2D nanostructures, 3D hierarchical nano/microstructures, which integrate the features of the nanoscale building units and their assembled architectures, are more attractive for solar energy storage and conversion [300-302]. Furthermore, 3D architectures could endow the BiOX (X = Cl, Br, I) semiconductors with improved light harvesting, shortened diffusion pathways, faster interfacial charge separation and more reactive sites, thus enhancing their photocatalytic efficiencies.
Hydro/solvothermal routes are definitely the most robust method among the methodological synthesis of the 3D BiOX (X = Cl, Br and I) hierarchical assemblies, [303-322] which are usually carried out at critical conditions of water or other organic solvents. In 2008, a generalized solvothermal process has been developed by Zhang et al. [303], who use ethylene glycol (EG) to prepare BiOX (X = Cl, Br, and I) hierarchical microspheres from 2D nanoplates. The band gaps of the resulting BiOX (X = Cl, Br and I) samples are calculated to be 3.22, 2.64, and 1.77 eV for BiOCl, BiOBr, and BiOI, respectively. Under visible-light irradiation, the BiOI sample exhibited the best photocatalytic performance with the order of BiOI > BiOBr > BiOCl evaluated by MO dye solution degradation. Almost at the same time, Tang et al. [304] also prepared 3D microspherical BiOBr architectures assembled by nanosheets through EG−assisted solvothermal synthesis. The band gap of the BiOBr architectures is 2.54 eV, so it shows higher photocatalytic activity for MO decomposition under visible−light irradiation than the BiOBr bulk plates.
The schematic formation process of the BiOBr hollow microspheres by the mini-emulsionmediated solvothermal route [313].
How to realize the hierarchical architectures in the microstructure modulation of BiOX (X = Cl, Br and I) nano/microstructures with hollow voids draws much attention due to their better penetrability and higher light utilization. Recently, Huang group [313] has developed a method to synthesize uniform BiOBr hollow microspheres in the presence of 2-methoxyethanol solvent a mini-emulsion-mediated solvothermal route. The size of the BiOBr hollow microspheres is in the in the range of 1-2 mm and shell thickness of about 100 nm, which are composed of numerous interlaced 2D nanosheets. As demonstrated in Fig 25, by observing a Tyndall effect of the precursor suspension, the author confirmed that the 1−hexadecyl−3−methylimidazolium bromide ionic liquid ([C16Mim]BrIL) can not only serve as a Br source but also create a colloidal mini-emulsions. The diameter of the BiOBr hollow microsphere is determined by the size of the of the emulsion because the reaction takes place at the phase interface edge of the mini−emulsion rather than in the itself. Under visible-light irradiation, such BiOBr hollow microspheres displayed superior photocatalytic activity in degradation of RhB dye and reduction of CrVI ions to the samples with micro-flower shape. Xia and co-workers [319] prepared BiOI hollow microspheres by the EG−assisted solvothermal method using 1-butyl-3-methylimidazoliumiodine ([Bmim]I) IL as the reactive templates and I source. Under visible-light irradiation, such 3D BiOI hollow microspheres exhibited higher photocatalytic activity toward MO degradation than that of 2D BiOI nanoplates. Besides the halide ion-containing ILs [304,304,312,314,317,322], surfactants such as poly(vinylpyrrolidone) (PVP) [308] and hexadecyltrimethylammonium bromide (CTAB) [311,312,314,316,318,319] have been used to tailor the self-assembly process of the BiOX (X = Cl, Br, I) hierarchical architectures, and in particular CTAB could act as reactive template to provide Br - ions for BiOBr.
Schematic illustration of the fabrication of flower−like BiOCl hierarchical nanostructures by an in situ oxidation process [331].
Apart from the hydro/solvothermal syntheses, other synthetic procedures are also used to synthesize the ordered superstructures of BiOX (X = Cl, Br and I) semiconductors, such as hydrolysis [323,324], direct precipitation [325,326], sonochemical route [327,328], refluxing method [329], chemical bath [330] and solution oxidation process [331]. For example, Xiong and co-workers [331] reported a rapid in situ oxidation process to fabricate 3D flower-like BiOCl hierarchical nanostructures by reacting metallic Bi nanospheres and FeCl3 aqueous solution at room temperature. As illustrated in Fig. 26, in the presence of Cl- ions, the redox potential of Bi species could be reduced from +0.308 V (Bi3+/Bi vs. SHE) to +0.16 V (BiOCl/Bi). Therefore, the high redox potential of Fe3+ (E(Fe3+/Fe2+) = +0.771 V) could oxidize the surface of Bi nanospheres into the final 3D BiOCl hierarchical nanostructures. Compared with the commercial BiOCl sample, such flower-like BiOCl nanostructures obtained displayed much better RhB photodegradation activity and higher photoelectric conversion performances.
Interestingly, Zhang [332] found that the photoactivity of BiOCl nanosheets shows a highly exposed facet-dependent effcet. The BiOCl nanosheets with exposed {001} facets showed higher direct semiconductor photoexcitation activity towards pollutant degradation due to both the surface atomic structure and suitable internal electric fields under UV light irradiation. Under visible light, highly exposed {010} facet BiOCl nanosheets shows superior indirect dye photosensitization activity for methyl orange degradation, which is due to the larger surface area and open channel characteristic of BiOCl nanosheets. It is belived that the enlarged surface area and open channel could enhance the adsorption capacity of methyl orange molecules as well as provide more contact sites between the photocatalyst and dye molecules, thereby facilitating the indirect dye photosensitization process because more efficient electron injection from the photoexcited dye into the conduction band of the catalyst happened (Fig. 27). These findings not only clarified the origin of facet-dependent photoreactivity of BiOCl nanosheets but also provided effective guidance for the design and fabrication of highly efficient bismuth oxyhalide photocatalyst.
Schematic illustration of facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [332].
It is speculated by Ye et al. that oxygen vacancy induced by UV light could yield an intermediate state between the valence and conduction bands to narrow the band gap, which may make oxygen−deficient BiOCl a promising alternative for the visible−light−driven photocatalytic reaction [333,334]. Zhang group recently found that oxygen vacancies of BiOCl can be created by the reductive ethylene glycol because it could easily react with the oxygen−terminated (001) surface at 160°C, which is evidenced by the electron spin resonance (ESR) spectra [335]. The resulting oxygen vacancies not only extended the light-response edge up to 650 nm but also enabled the effective capture of photoinduced electrons and molecular oxygen to generate superoxide anion radicals, both of which are of great important for realizing high photocatalysis efficiency of the photocatalyst. Recently, Xie et al. demonstrated that with the reduced thickness of the {001} facet−dominant BiOCl nanosheets to the atomic scale, the defects mainly change from isolated defects to triple vacancy, which could significantly promote the sunlight−driven photocatalytic activity of BiOCl nanosheets. The enhanced adsorption capability, the separation of electron-hole pairs and the generated reductive photoexcited electrons is mainly responsible for this improvement [261].
In contrast to one individual semiconductor photocatalyst, semiconductor composites are more intriguing for their interfacial heterostructures, which are formed at their junctures and have an important effect on their photocatalytic performances. There are usually three types of band positions in semiconductor heterojunctions: straddling gap (type I), staggered gap (type II) and broken gap (type III), as presented in Fig. 28. Among them, semiconductor composites with the staggered gap (type II) have drown much attention in the field of heterogeneous photocatalysis [336,337]. In this system, the photoinduced electrons and holes can be easily separated at the interface of the two semiconductors via effective interfacial charge transfer, thereby enhances the photocatalytic performance of the semiconductor composites.
Schematic diagram of three types of semiconductor heterostructures [338].
In recent years, tremendous efforts have been made in surface modification of TiO2 nanomaterials with other semiconductors. Most of these systems possess a high dye adsorption capacity, an extended light absorption range, enhanced charge separation, promoted mass-transfer and thus improved photocatalytic efficiency. This semiconductor provides the best compromise between catalytic performance and stability in aqueous media. Therefore, the magnetic iron oxide/TiO2 composite photocatalysts have become the research focus in recent years. Using the magnetic properties of iron oxide itself for obtaining the magnetic recoverable photocatalyst has become an important issue in the magnetic iron oxide/TiO2 composite photocatalyst system [339-342]. For instance, Wang and coworkers have reported the fabrication of core−shell Fe3O4@SiO2@TiO2 microspheres through a wet−chemical approach. The microspheres possess both ferromagnetic and photocatalytic properties. The TiO2 nanoparticles on the surfaces of the microspheres degraded organic dyes under the illumination of UV light. Furthermore, the microspheres were easily separated from the solution after the photocatalytic process due to the ferromagnetic Fe3O4 core. The photocatalysts were recycled for further use and the degradation rate of methyl orange still reached 91% after six cycles of reuse [343]. As shown in Fig. 29, Chalasani and Vasudevan have demonstrated water-dispersible photocatalytic Fe3O4@TiO2 core−shell magnetic nanoparticles by anchoring carboxy−methyl beta−cyclodextrin (CMCD) cavities to the TiO2 shell, and photocatalytically destroyed endocrine-disrupting chemicals, bisphenol A (BPA) and dibutyl phthalate, present in water. The particles, which were typically 12 nm in diameter, were magnetic and removed from the dispersion by magnetic separation and then reused. The concentration of BPA solution was determined by liquid chromatography, and then irradiated under UV light for 60 min. After photodegradation of BPA, the CMCD−Fe3O4@TiO2 nanoparticles that were separated from the mixtures by a magnet, and can be reused for the photodegradation of newly prepared BPA solutions. The recycle photocatalytic performance of CMCD−Fe3O4@TiO2 for the photodegradation of BPA was excellent and stable, retaining 90% efficiency after 10 cycles [345]. For obtaining the magnetically recovered photocatalysts, Fe3O4 and γ-Fe2O3 were often employed due to their higher saturation magnetization and good magnetic separation ability.
Scheme for the reuse of cyclodextrin-functionalized Fe3O4@TiO2 for photocatalytic degradation of endocrine-disrupting chemicals in water supplies [344].
On the other hand, α-Fe2O3 has often been introduced into the magnetic iron oxide/TiO2 composite photocatalyst in order to use its narrow band gap properties and to obtain magnetic iron oxide/TiO2 composite heterostructures [344-348]. For example, Peng and coworkers have synthesized Fe2O3/TiO2 heterostructural photocatalysts by impregnation of Fe3+ on the surface of TiO2 and annealing at 300°C, the composites possess different mass ratios of Fe2O3 vs. TiO2. The photocatalytic activities of Fe2O3/TiO2 heterocomposites, pure Fe2O3 and TiO2 were studied by the photocatalytic degradation of Orange II dye in aqueous solution under visible-light (λ > 420 nm) irradiation. The Fe2O3/TiO2 heterogeneous photocatalysts exhibited an enhanced photocatalytic ability for Orange II, higher than either pure Fe2O3 or TiO2. The best photocatalytic performance for Orange II could be obtained when the mass ratio in Fe2O3/TiO2 is 7 : 3. The results illustrate that the generation of heterojunctions between Fe2O3 and TiO2 is key for improving movement and restraining the recombination of photoinduced charge carriers, and finally improving the photocatalytic performance of Fe2O3/TiO2 composites [348]. Recently, Palanisamy and coworkers have prepared Fe2O3/TiO2 (10, 30, 50, 70 and 90 wt% Fe2O3) photocatalysts by a sol-gel process. Mesoporous Fe2O3/TiO2 composites exhibited excellent photocatalytic degradation ability for 4−chlorophenol in aqueous solution under sunlight irradiation. The author claimed that the photogenerated electrons in the VB of TiO2 are transferred to Fe(III) ions resulting in the reduction of Fe(III) ions to Fe(II) ions. Thus, the photoinduced holes in the VB of Fe2O3/TiO2 cause an oxidation reaction and decompose the 4-chlorophenol to CO2 and H2O. Meanwhile the transferred electrons in Fe(III) ions could trigger the reduction reaction [349].
Wang’s group successfully synthesized Bi2WO6-TiO2 hierarchical heterostructure through a simple and practical electrospinning-assisted route (Fig. 30 (A) and (B)) [350]. As shown in Fig. 30 (A), Bi2WO6 nanoplates grew aslant on the primary TiO2 nanofibers. These three dimensional (3D) Bi2WO6−TiO2 hierarchical heterostructures exhibited enhanced visible−light−driven photocatalytic activity for the decomposition of CH3CHO, which was almost eight times higher than that of the Bi2WO6 sample, and the decomposition rate by the bare TiO2 could be neglected under visible light irradiation. This high photocatalytic activity was ascribed to the reduced probability of electron−hole recombination and the promoted migration of photogenerated carriers. Similarly, Wang et al. [352] fabricated SnO2−TiO2 heterostructured photocatalysts based on TiO2 nanofibers by combining the electrospinning technique with the hydrothermal method (Fig 30C and D). This SnO2−TiO2 composite possessed a high photocatalytic activity for the degradation of rhodamine B (RhB) dye under UV light irradiation, which was almost 2.5 times higher than that of the bare TiO2. The enhanced photocatalytic efficiency was attributed to the improvement of the separation of photogenerated electrons and holes. Wang’s group [352] prepared a graphene−Bi2WO6 composite via an in situ hydrothermal reaction (Fig. 31(A) and (B)). This graphene−Bi2WO6 photocatalyst showed significantly enhanced photocatalytic activity for the degradation of RhB under visible light (λ > 420 nm), which was three times greater than that of the pure Bi2WO6. The enhanced photocatalytic activity could be attributed to the negative shift in the Fermi level of graphene−Bi2WO6 and the high migration efficiency of photoinduced electrons; these electrons may not only be effectively involved in the oxygen reduction reaction but also suppress the charge recombination. Kudo et al. [353] reported the composite of reduced graphene oxide (RGO) with BiVO4, where an significantly improved PCE activity of a near 10−fold enhancement was observe compared with pure BiVO4 under visible-light irradiation. The longer photoexcited electron lifetime of BiVO4 is mainly responsible for this improvement as the electrons are injected to RGO instantly at the site of generation, leading to a significant reduction in charge recombination.
SEM (A) and HRTEM (B) images of Bi2WO6/TiO2 [343]; SEM (C) and HRTEM (D) images of SnO2/TiO2 heterostructures [351].
(A and B) TEM images of graphene decorated with Bi2WO6 composite [352].
A simple soft-chemical method was used to synthesize the BiOI/TiO2 heterostructures with different Bi to Ti molar ratios at low temperature of 80°C. The degradation of methyl orange under visible-light irradiation (λ > 420 nm) of the material revealed that the BiOI/TiO2 heterostructures exhibited much higher photocatalytic activities than pure BiOI or TiO2, where 50%BiOI/TiO2 showed the best activity among all these heterostructured photocatalysts [348]. BiOBr−Bi2WO6 mesoporous nanosheet composite enhanced photocatalytic activity is attributed to well-matched band edge positions of BiOBr and Bi2WO6 and the large specific surface area of the mesoporous nanosheet composites in view of the incorporation of mesopores and the highly exposed BiOBr (001) facet, compared with pure BiOBr and Bi2WO6 under exposure to a 3−W LED light [354].
During the past few years, another promising carbon material, graphene, which possess many unique properties, has been used for corporation with BiOX (X = Cl, Br and I) and significantly improved photocatalytic efficiencies was achieved [356-360]. Ai and coworkers [357] have developed a facile solvothermal route tosynthesize BiOBr/graphene hybrids using graphene oxide (GO), bismuth nitrite, and CTAB as the precursors. As shown in Fig. 32, BiOBr nanoplates with hundreds nanometers in size are dispersed randomly on the 2D graphene sheet surface. Evaluated by the removal of gaseous NO under visible-light irradiation, the as-prepared BiOBr/graphene hybrid displays a two times higher removal rate than that of pure BiOBr. It is evidenced that the strong chemical bonding between BiOBr and graphene is mainly responsible for the fast photogenerated electrons transfer from BiOBr to graphene, which further inhibities the unwanted recombination and leading to its enhanced photocatalytic activity.
Schematic illustration of the visible−light photocatalytic enhancement of BiOBr/graphene nanocomposites [357].
To date, although a variety of approaches have been developed to prepare many kinds of visible−light−driven semiconductor heterojunction photocatalysts, many shortage is still needed to be overcomed, for example, the limited region of visible-light photo−response. To solve these problems, multi−component heterojunction systems have been developed [361,362], in which two or more visible-light active components and an electron-transfer system are spatially integrated as shown in Fig. 33 [363].
Schematic structure of multicomponent heterojunction systems [363].
As demonstrated in Figure 33, since both semiconductor A (S-A) and semiconductor B (S-B) can be excited by UV/visible light and have different photoabsorption ranges, the conjunction of the two materials can overlap and broaden the range of UV/visible−light photoresponse. At the same time, it is well-known that the photocatalytic reaction is initiated by the incident UV/visible photons with energy equal or higher than the band-gap in both S−A and S-B, which lead to the creation of photogenerated holes in their VB and electrons in their CB. On the one hand, the electrons in the CB of S−A easily flow into metal (electron transfer I: S−A metal) through the Schottky barrier because the CB (or the Fermi level) of S−A is higher than that of the loaded metal, which is consistent with the previous study on electron transfer from the semiconductor (such as TiO2) to metal (such as Ag and Au) [361,364]. This process of electron transfer I is faster than the electron-hole recombination between the VB and the CB of S−A. Thus, plenty of electrons in the CB of S−A can be stored in the metal component. As a result, more holes with a strong oxidation power in the VB of S−A escape from the pair recombination and are available to oxidize the pollutants or OH-. On the other hand, since the energy level of metal is above the VB of S−B, holes in the VB of S−B also easily flow into metal (electron transfer II: metal S−B, see Fig. 33), which is faster than the electron-hole recombination between the VB and CB of S−B. More electrons with a strong reduction power in the CB of S−B can escape from the pair recombination and are available to reduce some absorbed compounds (such as O2 and H+). Therefore, simultaneous electron transfer I and II (i.e., vectorial electron transfer of S−A metal to S−B in Fig. 33) can occur as a result of UV/visible-light excitation of both S−A and S−B. In these vectorial electron−transfer processes, metal in multicomponent heterojunction systems acts as a storage and/or a recombination center for electrons in the CB of S−A and holes in the VB of S−B, and contributes to enhancing interfacial charge transfer and realizing the complete separation of holes in the VB of S−A and electrons in the CB of S−B. Therefore, the multi-component heterojunction systems can simultaneously and efficiently generate holes with a strong oxidation power in the VB of S−A and electrons with a strong reduction power in the CB of S−B, resulting in greatly enhanced photocatalytic activity, compared with the single semiconductor or semiconductor heterojunctions mentioned above.
In 2006, by using a facile photo−chemical technique, Tada et al. [361] developed a CdS−Au−TiO2 ternary component nanojunction system (Fig. 34 (A) and (B)). This CdS−Au−TiO2 triple nanojunction shows significantly improved photocatalytic activity, which was far higher than that of either the single-component or two−components systems. For this photocatalytic CdS−Au−TiO2 nanojunction system, 52.2% of methylviologen (MV2+) have been reduced in 100 min, which are 1.6, 1.8 and 2.3 times higher than that of Au/TiO2, CdS/TiO2 and TiO2 [361].
TEM (A) and HRTEM (B) images of Au@CdS−TiO2 [361]; SEM(C) and HRTEM (D) images of the AgBr−Ag−Bi2WO6 nanojunction system [364].
Subsequently, an AgBr−Ag−Bi2WO6 nanojunction system was developed by a facile deposition−precipitation method (Fig. 34 (C) and (D)) [364]. This AgBr−Ag−Bi2WO6 nanojunction system shows much higher visible−light−driven photocatalytic activity than a photocatalyst with single visible-light response components, such as Bi2WO6 nanostructures, Ag−Bi2WO6 and AgBr−Ag−TiO2. For example, with the AgBr−Ag−Bi2WO6 nanojunction system as the photocatalyst, the MX−5B could be photocatalytically degraded (42.8 mg L-1) within 60 min under visible-light irradiation, which is higher than that of Bi2WO6 nanostructures (2.0 mg L-1), Ag-Bi2WO6 (2.9 mg L-1) and AgBr−Ag−TiO2 (34.1 mg L-1). Furthermore, 65% of pentachlorophenol could be mineralized within 4 h by AgBr−Ag−Bi2WO6, which is much higher than that (34.5%) of the AgBr−Ag−TiO2 composite. This excellent visible−light−driven photocatalytic performance was mainly attributed to the vectorial interparticle electron transfer driven by the two-step excitation of both visible-light-driven components (AgBr and Bi2WO6).
A one-step low−temperature chemical bath method was developed to synthesize the flower−like Ag/AgCl/BiOCl composite [365]. The as−prepared Ag/AgCl/BiOCl composite exhibited enhanced visible−light photocatalytic activity on photodegradation of rhodamine B, which was greatly improved in comparison with either pure Ag/AgCl or BiOCl. It is evidenced that the superoxide radical, chlorine radical and the hole play a critical role in the photocatalytic degradation of RhB over the Ag/AgCl/BiOCl. Next, Ag/AgX/BiOX (X = Cl, Br) three-component visible-light-driven photocatalysts were synthesized by a low−temperature chemical bath method (Fig. 35) [366]. The Ag/AgX/BiOX composites showed enhanced visible−light−driven photocatalytic activity for the degradation of rhodamine B, which was much higher than Ag/AgX and BiOX. The photocatalytic mechanisms were analyzed by active species trapping and superoxide radical quantification experiments. The role of metallic Ag in Ag/AgCl/BiOCl and Ag/AgBr/BiOBr were analyzed, and we found that the role of metallic Ag was a surface plasmon resonance and the Z−scheme bridge for Ag/AgCl/BiOCl and Ag/AgBr/BiOBr, respectively. This results suggests that no matter in narrow band gap photocatalysts (Eg < 3.1 eV) or wide band gap photocatalysts (Eg > 3.1 eV), metallic Ag can enhance visible-light-driven photocatalytic activity though the different roles.
FESEM images of Ag/AgCl/BiOCl (a) and Ag/AgBr/BiOBr (b): the red arrows pointing out the Ag/AgX. TEM images of Ag/AgCl/BiOCl (c) and Ag/AgBr/BiOBr (d): blue rings show the small Ag/AgX, and the red dots point out the large Ag/AgX. HRTEM images of Ag/AgCl/BiOCl (e) and Ag/AgBr/BiOBr (f) with small Ag/AgX and HRTEM images of Ag/AgCl/BiOCl (g) and Ag/AgBr/BiOBr (h) with large Ag/AgX (i)the photocatalytic degradation percentage of RhB under visible-light irradiation (λ ≥ 400 nm) and (k) schematic structure of multicomponent heterojunction systems [366].
Recently, our group has demonstrated a simple and efficient one-pot approach to prepare Ag/r−GO/TiO2 composites using solvothermal method under atmospheric pressures (Fig. 36) [367], where N,N−dimethylacetamide serves as the reducing agent for Ag and GO reduction. On account of the experimental result, we concluded that the introduction of Ag into classical graphene/TiO2 system (i) availably expands the absorption range, (ii) improves the photogenerated electron separation and (iii)increases the photocatalysis reaction active sites. The optimized composite sample exhibits outstanding photocatalysis activity compared with pure TiO2 under simulated sunlight. We further proposed that besides the above three advantages of Ag, different sizes of Ag nanoparticles are also responsible for the improved photocatalysis ability, where small−sized Ag nanoparticles (2~5 nm) could store photoexcited electrons that generated from TiO2, while large−sized Ag nanoparticles could utilize visible light due to their localized surface plasmon resonance (LSPR) absorption. Our work gives a new insight into the photocatalysis mechanism of noble metal/r−GO/TiO2 composites and provides a new pathway into the design of TiO2−based photocatalysts and promote their practical application in various environmental and energy issues.
(a) TEM and (b) HRTEM images of sample AGT. (c) STEM model of Ag/r−GO/TiO2. Elemental mapping of (d) Ag and (e) Ti in the same area in (c). (f)Photocatalytic degradation of Rh B under simulated sunlight irradiation over P25, Ag/r−GO/TiO2 composites with different AgNO3 contents. (g) Comparison of the photocatalytic activity of r−GO, P25 and Ag/r−GO/TiO2 composites with different AgNO3 contents for the photocatalytic H2 production under simulated sunlight irradiation [367].
Next, we have replaced the Ag with MoS2 quantum dots (QDs) and demonstrated a simple and an efficient one−pot approach to prepare MoS2 quantum dots−graphene−TiO2 (MGT) composites using a solvothermal method under obtained atmospheric pressures and at low temperatures (Fig. 37) [368]. The shape of MoS2 obtained using this method is quantum dot instead of a layered sheet because of the interaction between functional groups on GO sheets and Mo precursors in a suitable solvent environment. In addition, it shows significantly increased photodegradation performance even without a noble-metal cocatalyst, which is due to the increased charge separation, visible-light absorbance, specific surface area and reaction sites upon the introduction of MoS2 QDs. Besides, the enhancement mainly came from holes left in the TiO2 crystals rather than electrons transferring to reduced graphene oxide (RGO).
TEM and HRTEM images of the sample (a), (b) MGT−4 and (c), (d)MoS2−graphene. (e) Proposed mechanism for the photodegradation of RhB by MGT under simulated sunlight irradiation (f) Photocatalytic degradation and (g) photocatalytic degradation reaction of RhB under simulated sunlight irradiation over P25, MGT composites with different MoS2 contents [368].
Photocatalysis appears to be a promising avenue to solve environmental and energy issues in the future. Although the photocatalytic processes involve a complicated sequence of multiple synergistic or competing steps, the efficient utilization of solar energy (especial visible-light energy) and improvement in separation and transportation of charge carriers are the main challenges and current trend to design highly effective photocatalysts. Finally, we conclude that this chapter, after discussing with various materials and its composites for photocatalytic process, may be useful for further applications in the area of energy and environment. In summary, we have discussed the general strategies and recent progress in photocatalysis for developing highly efficient and stable photocatalysts, including: (1) Titania (TiO2), iron oxides (α-Fe2O3); (2) ternary oxide photocatalytic matericals, such as Bi systems photocatalytic materials and (3) semiconducting materials and its composites. The achieved progress in photocatalysis indicates a promising route to enhance the photocatalytic efficiencies of photocatalytic semiconductors.
To date, in addition to different kinds of semiconductor materials and its composites significant advances have been reported to improve the photocatalytic efficiencies that range from environmental remediation to clean−energy harvesting by enhancing the utilization of sunlight or improving the separation/transportation of the electron−hole pairs some examples are highlighted in this chapter. Extending light-response to the visible− or even infrared regions, decreasing the amount of recombination of electrons and holes, and increasing the light−harvesting efficiency have been the major tools that have led to such advances. Although great advancements have been made in investigation of heterostructured photocatalytsts, it is still challenging to design more challenges in high efficiency of photocatalytic systems. First, there is no detailed understanding of the charge generation, separation and transportation across nanoscale interfaces of heterostructured photocatalysts, which are critical for the design and optimization of highly more-efficient and more-reliable photocatalysts. Second, while most available photocatalysts so far can only function in the UV or near−UV regime, the highly effective utilization of visible light is another challenge of heterostructured photocatalysts. Third, photostability of heterostructured photocatalyst is and will still be a major challenge for practical applications. Finally, elucidating and understanding the mechanisms that are involved in various photocatalytic reactions. Therefore, the deepening knowledge of the photocatalytic mechanism and exploration of new materials are indispensible to make substantial breakthroughs for practical application of photocatalysts.
An estimated 41 million American children participate in competitive sports each year [1]. Participation in competitive sports is not without risk, however, as the Center for Disease Control reports that 2.7 million children aged 19 and under visited the emergency room annually for sports related injuries from 2001 to 2009 [2]. Specifically sports concussion is becoming an increasing public health issue as prevalence is estimated at 1.6–3.8 million annually [3]. Youth sports also contribute significantly to high rates of mild traumatic brain injury with 29% of sports related concussions happening in athletes between 16 and 19 years of age, and 40% of sports sports-related concussions occurring between 2001 and 2005 being sustained by children ages 8–13 [4, 5]. Although, cycling is the leading cause of head injury in children under the age of 14 [6], the three highest concussion rates in high school sports can be attributed to football, boys’ ice hockey, and girls’ soccer, with estimated rates of 76.8, 54, and 33 concussions per 100,000 athletic exposures, respectively [7]. These reports are likely underestimated as not all injured individuals seek medical care and therefore an estimated 50% of concussive injuries go unreported [8].
There is lack of a concrete and consistent definition of concussion which also creates challenges in the accuracy of sports related concussion epidemiology estimations. However, we share here the most widely accepted definition of concussion most recently published by an international consensus group [9], which is defined as:
Concussion is a brain injury and is defined as a complex pathophysiological process affecting the brain, induced by biomechanical forces. Several common features that incorporate clinical, pathologic and biomechanical injury constructs that may be utilized in defining the nature of a concussive head injury include:
Concussion may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an “impulsive’ force transmitted to the head.
Concussion typically results in the rapid onset of short-lived impairment of neurological function that resolves spontaneously. However, in some cases, symptoms and signs may evolve over a number of minutes to hours.
Concussion may result in neuropathological changes, but the acute clinical symptoms largely reflect a functional disturbance rather than a structural injury and, as such, no abnormality is seen on standard structural neuroimaging studies.
Concussion results in a graded set of clinical symptoms that may or may not involve loss of consciousness. Resolution of the clinical and cognitive symptoms typically follows a sequential course. However, it is important to note that in some cases symptoms may be prolonged [9].
Concussions result in a myriad of symptomatology which are generally categorized into four main domains: (1) physical (i.e. headache, dizziness, visual dysfunction), (2) cognitive (i.e. difficult with concentration and memory), (3) emotional (i.e. depression, anxiety and mood lability), (4) sleep disturbance (hypersomnia and insomnia). The most commonly reported symptoms include headache, dizziness and difficulties with concentration and memory. Symptoms are likely caused by functional, metabolic and microstructural abnormalities as routine neuroimaging is typically unhelpful at demonstrating anatomical evidence of neuropathic changes [10].
Exposure to repetitive concussion or sub-concussive impacts, in which a significant traumatic brain injury may have occurred even in the absence of visible signs or symptoms, is now recognized as having possible long-term neurological consequences, including neurodegenerative disease [11, 12, 13, 14, 15]. Given the growing incidence and concern around sports concussion as well as the potential long-term sequelae associated with the injury, awareness of the current understanding of the pathophysiology is vital within the general field of sports medicine. Additionally, as targeted screening and management options are becoming increasingly available, knowledge of the current evidence-based tools for effective screening and subsequent management of the injury are important.
Biomechanical forces from sports impact that result in traumatic brain injury or concussion leads to functional impairment at the level of individual cells or neurons. This abnormal cellular function results in overall neurological function impairment and may lead to microstructural and subsequent macrostructural damage.
Inertial, or acceleration loading, transmitted to the brain is a primary cause of concussive injury. Both linear and rotational accelerations cause transient increases in pressure within the brain and causes shear forces [16]. The forces and pressure experienced within the brain leads to changes at a cellular level. Neuronal axons can become quickly stretched resulting in a complex cascade of ionic, metabolic and pathophysiological events.
Changes in intracellular ion concentrations occur due to disruption of cell membranes causing an abnormal outflux of potassium causes irregular neuronal depolarization which in turn leads to increased extracellular potassium and neurotransmitter release. Glutamate, an excitatory neurotransmitter, further promotes potassium efflux and binds to N-methyl-D-aspartate receptors which additionally allows for hyperexcitability and continued unhindered depolarization of the neuron. Simultaneously, accumulation of excitatory neurotransmitters also leads to influx of calcium which promotes proteases, reactive oxygen species and mitochondrial impairment all of which contribute to cellular dysfunction, damage and death when the neuron is unable to recover cellular stability [17, 18].
Dysfunction in the regulation of neurotransmitters as well as the inciting excitotoxicity of the neuron causes significant stress on the cellular mitochondria to maintain to energy demands through ATP production. The sodium/potassium (Na+/K+) pumps which require ATP struggle to maintain the cellular ion homeostasis. The glycolysis process is activated in an attempt to provide this increased energy demand which leads to accumulation of lactic acid. This lactic acid breaks down the blood-brain barrier and leads to cerebral edema [17].
There is also a neuroinflammatory response that occurs after brain trauma which increases microglial cells, cytokine mediators, proteases and reactive oxygen species which promotes widespread inflammation and breakdown of the blood-brain barrier. This leads to cerebral blood flow changes [17, 18]. Other cerebral blood flow changes also occur as a result of carbon dioxide that accumulates from the metabolic changes occurring. Carbon dioxide causes decreases in vasoreactivity acutely and chronically. These changes can lead to many of the acute and chronic symptoms experienced by individuals suffering from sports-related concussion and also puts them at increased risk for subsequent head injury during this recovery period [17, 18].
Repetitive traumatic brain injury exposure and sub-concussive injuries, in which a substantial injury is sustain however no outward signs or symptoms are apparent, can lead to persistent neurodegenerative changes. The acute neuroinflammatory response discussed above as well as the sustained neuroinflammation that may occur can result in the development of more permanent neurocognitive deficit symptoms and neurodegenerative changes. Additionally, diffuse axonal injury that occurs from concussive impacts can result in further neurodegenerative processes and permanent changes [17, 19].
Concussion has been linked to sequelae such as post-concussion syndrome and long-term neurodegenerative disease [14]. Studies have shown a 1.5 fold increased risk of depression and a 4.5 fold increased risk of Alzheimer’s-like symptoms in patients with concussion history [11]. Pathological neurodegeneration markers typically found in Alzheimer’s disease has also been seen in individuals with a history of repetitive traumatic brain injury. Although no causal relationship has yet been established, recent research also suggests that repeated head trauma may be associated with the development of chronic traumatic encephalopathy (CTE), a neuropathological neurodegenerative disease defined by abnormal phosphorylated tau accumulation in a pattern distinct from other tauopathies and believed to be caused by the series of metabolic, ionic, membrane, and cytoskeletal disturbances [12, 15, 20]. Tau, a normal structural axonal protein, can become disrupted during brain trauma and accumulate in a phosphorylated form. This further destabilizes microtubules and results in impaired axonal function [12, 15, 20].
Since detecting early signs of sports-related concussion and timely removal from play may reduce the occurrence of second concussions and continued repetitive injury, there is an essential need for understanding and implementing practical sideline tests to aid in diagnosis. Next, we discuss current acute screening and detection methods for sports-related concussion.
The Standardized Assessment of Concussion (SAC) is used as a brief cognitive assessment by measuring orientation, immediate memory, concentration and delayed recall. An orientation score out of 5 points possible is determined from five questions: (1) What month is it?, (2) What is the date?, (3) What day of the week is it?, (4) What year is it?, and (5) What time of day is it? (within 1 hour). The number of orientation questions answered correctly determines the orientation score. The immediate memory score captures the athlete’s ability to recall five words that are read to them on three separate trials. For example, the athlete is asked to repeat the words: elbow, apple, carpet, saddle, and bubble. The number of words recalled correctly for each trial is then added with a maximum score of 15. Concentration is tested in two parts. Initially, the concussed athlete is read a string of numbers, and then the individual must repeat them in reverse order. For example, the administrator will say: 7-1-9, and the athlete should respond with: 9-1-7. Four trials are completed with number strings of three to six digits long. The second part of concentration testing requires the athlete to recall the months of the year in reverse order. The sum of the correct digits backwards trials and one point for an entirely correct recall of the months in reverse order constitutes the concentration score out of 5.
The SAC can be administered in 5–7 minutes making it a practical sideline assessment tool and athletes suffering from concussion have been shown to have worse scores than baseline and control athletes. However, the SAC presents some shortcomings. First, it only tests a narrow range of neurocognitive functions. It also has a low correlation with other neuropsychological tests, indicating that it is not a comprehensive test [21]. The SAC does not assess brainstem or cerebellar function [9, 22, 23]. Furthermore, athletes are able to memorize sections of the tool via baseline testing or through the experiences of other teammates.
Balance is a complex task that requires intact information from the somatosensory, visual, and vestibular systems as well as an intact central nervous system to maintain a balanced, upright stance [24]. Concussions have been shown to inhibit an individual’s ability to appropriately use feedback from the vestibular system when visual and somatosensory inputs are disrupted as a result of traumatic brain injury [25, 26, 27, 28]. Therefore, postural stability assessments have also been recognized as an important component of evaluation after concussion [25, 26, 27, 28].
The balance error scoring system (BESS) was initially developed as a 3–5 minutes assessment tool used by clinicians for the evaluation of postural stability after a concussion [29]. The BESS consists of 3 three stances: double-leg stance (hands on the hips and feet together), single-leg stance (standing on the non-dominant leg with hands on hips), and a tandem stance (the non-dominant foot is placed behind the dominant foot in a heel-to-toe fashion). The stances are performed on both a firm and foam surface with the eyes closed for 20-second trials. Testers observe the patient or athlete for errors in performance during the balance assessment trials with a maximum of 10 errors for each stance. Types of errors are defined as (1) lifting hands off the iliac crest, (2) opening eyes, (3) stepping, stumbling or falling out of position, (4) abducting the hip by more than 30°, (5) lifting the forefoot or heel, (6) remaining out of the test position in more than 5 seconds [29]. A modified version of the BESS (modified BESS, mBESS) that consists of testing the 3 stances on only a firm surface has even been incorporated into the Sport Concussion Assessment Tool 5 (SCAT 5).
Studies have explored the repeatability and reliability of the BESS. The reliability of this test ranges from poor to good while some studies report reliability coefficients that are below clinically acceptable levels [25, 26, 30]. This wide range of reliability may be due to variability and subjectivity resulting from multiple administrators, therefore, it has been recommended that the same individual administer the BESS for serial testing [25, 26, 30]. Furthermore, studies have recommended that an average of three BESS test administrations be used to improve reliability [25, 26, 30]. Although originally developed as an objective tool, the reliability of BESS can be significantly influenced by the subjective nature of the administrator scoring that athlete. Additionally, further variation is seen among different administrators of the BESS. Likewise, the reliability of the modified BESS is not optimal due to the subjective nature of the scoring system in which the test administrator is required to count errors that include subjective components such as trying to estimate an abduction of the hip by more than 30° or timing a subject out of the testing position by more than 5 seconds. Additionally, low levels of reliability have been reported to be due to subtle changes in balance not detectable by the administrator [25, 26, 30]. Furthermore, stances included in the BESS have been criticized for being either too difficult or too easy for normal healthy controls making it difficult to detect change in performance. In an evaluation of the BESS in a healthy collegiate football cohort at pre-season baseline, the single leg stance accounted for nearly three-quarters of the total errors committed by the study sample. Additionally, over one-fifth of the study participants also demonstrated the maximum error score of 10 errors on the single leg stance. This high variability and large number of errors in the single leg stance leads to concerns over the practical utility of the single leg stance in identifying performance change as a result of suspected concussion [31].
Several other factors are known to influence balance. These include dehydration, ankle bracing, and a prior leg injury [25, 26]. Balance differences have been demonstrated between various training backgrounds and sports played as a result of neuromuscular training. Fatigue following physical exertion has also been shown to adversely affect balance for up to an estimated 20 minutes following physical activity [25, 26]. Therefore, BESS may require a waiting period and should not be successfully administered in 3–5 minutes immediately after the concussive injury.
The SCAT 5 [32] and the Child SCAT 5 [33] are the evaluation tools recommended by the Concussion in Sport Group (CISG) for assessing a suspected concussion. These tests offer a standardized approach to sideline evaluation which incorporates multiple domains of function.
The SCAT 5 for immediate, on-field assessment is comprised of a brief neurological examination which includes an assessment for red flags, observable signs, a brief memory assessment, the Glasgow Coma Scale (GCS) and a cervical spine assessment. Red flags include the following: neck pain or tenderness, double vision, weakness or tingling/burning in arms or legs, severe or increasing headache, seizure or convulsion, loss of consciousness, deteriorating conscious state, vomiting, increasingly restless, agitated or combative. Observable signs are documented as either witnessed or observed on video and include: (1) lying motionless on the playing surface, (2) balance, gait difficulties or motor incoordination: stumbling, slow or labored movements, (3) disorientation or confusion, or an inability to respond appropriately to questions, (4) blank or vacant look, (5) facial injury after head trauma. The brief assessment of memory uses Maddocks questions which include: (1) What venue are we at today? (2) Which half is it now? (3) Who scored last in this match? (4) What team did you play last week or last game? (5) Did your team win the last game? The GCS is scored out of 15 in which an eye, verbal and motor response is evaluated. The best eye response is scored as 1 for no eye opening, 2 for eye opening in response to pain, 3 for eye opening to speech, and 4 eyes opening spontaneously. The best verbal response is scored out of 5 as 1 for no verbal response, 2 for incomprehensible sounds, 3 for inappropriate words, 4 for confused and 5 for oriented. Lastly the best motor response is scored out of 6 as 1 for no motor response, 2 for extension to pain, 3 for abnormal flexion to pain, 4 for flexion or withdrawal to pain, 5 for the ability to localize the pain and 6 for obeying commands. Finally, the cervical spine assessment asks if the athlete reports that their neck is pain free at rest and if so, if there is a full range of active pain free movement. Also, normal limb strength and sensation is evaluated for.
The SCAT 5 in-office or off-field assessment follows the immediate assessment and is comprised of a comprehensive symptom evaluation of 22 symptoms with a 0–5 athlete grading of severity, a brief cognitive assessment using the components of the Standardized Assessment of Concussion (SAC), a neurological screen and a balance assessment using the modified-balance error scoring system.
Changes to the original SAC were made when included in the updated SCAT 5. The SAC immediate memory and delayed recall words lists include an option to use 10 words instead of just 5 in an effort to minimize ceiling effects [32]. Additionally six word lists are presented with alternate stimulus sets for the words list for randomized administration at both baseline and serially during post-injury testing [32]. Similarly, the SAC concentration task of digits backwards in which athletes are asked to repeat back digits in reverse order, contains six versions of the concentration number lists also for randomized use at both baseline and serially during post-injury testing [32]. Additionally, a notation of when the last trial of the word list was administered is required and the delayed recall component of the SAC is recommended to be administered no sooner than 5 minutes following the immediate memory subset.
Although the SCAT 5 tests many cognitive functions related to a concussion, it should be noted that there are some shortcomings. First, it takes 15–20 minutes to complete and must be administered by a medical professional, rendering it inefficient and impractical for sideline evaluation particularly for youth and high school level sports and organizations that do not have access to medical personnel on the sidelines [9]. Additionally as discussed previously, balance performance can be affected by a number of variables and therefore reliability is difficult when attempting to differentiate balance dysfunction as a result of physical fatigue from balance impairment associated with concussion [25, 26]. Therefore, it is recommended that assessment of symptom endorsement and symptom severity, neurocognitive function and balance function take place following a 15-minute rest period to avoid the influence of fatigue or exertion, adding to the time it takes to complete the test following concussive injury [34]. The SCAT symptoms checklist may also be unreliable due to the subjective nature of the evaluation as well as athletes underreporting symptoms to avoid removal from play. Research has indicated that over a quarter of athletes who reported zero symptoms on the checklist still showed cognitive changes following a concussion [35]. In anonymous survey studies of collegiate athletes, nearly half admitted to knowingly hiding symptoms of a concussion to stay in a game and 1 one out of 5 five indicated they would be unlikely or very unlikely to report concussion symptoms to a coach or athletic trainer in the future [23].
Research has shown that the SCAT testing components are more variable in younger athletes and therefore the Child SCAT 5 is recommended for use by physicians and licensed healthcare professionals in evaluating children aged 5–12 years. In this version, the immediate on-field assessment also includes a check for red flags, observable signs, GCS evaluation and cervical spine assessment.
The Child SCAT 5 in-office or off-field assessment follows the immediate assessment and is comprised of a comprehensive symptom and severity evaluation of 21 symptoms. In this version, symptoms are ranked on a 0–3 scale rather than 0–6, and both children and parents are given a report section in an effort to clear up miscommunication of symptoms. For the concentration component, children are asked to give the days of the week in reverse order, rather than the months in reverse order as asked on the SCAT 5. Additionally, the balance portion of the test is modified to only include the single leg stance in older, 10 through 12-year-old athletes only.
Although SCAT batteries are to be administered by medical professionals, the Concussion Recognition Tool 5 (CRT 5) was developed for lay person use. The CRT 5 is composed of an assessment for red flags, observable signs, symptoms checklist, and a brief memory assessment [9].
Red flags include the following: neck pain or tenderness, double vision, weakness or tingling/burning in arms or legs, severe or increasing headache, seizure or convulsion, loss of consciousness, deteriorating conscious state, vomiting, increasingly restless, agitated or combative. Observable signs are documented as either witnessed or observed on video and include: (1) lying motionless on the playing surface, (2) disorientation or confusion, or an inability to respond appropriately to questions, (3) balance, gait difficulties or motor incoordination: stumbling, slow or labored movements, (4) slow to get up after a direct or indirect hit to the head, (5) blank or vacant look, (6) facial injury after head trauma. The brief assessment of memory is used only for athletes older than 12 years and includes the following: (1) What venue are we at today? (2) Which half is it now? (3) Who scored last in this match? (4) What team did you play last week or last game? (5) Did your team win the last game? Users are instructed to remove athletes from play if one or more of these indicators are present or if a memory question is answered incorrectly.
The King-Devick Test in association with Mayo Clinic (K-D Test) is a rapid-number naming test used to evaluate for impairments in saccadic eye movements, attention, concentration, and language, which involve integration of functions of the brainstem, cerebellum, and cerebral cortex [36]. The K-D test assesses over half of brain pathways and several cortical areas are involved in saccadic eye movement [36, 37].
The K-D test requires subjects to read a series of 120 single single-digit numbers aloud from left to right across three test screens that progress in difficult as quickly but as accurately as possible. There are several versions of the test to prevent memorization. The total time to complete the test and the errors are recorded. An individualized pre-injury baseline is determined ideal at pre-season and used for comparison during an acute sideline post-injury evaluation. Extensive research has demonstrated worsening in performance in concussed athletes with high sensitivity and specificity [36, 38, 39, 40, 41]. A study by the University of Florida found that the K-D test complements components of the SCAT 5, increasing the concussion detection rate in collegiate athletes when using a combination of testing components that include the K-D test, symptoms checklist and balance assessment [38]. Additionally, the K-D test is resistant to the effects of fatigue, showing no worsening of time when athletes were tested in game-like physical fatigue situations [36, 42, 43].
Although athletic trainers or medical professionals are present on the sidelines of professional and collegiate sporting events, most youth and high school sports lack these resources. However, parents, coaches, and laypersons can administer the King-Devick test in less than 2 minutes, making it realistic for sideline concussion evaluation [40, 44, 45].
Multiple studies have also demonstrated the utility of the K-D test in screening for “unwitnessed” concussive events [41, 47, 48, 49]. In a large prospective observational cohort study of New Zealand rugby, routine post-match screening was completed with the K-D test and in doing so aiding in identifying 44 unwitnessed, unreported concussions over the duration of the study. This totaled 6 times more than the 8 witnessed concussions, which were identified pitch-side [46]. Researchers reported that by using a composite of rapid brief tests such as the K-D test, the SAC and BESS are likely to provide a series of effective clinical tools to assess players on the sideline with suspected concussive injury [41, 47, 48, 49].
The majority of sports-related concussion symptoms typically resolve spontaneously within 2 weeks [50]. Younger athletes typically require longer recovery within 4 weeks [51]. The International Concussion in Sport Group currently promotes and supports physical and cognitive rest following concussive injury until acute symptoms resolve [9]. Once symptoms are abated, individuals should then undergo a stepwise, graded program of exertion. Athletes should be symptom free at rest as well as during and after exertion prior to complete medical clearance and full return to play. Recent research supporting the inclusion of active concussion rehabilitation has been reported and may improve outcomes.
The graduated return to play protocol is a stepwise process in which the athlete may continue to proceed to the next level if asymptomatic at the previous level. It is outlined that each step should be 24 hours and therefore the athletes would generally take approximately 1 week to complete all levels of the protocol. If any symptoms arise during any of the levels, the athlete should return to the previous level until asymptomatic and 24 hours of rest has occurred [9, 44].
Rehabilitation stage 1: no activity.
Symptom limited physical and cognitive rest.
Objective: recovery.
Rehabilitation stage 2: light aerobic exercise.
Walking, swimming or stationary cycling keeping intensity <70% maximum permitted heart rate. No resistance training.
Objective: increase heart rate.
Rehabilitation stage 3: sport-specific exercise.
Skating drills in ice hockey, running drills in soccer. No head impact activities
Objective: add movement.
Rehabilitation stage 4: non-contact training drills.
Progression to more complex training drills (i.e. passing drills in football and ice hockey). May start progressive resistance training.
Objective: exercise, coordination and cognitive load.
Rehabilitation stage 5: full-contact practice.
Following medical clearance participate in normal training activities.
Objective: restore confidence and assess functional skills by coaching staff
Rehabilitation stage 6: return to Play.
Normal game play
Recent research suggests that rest until all symptoms resolve may not be best and that taking a more active approach to recovery for patients with persistent, chronic symptoms may improve recovery outcomes.
Given our understanding of concussion pathophysiology and changes in cerebral blood flow autoregulation as a result of the injury, it is believed that exercise intolerance may be a physiological biomarker of ongoing impairment [52]. Therefore the return of normal exercise tolerance can be then used to establish a sign for physiological recovery from concussion. Using any symptom-exacerbation as an individual’s stopping criteria, individualized sub-symptom threshold aerobic exercise treatment programs has been shown to improve recovery time and aerobic ability in athletes with persistent concussion symptoms. This symptom improvement was also associated with improved fitness and autonomic function such as heart rate and blood pressure control and resulted in speeded recovery compared to non-active recovery study participants [53].
Active treatment targeted at system specific deficits that the patient is experiences has been shown to improve recovery. Specifically, ocular motor dysfunction is very common following sports-related concussion with a reported 90% of traumatic brain injury patients reporting vision or visual related symptoms [54]. Symptoms typically include: double vision, blurred vision, headache, dizziness, difficulty with reading or other vision-based tasks. The physical and cognitive control of eye movements requires a majority of the brain’s pathways including fronto-parietal, temporal and occipital circuits as well as numerous subcortical nuclei all of which are particularly susceptible to head injury [37]. Several studies have demonstrated the effectivity of ocular based rehabilitation for vision-based deficiencies in the general population and a growing number of investigations are showing similar results in the mTBI population with improvement in vision-related symptoms, reading ability and visual attention [55, 56, 57, 58].
Given the increasing public awareness and attention revolving sports concussion and the long-term consequences of contact sport and traumatic brain injury exposure, there is growing interest in understanding the complex and concerning issues surrounding sport-related concussion. From what we understand about the pathophysiology of concussion, it is complex and involves a multifactorial process. Many mechanisms that are currently understood from the available literature were described however there is still much more to explore and understand. For example, it is unclear what the role of various factors is in the pathophysiological process. These include the role of genetics, age, gender, premorbid conditions and environmental factors and how they may affect and alter both the underlying pathophysiology, the outward clinical symptomatology experienced by the athlete and the recovery and rehabilitation course of a particular injury. Improved global understanding of these factors will be vital to understanding how best to use an individualized approach to the treatment and management of these patients.
Similarly, the ideal methodology for optimal detection and diagnosis of concussion is multifaceted requiring the use of a suite of tools to evaluate multiple systems. In the acute setting it is highly important that these assessments be quick, efficient and accurate in detecting deficits in performance that are associated with concussion. Likewise, these evaluations need to be able to be practically implemented on the sidelines therefore cost and efficient are heavily weighted. Simultaneously, concussion awareness by all stakeholders will aid in improving outcomes from this injury. Athletes, coaches, officials and other stakeholders need to be educated on the signs and symptoms of concussion, the long-term risks of continuing to participate in sports activity with a brain injury and therefore the importance of timely removal from play as well as the equally imperativeness of appropriate clearance for return to play.
Rehabilitation of sports-related concussion is ever changing given continued ongoing research which gives insights into the latest and best recommended approaches to caring and managing patients during their recovery to improve overall outcomes. The current method is a targeted and individualized approach. Additionally, active rehabilitation has been shown to be beneficial, particularly in patients with extended recovery durations and prolonged symptomatology. Continued investigations will help answer the questions of how treatments should vary among individuals based on their makeup, for example, their concussion history, outset signs and symptoms, as well as children vs. adults. These likely all play a role and can assist in developing more targeted rehabilitation programs for individuals to advance therapies.
Dr. Leong is employed by King-Devick technologies, Inc. as Chief Scientific Officer.
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5,12"},books:[{type:"book",id:"10748",title:"Fishery",subtitle:null,isOpenForSubmission:!0,hash:"ecde44e36545a02e9bed47333869ca6f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10748.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10738",title:"Molluscs",subtitle:null,isOpenForSubmission:!0,hash:"a42a81ed3f9e3dda6d0daaf69c26117e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10738.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10760",title:"Steppe Biome",subtitle:null,isOpenForSubmission:!0,hash:"982f06cee6ee2f27339f3c263b3e6560",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10760.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10768",title:"Bryology and Lichenology",subtitle:null,isOpenForSubmission:!0,hash:"2188e0dffab6ad8d6c0f3afce29ccce0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10768.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10766",title:"Landscape Architecture",subtitle:null,isOpenForSubmission:!0,hash:"a0a54a9ab661e4765fee76ce580cd121",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10766.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10895",title:"Grasses and Grassland",subtitle:null,isOpenForSubmission:!0,hash:"4abcdc7f2d889b2c8c96f7066899e974",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10895.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10846",title:"Stormwater",subtitle:null,isOpenForSubmission:!0,hash:"9bfae8caba192ce3ab6744c9cbefa210",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10834",title:"Invertebrate Neurophysiology",subtitle:null,isOpenForSubmission:!0,hash:"d3831987f0552c07015057f170cab45c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Biology",subtitle:null,isOpenForSubmission:!0,hash:"78f81673958ec92284b94aee280896bf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"b369ac809068d2ebf1f8c26418cc6bec",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1028",title:"Hemodynamics",slug:"hemodynamics",parent:{title:"Hematology",slug:"hematology"},numberOfBooks:2,numberOfAuthorsAndEditors:16,numberOfWosCitations:12,numberOfCrossrefCitations:2,numberOfDimensionsCitations:7,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hemodynamics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7042",title:"Highlights on Hemodynamics",subtitle:null,isOpenForSubmission:!1,hash:"ab4cb86baa2cadb67630b31257cb04b2",slug:"highlights-on-hemodynamics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/7042.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1653",title:"Hemodynamics",subtitle:"New Diagnostic and Therapeutic Approaches",isOpenForSubmission:!1,hash:"2cf4b686414a77f0c867007f5062914f",slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",bookSignature:"A. Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/1653.jpg",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36116",doi:"10.5772/36263",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:11001,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"36121",doi:"10.5772/34272",title:"Carnosine and Its Role on the Erythrocyte Rheology",slug:"carnosine-and-its-role-on-the-erythrocyte-rheology",totalDownloads:1872,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"A. Seda Artis and Sami Aydogan",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36119",doi:"10.5772/36876",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3902,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]}],mostDownloadedChaptersLast30Days:[{id:"62838",title:"Introductory Chapter: Hemodynamic Management. The Problem of Monitoring Choice",slug:"introductory-chapter-hemodynamic-management-the-problem-of-monitoring-choice",totalDownloads:537,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Theodoros Aslanidis",authors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}]},{id:"36119",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3900,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36116",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:10998,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"62847",title:"Cerebral Hemodynamics in Pediatric Hydrocephalus: Evaluation by Means of Transcranial Doppler Sonography",slug:"cerebral-hemodynamics-in-pediatric-hydrocephalus-evaluation-by-means-of-transcranial-doppler-sonogra",totalDownloads:455,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Branislav Kolarovszki",authors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}]},{id:"63370",title:"Functioning of the Cardiovascular System of Women in Different Phases of the Ovarian-Menstrual Cycle",slug:"functioning-of-the-cardiovascular-system-of-women-in-different-phases-of-the-ovarian-menstrual-cycle",totalDownloads:389,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Olena Lutsenko",authors:[{id:"225667",title:"Mrs.",name:"Olena Ivanivna",middleName:null,surname:"Lutsenko",slug:"olena-ivanivna-lutsenko",fullName:"Olena Ivanivna Lutsenko"}]},{id:"62523",title:"Influence of Branching Patterns and Active Contractions of the Villous Tree on Fetal and Maternal Blood Circulations in the Human Placenta",slug:"influence-of-branching-patterns-and-active-contractions-of-the-villous-tree-on-fetal-and-maternal-bl",totalDownloads:339,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Yoko Kato",authors:[{id:"249827",title:"Prof.",name:"Yoko",middleName:null,surname:"Kato",slug:"yoko-kato",fullName:"Yoko Kato"}]},{id:"36122",title:"Soluble Guanylate Cyclase Modulators in Heart Failure",slug:"soluble-guanylate-cyclase-modulators-in-heart-failure",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Veselin Mitrovic and Stefan Lehinant",authors:[{id:"111559",title:"Dr.",name:"Stefan",middleName:null,surname:"Lehinant",slug:"stefan-lehinant",fullName:"Stefan Lehinant"}]},{id:"62149",title:"3D Numerical Study of Metastatic Tumor Blood Perfusion and Interstitial Fluid Flow Based on Microvasculature Response to Inhibitory Effect of Angiostatin",slug:"3d-numerical-study-of-metastatic-tumor-blood-perfusion-and-interstitial-fluid-flow-based-on-microvas",totalDownloads:356,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Gaiping Zhao",authors:[{id:"172001",title:"Ph.D.",name:"Gaiping",middleName:null,surname:"Zhao",slug:"gaiping-zhao",fullName:"Gaiping Zhao"}]},{id:"36118",title:"Hemodynamics Study Based on Near-Infrared Optical Assessment",slug:"hemodynamics-study-based-on-near-infrared-optical-assessment",totalDownloads:2352,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Chia-Wei Sun and Ching-Cheng Chuang",authors:[{id:"116138",title:"Dr",name:"Chia-Wei",middleName:null,surname:"Sun",slug:"chia-wei-sun",fullName:"Chia-Wei Sun"}]},{id:"36120",title:"Regulation of Renal Hemodyamics by Purinergic Receptors in Angiotensin II -Induced Hypertension",slug:"regulation-of-renal-hemodynamics-by-purinergic-receptors-in-angiotensin-ii-induced-hypertension",totalDownloads:1323,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Martha Franco, Rocío Bautista-Pérez and Oscar Pérez-Méndez",authors:[{id:"113134",title:"Dr.",name:"Martha",middleName:null,surname:"Franco",slug:"martha-franco",fullName:"Martha Franco"}]}],onlineFirstChaptersFilter:{topicSlug:"hemodynamics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/185918/iulia-v.-iancu",hash:"",query:{},params:{id:"185918",slug:"iulia-v.-iancu"},fullPath:"/profiles/185918/iulia-v.-iancu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()