Chapters authored
Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap By Ruby Srivastava
In the recent years, perovskite materials have attracted great attention due to their excellent light‐harvesting properties. The organic materials of these hybrid inorganic organic light harvesters are used as sensitizers and the inorganic materials have been used as light absorbers. The exceptional properties of these materials such as long diffusion length, high carrier mobility, affordable device fabrication, and adjustable adsorption range have created a new era in optoelectronic technologies. The perovskites have become promising materials due of their versatility in device architecture, flexibility in material growth, and ability to achieve the high efficiency through various processing techniques. The superior performance of silicon‐based tandems by achieving efficiency more than 40% has encouraged researchers to further expand the investigations to higher levels. The quest to transit the research curiosity to the market photovoltaic technology has given a new dimension to the remarkable ascension of perovskite solar cells. This chapter introduces the experimental and theoretical aspects, the electrical and optical properties, pitfalls, and a roadmap for the future prospects of perovskite materials.
Part of the book: Nanostructured Solar Cells
The Optical Phenomena of Interplay between Nanobio Complexes: A Theoretical Insight into Their Biomedical Applications By Ruby Srivastava
The subnanometer‐sized coinage metal nanoparticles (NPs) have attracted more attention due to their unique electronic structures and subsequent physical, chemical and excellent photoluminescent properties. The DNA‐stabilized metal clusters had become a remarkably good choice for the selection of fluorescent color by the sequence of the stabilizing DNA oligomer. Similarly, the single‐wall carbon nanotubes (SWCNTs) also have unique optical properties which make them useful in many applications. The interaction of DNA and SWCNT is also useful in molecular sensors and it is assumed that amplification of the DNA sensing element may be necessary in the presence of SWCNTs. As the application of NP‐CNT system represents a great interest in nanobiotechnology, it can be used for the design of the electronic mobile diagnostic facilities for blood analysis and the chemical or drug delivery inside the living cell. The SWCNTs are used as a drug delivery vehicles used to target the specific cancer cells. Separately, along with DNA‐NP, the DNA‐CNT system also represents a great interest, nowadays, in biomedical applications due to diagnostics and treatment of oncology diseases. So combining the DNA‐NP‐SWCNT system can represent a potential target of modern research. The interplay of DNA, NP and SWCNTs has now become a current topic of research for further nanobiomedical applications.
Part of the book: Optoelectronics
Theoretical Insight into the Medicinal World of Organometallics: Macro versus Nano By Ruby Srivastava
Due to the unique physicochemical properties, organometallic complexes have been widely used in the medicinal world. These complexes have specific properties such as structural diversity, redox/catalytic activities, and possibility of ligand exchange. As the cancer therapies provided by these complexes are not always effective and have desired side effects, new treatment methods are needed for the successful therapies. Recent advances suggest that nanotechnology has also profound impact on the disease prevention, diagnosis, and treatment. The delivery system based on nanotechnology has faster drug absorption, controlled dosage release, and minimal side-effects. This technology is used for the treatment of cancer till now, but soon, it will find applications to other diseases also. The use of nanotechnology in the field of drug delivery is to develop a system that improves the solubility and bioavailability of hydrophobic drugs. It is used to increase specificity, developing delivery system for slow release, and to design delivery vehicles that can improve the circulatory presence of drugs. As the photophysics of organometallic complexes is still not clear, this topic is included to discuss the latest developments in this field, which allows the photochemical reactions at the nanolevel.
Part of the book: Recent Progress in Organometallic Chemistry
Biomolecules and Pure Carbon Aggregates: An Application Towards “Green Electronics” By Ruby Srivastava
“Green electronics” is a novel scientific term which aims to identify the compounds of natural origin (economically safe and biodegradable) and establish economically efficient route for production of synthetic materials. The purpose of green electronics is to create path for the production of human and environmental friendly electronics and the integration of electronics with living tissue in particular. These researches may help to fulfill not only the organic electronics to deliver low cost energy efficient materials and devices, but also achieve unimaginable functionalities for electronics. In this chapter we have considered the molecular electronic devices biomolecules: deoxyribonucleic acid (DNA) and pure carbon aggregates: (carbon nanotubes (CNTs)/graphene), their properties and applications.
Part of the book: Green Electronics
Role of Density Functional Theory in “Ribocomputing Devices” By Ruby Srivastava
Molecular computing devices composed of biological substances, such as nucleic acid and ribonucleic acid plays a key role for the logical processing of a variety of inputs and viable outputs in the cellular machinery of all living organisms. These devices are directly dependent on the advancement in DNA and RNA technology. RNA nanoparticles can be engineered into a programmable and logically acting “Ribocomputing Devices”; a breakthrough at the interface of nanotechnology and synthetic biology. It opens a new path to the synthetic biologists to design reliable synthetic biological circuits which can be useful as the electronic circuits. In this emerging field, a number of challenges persist; as how to translate a variety of nucleic acid based logic gates developed by numerous research laboratories into the realm of silicon-based computing. So in this chapter we will discuss the advances in ribonucleic acid (RNA) based computing and it’s potential to serve as an alternative to revolutionize silicon-based technology by theoretical means. Also the results of the calculated parameters with computational tools using Density functional theory and the designed device circuits will be analyzed.
Part of the book: Density Functional Theory
Transformation of Drug Discovery towards Artificial Intelligence: An in Silico Approach By Ruby Srivastava
Computational methods play a key role in the design of therapeutically important molecules for modern drug development. With these “in silico” approaches, machines are learning and offering solutions to some of the most complex drug related problems and has well positioned them as a next frontier for potential breakthrough in drug discovery. Machine learning (ML) methods are used to predict compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties to evaluate the drugs and their various applications. Modern artificial intelligence (AI) has the capacity to significantly enhance the role of computational methodology in drug discovery. Use of AI in drug discovery and development, drug repurposing, improving pharmaceutical productivity, and clinical trials will certainly reduce the human workload as well as achieving targets in a short period of time. This chapter elaborates the crosstalk between the machine learning techniques, computational tools and the future of AI in the pharmaceutical industry.
Part of the book: Density Functional Theory
Role of Activated Cdc42-Associated Kinase 1 (ACK1/TNK2)-Inhibitors in Precision Oncology By Ruby Srivastava
Activated Cdc42-associated kinase 1 (ACK1) is an intracellular non-receptor tyrosine kinase referred to as TNK2, which is considered as an oncogene and therapeutic target in various cancers including breast cancer, non-small-cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), and many others. Oncogenic non-receptor tyrosine kinase mutations occur either due to point mutations, duplications or insertions and deletions, or by involving in the development of a fusion gene resulting from a chromosomal rearrangement. ACK1 is involved with multiple signaling pathways of tumor progression. With these signaling networks, ACK1 participates in cell survival, invasion, migration, and tumorigenesis that are strongly related to the prognosis and clinicopathology of cancers. Previous studies predicted that ACK1 is a carcinogenic factor and blockage of ACK1 inhibits cancer cell survival, proliferation, migration, and radiation resistance. FDA has approved many multi-kinase inhibitors as therapeutic drugs that show good inhibitory activity not against ACK1 but also towards multiple targets. As ACK1 is a key target for other neurological diseases, inflammation, and immunological diseases also, so the studies on these inhibitors not only provide potential strategies for the treatment of cancers that require simultaneous targeting of multiple targets but also can be used in drug repurposing for other diseases.
Part of the book: Drug Repurposing
View all chapters