Comparative pathways of ancient and modern plant domestication processes: purposes, tools, and expectations
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"7524",leadTitle:null,fullTitle:"High-Speed Rail",title:"High-Speed Rail",subtitle:null,reviewType:"peer-reviewed",abstract:"The rapid expansion of transportation industries worldwide, including railways, and the never-ending desire to reduce travel time have highlighted the need to resort to advanced transit systems. Conventional railway systems have been modified to make them travel at much higher speeds. High-Speed Rail includes the main topics and basic principles of high-speed railways (HSRs). The book reflects new engineering and track developments, the most current design methods, as well as the latest industry standards and policies. It provides a comprehensive overview of the significant characteristics for HSRs; highlights recent advancements, requirements, and improvements; and details the latest techniques in the global market. High-Speed Rail contains a collection of the latest research developments on HSRs. This book comprehensively covers basic theory and practice in sufficient depth to provide a solid grounding for railway engineers. It also helps readers maximize effectiveness in all facets of HSRs. This professional book as a credible source and a valuable reference can be very applicable and useful for professors, researchers, engineers, practicing professionals, trainee practitioners, students, and others interested in HSRs.",isbn:"978-1-83880-923-2",printIsbn:"978-1-83880-922-5",pdfIsbn:"978-1-83880-924-9",doi:"10.5772/intechopen.76549",price:100,priceEur:109,priceUsd:129,slug:"high-speed-rail",numberOfPages:76,isOpenForSubmission:!1,isInWos:null,hash:"0e248745ed8a460687701d02462cb874",bookSignature:"Hamid Yaghoubi",publishedDate:"June 19th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7524.jpg",numberOfDownloads:2099,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:4,hasAltmetrics:0,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2018",dateEndSecondStepPublish:"April 12th 2018",dateEndThirdStepPublish:"June 11th 2018",dateEndFourthStepPublish:"August 30th 2018",dateEndFifthStepPublish:"October 29th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi",profilePictureURL:"https://mts.intechopen.com/storage/users/103965/images/system/103965.jpeg",biography:"Dr. Hamid Yaghoubi is the director of Iran Maglev Technology (IMT). He became the Iran top researcher in 2010. In this regard, he was awarded by the Iranian president; the Iranian Minister of Science, Research and Technology; and the Iranian Minister of Information and Communication Technology. He became the 2011 and 2012 Outstanding Reviewer for the Journal of Transportation Engineering (JTE), American Society of Civil Engineers (ASCE), USA. One of his journal papers became the 2011 Top Download Paper for JTE. He received the ICCTP2011 Award for the 11th International Conference of Chinese Transportation Professionals (ICCTP2011), ASCE. He is an assistant chief editor and an editorial board member for some journals. He has been a reviewer for the majority of journals, books and conferences. He has also been an editor for some books. He has cooperated with hundreds of international conferences as a chairman, a keynote speaker, a chair of session, a publication chair, and a member of committees, including scientific, organizing, steering, advisory, technical program, and so on. He is also a member of several international committees.",institutionString:"Iran Maglev Technology (IMT)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Iran University of Science and Technology",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"713",title:"Transportation Engineering",slug:"engineering-civil-engineering-transportation-engineering"}],chapters:[{id:"66998",title:"Introductory Chapter: High-Speed Railways (HSR)",doi:"10.5772/intechopen.86070",slug:"introductory-chapter-high-speed-railways-hsr-",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hamid Yaghoubi",downloadPdfUrl:"/chapter/pdf-download/66998",previewPdfUrl:"/chapter/pdf-preview/66998",authors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],corrections:null},{id:"63054",title:"Optimization of Components of Superstructure of High-Speed Rail: The Spanish Experience",doi:"10.5772/intechopen.80013",slug:"optimization-of-components-of-superstructure-of-high-speed-rail-the-spanish-experience",totalDownloads:458,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Estela Ruiz, Isidro A. Carrascal, Diego Ferreño, José A. Casado and Soraya Diego",downloadPdfUrl:"/chapter/pdf-download/63054",previewPdfUrl:"/chapter/pdf-preview/63054",authors:[{id:"38018",title:"Prof.",name:"Diego",surname:"Ferreño",slug:"diego-ferreno",fullName:"Diego Ferreño"},{id:"264427",title:"Dr.",name:"Isidro A.",surname:"Carrascal",slug:"isidro-a.-carrascal",fullName:"Isidro A. Carrascal"},{id:"264428",title:"Prof.",name:"José A.",surname:"Casado",slug:"jose-a.-casado",fullName:"José A. Casado"},{id:"264429",title:"Dr.",name:"Soraya",surname:"Diego",slug:"soraya-diego",fullName:"Soraya Diego"},{id:"268961",title:"Dr.",name:"Estela",surname:"Ruiz",slug:"estela-ruiz",fullName:"Estela Ruiz"}],corrections:null},{id:"64211",title:"Contemporary Inspection and Monitoring for High-Speed Rail System",doi:"10.5772/intechopen.81159",slug:"contemporary-inspection-and-monitoring-for-high-speed-rail-system",totalDownloads:885,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Lu Zhou, Xiao-Zhou Liu and Yi-Qing Ni",downloadPdfUrl:"/chapter/pdf-download/64211",previewPdfUrl:"/chapter/pdf-preview/64211",authors:[{id:"253578",title:"Dr.",name:"Lu",surname:"Zhou",slug:"lu-zhou",fullName:"Lu Zhou"},{id:"254448",title:"Prof.",name:"Yi-Qing",surname:"Ni",slug:"yi-qing-ni",fullName:"Yi-Qing Ni"},{id:"270970",title:"Dr.",name:"Xiao-Zhou",surname:"Liu",slug:"xiao-zhou-liu",fullName:"Xiao-Zhou Liu"}],corrections:null},{id:"63242",title:"Main Ways to Improve Cutting Tools for Machine Wheel Tread Profile",doi:"10.5772/intechopen.80302",slug:"main-ways-to-improve-cutting-tools-for-machine-wheel-tread-profile",totalDownloads:461,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Alexey Vereschaka, Popov Alexey, Grigoriev Sergey, Kulikov Mikhail and Sotova Catherine",downloadPdfUrl:"/chapter/pdf-download/63242",previewPdfUrl:"/chapter/pdf-preview/63242",authors:[{id:"196459",title:"Dr.",name:"Alexey",surname:"Vereschaka",slug:"alexey-vereschaka",fullName:"Alexey Vereschaka"},{id:"264332",title:"Dr.",name:"Alexey",surname:"Popov",slug:"alexey-popov",fullName:"Alexey Popov"},{id:"264333",title:"Prof.",name:"Sergey",surname:"Grigoriev",slug:"sergey-grigoriev",fullName:"Sergey Grigoriev"},{id:"264334",title:"Prof.",name:"Mikhail",surname:"Kulikov",slug:"mikhail-kulikov",fullName:"Mikhail Kulikov"},{id:"264336",title:"Dr.",name:"Catherine",surname:"Sotova",slug:"catherine-sotova",fullName:"Catherine Sotova"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6103",title:"Highway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9c66d18cec90a84fdfd9a64451dc421a",slug:"highway-engineering",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/6103.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6395",title:"Bridge Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1d5fcf0ef5708024ef95eb8b3d7310be",slug:"bridge-engineering",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/6395.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10217",leadTitle:null,title:"Nanostructured Cadmium Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThis book covers the synthesis and applications of cadmium based-nanostructured materials. Some of the most important materials used in recent decades with unique properties are CdO, CdS, CdSe, and CdTe from micro-scale to nano-scale structures. There are various techniques, setup, devices, and accessories used for synthesis cadmium based-nanostructured materials.
\r\n\r\n\tThis book will support more details about the use of low-cost techniques to synthesis the cadmium nanomaterials for several applications such as solar cells, photovoltaics, gas sensor …etc. Also, upgraded technology will be taken in our account to be included in this book using molecular beam epitaxy (MBE) for the high-quality CdTe based nanostructured such as CdTe, CdMnTe, CdMgTe, CdZnTe heterostructures and hybrid multilayers for variety of novel and new generation of electronic and optoelectronic devices. It is worth also to measure some related properties of the cadmium based nanomaterials such as electrical conductivity, optical analysis, dielectric properties, magnetic properties and thermoelectricity in thin-film technology to have a clear pattern about their constants for wide-scale applications.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"4b4de1d31e2a414e2b71d331917a2b0e",bookSignature:"Dr. Ibrahim Yahia Zahran",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10217.jpg",keywords:"Cadmium Based Materials, Nanostructured Thin Films, Low-cost Deposition Techniques, MBE technology, Heterostructures, CdS/CdTe Solar Cells, Photodiodes, Gas Sensors, Photoluminescence, Z-scan System, Thermo-electrical Power, Thin Films Properties",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 28th 2020",dateEndSecondStepPublish:"September 25th 2020",dateEndThirdStepPublish:"November 24th 2020",dateEndFourthStepPublish:"February 12th 2021",dateEndFifthStepPublish:"April 13th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Prof. Dr. Ibrahim Hussein (I.S. Yahia) is also a professor at the Department of Physics, Faculty of Science, King Khalid University - Saudi Arabia, and a member of a number of Material Science and Physics Societies, he has published more than 320 papers with more than 4055 total citations.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"35206",title:"Dr.",name:"Ibrahim Yahia",middleName:null,surname:"Zahran",slug:"ibrahim-yahia-zahran",fullName:"Ibrahim Yahia Zahran",profilePictureURL:"https://mts.intechopen.com/storage/users/35206/images/system/35206.jpg",biography:"Prof. Dr/Ibrahim Hussein (I.S. Yahia) - NLEBA, Department of Physics, Faculty of Education, Ain Shams University – Egypt, AFMOL - Department of Physics, Faculty of Science, King Khalid University - Saudi Arabia, Professor of Nanoscience for Environmental & Bio-medical. His research is focused on many topics in the field of Nano & Material Science such as semiconductor nanomaterials of metal oxide/chalcogenide, organic/inorganic materials, devices, polymeric nanocomposites, graphene, bio-ceramics, and biomedical materials, sensors, laser filters, photocatalytic….…etc. He is a member of Egyptian Material Science Society; Member of Egyptian Crystal Science Society and its Applications; Member of Saudi Physics Society, (Representative of KKU in Saudi Physics Society); Saudi Society for Nanotechnology and Member of Research chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of Science, King Saud University. He participated as PIs and Co-PIs in many project groups in King Khalid University, King Saud, University and King Abdel Aziz University, Saudi Arabia 2012-2020. Recently, he is Consultant in Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia. I.S. Yahia won four prizes: The first prize one was the State Incentive Award in Physics from the Academy of Science and Technology, Egypt, 2012. The second prize was the Award of Abdul Hamid Shoman for Young Arab Researchers in physics in 2013 from Jordan. The third prize, he won the King Khalid University distinguished professor prize for teaching in March 2017 and the fourth prize was the KKU Distinguished Professor in Research April 2019. I.S. Yahia published more than 320 papers with an h-index of 34 and total citations of 4055. I.S. Yahia is ranked No. 10 in KSA in 2018 with 57 published papers. I.S. Yahia is ranked No. 2 in ASU for the last four years publications 2016-2019 with 144 published papers. In 19-December 2019, I.S. Yahia ranked No. 1 in NANO+EGYPT from Scopus analysis with 159 published papers in ISI journals.",institutionString:"Ain Shams University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ain Shams University",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh Shamrao",surname:"Kamble",slug:"ganesh-shamrao-kamble",fullName:"Ganesh Shamrao Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10049",title:"Advanced Functional Materials",subtitle:null,isOpenForSubmission:!1,hash:"58745a56d54c143e4de8433f3d6eb62e",slug:"advanced-functional-materials",bookSignature:"Nevin Tasaltin, Paul Sunday Nnamchi and Safaa Saud",coverURL:"https://cdn.intechopen.com/books/images_new/10049.jpg",editedByType:"Edited by",editors:[{id:"94825",title:"Associate Prof.",name:"Nevin",surname:"Tasaltin",slug:"nevin-tasaltin",fullName:"Nevin Tasaltin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7666",title:"Synthesis Methods and Crystallization",subtitle:null,isOpenForSubmission:!1,hash:"cd26687924373b72a27a0f69e7849486",slug:"synthesis-methods-and-crystallization",bookSignature:"Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/7666.jpg",editedByType:"Edited by",editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8812",title:"Contemporary Topics about Phosphorus in Biology and Materials",subtitle:null,isOpenForSubmission:!1,hash:"86c427901f631db034a54b22dd765d6a",slug:"contemporary-topics-about-phosphorus-in-biology-and-materials",bookSignature:"David G. Churchill, Maja Dutour Sikirić, Božana Čolović and Helga Füredi Milhofer",coverURL:"https://cdn.intechopen.com/books/images_new/8812.jpg",editedByType:"Edited by",editors:[{id:"219335",title:"Dr.",name:"David",surname:"Churchill",slug:"david-churchill",fullName:"David Churchill"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7960",title:"Assorted Dimensional Reconfigurable Materials",subtitle:null,isOpenForSubmission:!1,hash:"bc49969c3a4e2fc8f65d4722cc4d95a5",slug:"assorted-dimensional-reconfigurable-materials",bookSignature:"Rajendra Sukhjadeorao Dongre and Dilip Rankrishna Peshwe",coverURL:"https://cdn.intechopen.com/books/images_new/7960.jpg",editedByType:"Edited by",editors:[{id:"188286",title:"Associate Prof.",name:"Rajendra",surname:"Dongre",slug:"rajendra-dongre",fullName:"Rajendra Dongre"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7676",title:"Zeolites",subtitle:"New Challenges",isOpenForSubmission:!1,hash:"4dc664fa55f94b38c13af542041fc3cc",slug:"zeolites-new-challenges",bookSignature:"Karmen Margeta and Anamarija Farkaš",coverURL:"https://cdn.intechopen.com/books/images_new/7676.jpg",editedByType:"Edited by",editors:[{id:"216140",title:"Dr.",name:"Karmen",surname:"Margeta",slug:"karmen-margeta",fullName:"Karmen Margeta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9321",title:"Advances in Microporous and Mesoporous Materials",subtitle:null,isOpenForSubmission:!1,hash:"d5b349cbde0b129c20f31dc02b94d33b",slug:"advances-in-microporous-and-mesoporous-materials",bookSignature:"Rafael Huirache Acuña",coverURL:"https://cdn.intechopen.com/books/images_new/9321.jpg",editedByType:"Edited by",editors:[{id:"181660",title:"Dr.",name:"Rafael",surname:"Huirache Acuña",slug:"rafael-huirache-acuna",fullName:"Rafael Huirache Acuña"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45058",title:"Genetic, Agronomy, and Metabolomics of Prince Edwards Island Wild Rose Collection and Promise for Cultivar Development",doi:"10.5772/54688",slug:"genetic-agronomy-and-metabolomics-of-prince-edwards-island-wild-rose-collection-and-promise-for-cult",body:'Agriculture – the control of plants for human consumption – is believed to have appeared and developed during the paleolitic/neolitic period, ~ 10,000 years ago [1]. The first agriculture had no single or simple origin since a wide variety of plants and animals have been independently domesticated at different times and different places [1-4]. The origin of agriculture and crops domestication is intertwined. Plant domestication involves changes in the plant’s genetic makeup and morphological appearance following successive selections within wild plants and based upon on the variations that are best suitable for humans needs [5]. Domestication is therefore an artificial selection process conducted by humans for the production of plants showing fewer undesirable traits compared to its wild related plants, and making them more dependent on the new artificial environments for their continued survival and development. The concept of selection assumes the existence of a population or group of individuals from which choices can be made. Thus, the diversity of morphotypes or genetic diversity is considered as the backbone for plant domestication and crop improvement. Nonetheless, the way this genetic diversity was probed across time has constantly evolved while being a continuum from the first day. Moreover, while the selection criteria for the desired traits and purposes in the ancient domestication process were certainly exclusively based on morphology (size, color, shape of leaves and fruits, easiness for identification) and to satisfy man’s energy supply needs (taste and flavour, satiety potential), today, the required traits and purposes for plant domestication (seen as continuum) have been refined and expanded. Indeed, new technologies have been developed for probing the genetic diversity whereas human needs have increased to include health and wellbeing. As a consequence more specific and defined traits such as a targeted and defined ingredient or metabolite are sought. To date, the pace of plant domestication has slowed down mainly due to the loss of biodiversity but also because of our ability to satisfy our current food needs. Nevertheless, few new crops species are still being introduced into farming system to fill the growing gaps in the need of humans and pets. Although domestication, as a concept, is not the main focus of this chapter (reader can refer to [3, 4, 6-9]), this review will look at some aspects of plant domestication in the 21st century as compared with ancient domestication process, the extent of genetic diversity within North American roses, the challenges associated with the domestication and agronomy of Atlantic Canada wild rose species taken as an example, and how the current biotechnology tools can contribute to an economic crop production.
Domestication was defined by De Wet [8] as "changes in adaptation that insure total fitness in habitats especially prepared by man for his cultigens". Van Raamsdonk [7] refined this definition by taking into account Simmond’s [6] observations on plant domestication syndrome because a considerable number of crop plants are dependent on man for establishing new generations due to non-dehiscence, non-shattering, and absence of seed dormancy. Domestication was thus better defined by van Raamsdonk as a process leading to characteristics that are beneficial to humans but generally unprofitable for plants in natural habitats and in the decrease or total lack of capability to disseminate viable offspring [7]. As such defined, the goal for crop domestication appears obvious: setting plant for human’s benefits. However, the paths and process followed, and the tools used towards developing a new crop from its wild related plant can greatly vary (Table 1).
An artificial selection results in a phenotypic evolution [10]. In fact, agriculture started ~10,000 years ago by probing the diversity present within wild plant species and by planting the selected specimens, first in the garden and then in the field setting, a process known as domestication. Although all crops and plant varieties known to man today did not undergo through this classic process (case of known semi-domesticates) [3], the vast majority did go through, and thus being fully or super domesticated [3], depending on era, needs and advances in technology. Domestication is generally considered to be the end-point of a continuum that starts with exploring wild plants, continues through cultivation of plants selected from the wild but not yet genetically different from wild plants, and terminates in the fixation (at some extent), through human selection, of morphological and hence genetic differences distinguishing a domesticate from its wild progenitor. Wild and cultivated populations differ statistically in various characters targeted by human selection, although the cultivated plants may be morphologically indistinguishable from the wild plants [3]. Therefore, cultivated populations are not genetically fixed for any characters distinguishing them from wild populations, but the frequencies of alleles governing the characters subjected to human selection presumably differ [3]. Casas et al. [11] considered that changes in allele frequencies resulting from human selection constitute at least an incipient domestication, i.e. a nascent domestication. These authors analyzed the morphological variations in wild, managed in situ, and cultivated populations of the columnar cactus Stenocereus stellatus in central Mexico. They investigated whether morphological divergence has occurred between manipulated and wild populations by the domestication processes. Multivariate statistical analyses showed that individuals grouped according to management options and the fruit characteristics were the most relevant for grouping. Sweet fruits with non-red pulp colors were more frequent in cultivated populations. The fruits were also larger, contained more and bigger seeds, had thinner peel, and fewer spines in cultivated populations than fruits in wild individuals. Phenotypes common in managed in situ and cultivated populations generally occur also in the wild but at lower frequencies. However, Gepts [12] considered cultivation as a necessary but insufficient condition for domestication which, at least incipient or semi-domestication, may occur without cultivation by selective removal of undesirable phenotypes and/or enhancement of desirable phenotypes in wild populations [11]. How these different domestication processes and the available tools may apply to wild rosehip is one of the main topics developed in this review.
The oldest cultivated garden rose was R x richardii grown and depicted in art works by the Minoan civilization in Crete more than 3500 years ago. Roses were extensively cultivated during the Roman era (625 BC- 476 AD). After the demise of the Roman Empire, the less-appreciated wild-growing roses in Europe and Asia, belonging to Rosa section Canina and known today as Dogroses were maintained in monasteries for their reputed medicinal properties [13]. By the 18th century, five rose species (R. gallica, R. alba, R. damascena, R. centrifolia, and R. centrifolia moscosa) sharing a number of features such as double flower, flagrance, flower colour, frost hardiness, spring flowering, resistance to black spot and rust, and susceptibility to mildew had emerged [14]. These five species fall into 5 broad rose classes namely Gallica, Alba, Damask, Centrifolia, and Moss rose, respectively, and referred to as old European roses. These traditional European roses were crossed with roses from China (R. chinensis) leading to Rosa x hybrid, the modern rose selected for defined traits such as shape, colour and flagrance of the flower bud and flower qualities, stem length, and vase life. During these times, probing the genetic diversity within wild populations and selection of progenies from crosses were solely based on morphology.
During ancient times, botanists such as Linnaeus [15] have played a crucial role in probing rose genetic diversity and defining boundaries between species. Linaeus [15] was one of the first botanists to acknowledge the complexity of the genus Rosa. In his book “Species Plantarum” Linaeus stated that “the species of the genus Rosa are difficult to distinguish and determine, I have the impression that nature combines just for fun a number of them and then forms a new one out of the lot, those who have seen only some distinguish them more easily than those who have examined many”. The complexity of the genus has remained enigmatic to taxonomists of the twentieth century [13, 16-19] as the morphological characters are continuous and possibly polygenic making difficult in assigning genotypes that clearly define taxa. Nonetheless, similar to any other plant species, end-uses have been instrumental drivers for probing the genetic diversity and guiding in the selection process.
During the Middle Ages, dogroses were cultivated at monasteries as a medicinal plant and, all parts including rosehips, seeds, petals, leaves and roots were virtually used. Later on in the 19th century, dogroses served as rootstocks to graft modern rose cultivars either as frost or soil born disease resistance sources [13]. They have also been used as a rustic and hardly living fence for fields and public spaces. In the twentieth century, roses have become important horticultural and cosmetic crops receiving much attention from geneticists, breeders, and general public. Hybrid Tea varieties of roses (Rosa hybrida L.) are among the most economically important cut-flower plants. The first Hybrid Tea rose was introduced in 1867, and since then more than 10,000 varieties have been released.
The Centre for Variety Research, the Netherlands, has submitted more than 2,800, predominantly Hybrid Tea varieties, for Plant Breeders Rights. This number is increasing annually with 80 applications on average each year. This registration and protection process is based on morphological and physiological characteristics as described by the UPOV (Union Internationale pour la Protection des Obtentions Végétales) guidelines [20]. Wild roses, semi-domesticated and commercial varieties, serve as breeding materials for creating new genetic stocks. These breeding materials generally selected as seed or pollen parents, for flowers that are often flagrant, commonly rose-colored flowers although white or more rarely yellow flowers can be observed in some species [21] are used in crosses. Hence, seedlings of interest with differences in flagrance, colour, shapes, disease resistance genes are selected through extensive field trials and advanced in the registration process [22]. Among the many wild rose species, the selection was obviously based on easy availability, attractiveness of characters, seed set potential, but also the plant morphology such as dwarfness and small size of flowers [22]. During these times less emphasis was made on the wild rose fruit characteristics.
In modern times, these classical methods become less and less efficient as the number of varieties to be tested increases and the genetic distances between varieties becomes smaller [20]. As well, because the needs, objectives, and challenges associated with the rose industry are now changing both in terms of flower and fruit production, combination of morphological, cytological, conventional breeding and biotechnological methods are being widely used for the determination of Rosa species as well as for the development of new rose cultivars [23-28].
Domestication and crop improvement involve the selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes [10]. This artificial selection process that operates also in almost all agro-systems, including agroforestry, favours abundance of the preferred targeted phenotypes, and acts with more intensity in household gardens [29]. In the 20th century, probing for crops and their wild relative’s genetic diversity has been the focus of extensive investigations. In roses in particular, morphometric [13, 30-34], cytological characters [25, 35] were the most used in the Rosa sp taxonomy and phylogeny. But these methods have been proven not to be sufficient in assigning individual genotypes that clearly defined taxa [13]. The 21st century is characterized by a remarkable explosion of molecular tools, highly polymorphic and with high discrimination power, for deciphering differences based on DNA nucleotide sequences. The development of these tools were achieved mostly with the event of polymerase chain reaction (PCR) in the mid 1980’s [36], which has revolutionized the field of biology by inspiring the development of many PCR-based technologies, large DNA sequence databases, and increased computer power by bioinformatics. Despite the success of these powerful tools and its speed in advancing our current knowledge of the Rosa phylogeny [16, 17, 19, 37-43], there is still not exist at present a single method or tool for tracing a clear cut relative phylogenetic position between Rosa subgenera, sections and species within the genus [16], mainly due to low sequence divergence, natural hybridization between taxa, and polyploidy [44]. Rather, complementary methods (morpho-cytology, ploidy level, and DNA sequences from both chloroplast and nuclear genomes) using extensive data computing, with iterations and bootstrapping, are now the approach commonly sought [16, 17, 39, 40, 44, 45, 46, 47]. Nonetheless, for well-defined Rosa species, the DNA sequence analysis for single nucleotide polymorphism [47] and SSR polymorphism [48] are the preferred choice for distinguishing between genotypes and varieties [20]. The current Rosa phylogeny relies mainly on Rehder [49] who subdivided the genus into 4 subgeneras: Hulthemia, Platyrhodon, hesperhodon, each with 1 or 2 species, and Rosa. Likewise, the large Rosa subgenus was divided into 10 sections (Pimpinellifoliae, Rosa, Caninae, Carolinae, Cinnamomae, Synstylae, Indicae, Banksianae, Laevigatae, Bracteatae). However, recent molecular evidences do not support distinct subgenera status [16, 50] but did support the presence of 2 main clades. One clade includes subgenera Rosa species of sections Carolinae, Cinnamomae, and Pimpinellifoliae (clade 1) and the other clade (clade 2) includes all remaining subgenera Rosa sections, excluding the section Banksianae which comprises R. Banksiae (section Banksianae), R. roxburhii (subgenera Platyrhodon), and R. persica (subgenera Hulthemia), found to be sister to clade 2 [16]. The section Caninae DC forms a large and well-defined group of polyploid taxa and known as dogroses. In this section, pentaploids are the most common, but tetraploid and hexaploids also occur [18]. Bruneau et al. [16] also showed that sections Cinnamomae and Carolinae form a monophyletic group, and should be merged into one section, referred to as sect Cinnamomae. Indeed, section Cinnamomae comprises more than 40% of the species in the genus Rosa.
One of the main current questions is whether the process and goal for probing rose genetic diversity has changed over time. Although crop domestication and improvement process is a continuum, it evolves constantly with the available technologies in order to meet and fulfill the societal needs. In the present global economy, the scale of demands for any good has increased and the trade has become multidirectional (selling in all part of globe) with multiple layers (one product could be found in many other products as additive or supplement) (Table 1). Thus, probing the genetic diversity of a plant species which end-product would satisfy these new needs both in terms of quality, quantity, sustainability and stability has become the new challenge for plant products developers. Hence, the need for well characterized germplasm with stable and preserved genetic identity is becoming the landmark for todays and tomorrow’s natural product designers and developers. Therefore, sophisticated molecular tools [51, 52] as well as mass tissue culture and plant propagation tools are being employed to insure stability and sustainability.
\n\t\t\t\t | \n\t\t\t\t\tAncient domestication\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tDomestication in the 21st century\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tReferences\n\t\t\t\t | \n\t\t\t
Purposes | \n\t\t\tFood, medicine clothing, energy, sustainability | \n\t\t\tFood, clothing, energy, health, life quality, sustainability | \n\t\t\t[28, 53, 54] | \n\t\t
Screening methods | \n\t\t\tMorphology, taste, flavour, energy | \n\t\t\tMorphology, genetic DNA markers, QTLs, taste, flavour, energy, metabolite profiles, | \n\t\t\t[20, 41, 51, 52] | \n\t\t
Production paths | \n\t\t\tGathering, yards and small farms sowing and harvesting, human and animal force | \n\t\t\tExperimental tubes, growth chambers, greenhouse and fields, large commercial fields, high throughput management, human and animal force and mechanization | \n\t\t\t[28, 53] | \n\t\t
Purity | \n\t\t\tComposite | \n\t\t\tComposite, variety | \n\t\t\t\n\t\t |
Ecosystem | \n\t\t\tComplex | \n\t\t\tSimple | \n\t\t\t[53] | \n\t\t
Yield | \n\t\t\tLow | \n\t\t\tHigh | \n\t\t\t[28, 55, 56] | \n\t\t
Value chain | \n\t\t\tSelf, local consumption, | \n\t\t\tGlobal, processing, distribution and marketing networks | \n\t\t\t\n\t\t |
Comparative pathways of ancient and modern plant domestication processes: purposes, tools, and expectations
One of the most recent and successful domestication of a wild species is that of the North American ginseng [57]. Similar to ginseng, interests in wild rosehip products are increasing worldwide due to its nutraceutical and natural health products properties [13]. With aging and changing eating lifestyles, the incidence of chronic diseases is increasing worldwide. Despite success achieved in fighting these diseases, prevention measures have become top priorities for citizens and public health systems. Recently, increasing interest has been expressed in plant natural products as preventative agents. Hence, plant product preparations such as those from rosehip have been used as food and medicine for centuries. The genus Rosa contains more than 150 species. They are widespread in North America within the Cinnamomae section and are renowned for the vitamin C content [58-61]. Although formulations from Rosa canina have been associated with the treatment and symptom reduction of inflammation and arthritis, the vast majority of wild rose species are fully unexplored for their heath potential. To date, most of the reported studies were focused mainly on Rosa species within the Caninae section which comprises 20 – 30 Rosa species known as dogroses [18, 42] and is currently the focus of major domestication research programs for the production and commercialisation of rosehips (fruits) around the world, particularly in Northern Europe, Germany, Turkey, Eastern Europe and Chile [13]. So far, less emphasis has been made on Rosa species belonging to R. carolina complex within the Cinnamomae section and the rosehips production from the eastern North American native wild roses is new and emerging [55, 56]. This section deals with the genetic diversity of PEI wild rosehips, the challenges associated with their domestication as well as the agronomic practices that could ensure an economic production.
The genus Rosa (Rosaceae) originated in the temperate regions of the northern hemisphere, including North America, Europe, Asia, and the Middle East, with the greatest diversity of species found in western China, where it is endemic, and is now widespread all over the globe [18]. With this wide distribution range and the high number of species (more than 150 shrub species), the delimitation of the species bounbaries remained a challenge for taxonomists and molecular biologists [16, 21, 41, 44].
The taxonomy and breeding system of the genus Rosa has been recently reviewed by several authors [13, 16, 21, 38, 49, 62, 63] and the reader is invited to find more details in these treatments. Of particular interests are works reported by Werlemark and Nybom [13] and Macphail and Kevan [21] on one hands, and those by Bruneau et al. [16] and Joly and Bruneau [44] on the other hands, focusing on the European Dogroses from section Caninae and the North American Rosa species from section Cinnamomae, respectively. Wild rose species from these two sections are currently extensively investigated for domestication purposes and commercial rosehip production [13, 55, 64-67]. As our interest lies mainly in the domestication of North American wild roses, the next section of this review will put more emphasis on the biodiversity and phylogeny of wild rose species commonly encountered in this part of the globe and more specifically in Canada, a country as large as the whole Europe (West and East taken together, excluding the former USSR).
Biodiversity of the North American wild roses has been investigated by botanists in the early 1900’s. Watson [68], Crepin [69, 70], Erlanson MacFarlane [71, 72] have described and defined 13 - 22 Rosa species in North America. This important polymorphism in Rosa species, especially in eastern North America, together with hybridization and polyploidy have long been considered as the major causes of taxonomic confusion in the genus [17]. Alfred Rehder (1869-1949) established the first foundation of Rosa species taxonomic relationship in a book entitled “The\n\t\t\t\t\t\tManual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer Temperate Regions” published in 1940 [49]. Rehder provided concise physical description, time of flowering, region of native habitat, hardiness zone, distinguishing features and pertinent information on North American roses, and subdivided the genus Rosa into 4 subgenera and 10 sections, including the Rosa carolina L. complex of section Cinnamomae. East of the Rocky Mountain, the Rosa Carolina complex is composed of five diploid species (R. blanda, Ait., R. foliolosa Nutt., R. nitida Wild., R. palustris March., and R. Woodsii Lindl.), three tetraploid species (R. carolina L., R. virginiana Mill., and R. arkansana Porter) and one hexaploid/octaploid species (R. acicularis Lindl.) which is morphologically distinct from all other species [17]. The taxonomic problems are well known at the diploid level, where some species hybridize and are also morphologically difficult to distinguish (which is particular true for R. blanda and R. woodsii), but are even more acute at the polyploidy level. Rosa carolina which is widespread East of the Mississipi river hybridizes with R. Arkansana in the western part of its distribution [71] but also in the East with R. virginiana. Moreover, the morphological similarity cuts across ploidy levels and no single morphological character can be used to distinguish one species to another [17]. Thanks to molecular tools (AFLP, SNP), haplotype network analysis using statistical parsimony, genealogical approach, and multivariate analysis of 25 morphological characters including ploidy determination based on stomatal guard cell lengths, Joly et al. [17] and Joly and Bruneau [44] determined four species at the diploid level and that were separated into 2 groups in the east of the Rocky Mountains: one group consists of R. blanda - R. woodsii (which were indistinguishable and should be considered as a single species), and the other group is consisted of R. foliolosa, R. nitida, and R. palustris. The authors also determined 3 species at the polyploid level: R. arkansana, R. carolina, R. virginiana, with evidence of hybridization between them. The diploids that are involved in the origins of the polyploid species in that region were also proposed. For Joly et al. [17], only diploids east of the Rocky Mountains are involved in the origins of polyploids. Rosa arkansana is derived from the blanda-woodsii group, R. virginiana originated from the foliolosa- nitida-palustris group, and R. carolina is derived from a hybrid between the two diploid groups. Thus, for wild rose species domestication and commercial production purposes in the Canadian Maritimes where both North American native wild species of the R. carolina complex grow in sympatry and also along with naturalized species such as R. rugosa or other members of dogroses (Figure 1), a careful species determination as well as genotypic identification of collected germplasm for propagation are of critical importance to ensure, genetic purity and traceability.
Diversity of rosehip morphology in the Atlantic Canada landscape. A, typical morphology PEI grown rosehip. B, morphological feature of a naturalized rosehip to Atlantic Canada.
Using SSR markers [20] and single nucleotide polymorphisms analysis, our group has assessed the genetic diversity within 30 ecotypes under cultivation and identified three major clusters, with cluster 2 and 3 showing 2 and 3 sub-clusters, respectively [65, 73]. The metabolite profiles in the flesh, seed, and fuzz for anthocyanins, flavonols, tilirosides which is a potent antidiabetic compound, tannins and fatty acids were also determined from the 30 ecotypes [65, 73]. The level of anthocyanin was very low in all ecotypes, with only one ecotype showing a level that was 30-40 % higher compared to the average. A large diversity was observed for flavonols and tiliroside among ecotypes. Only 4 ecotypes had a high content for both flavonols and tiliroside in the analyzed tissues (Ghose et al, submitted). One ecotype showed 18:3 level as high as 41.2%. The data suggests that it is possible to select and propagate a given ecotype for its unique metabolite profile for commercial and drug production [65, 73].
Roses have been domesticated by man first for the beauty of their flower and incorporated in many cultural and political practices [74] and are now encountered on all continents, climates, and market places. Nonetheless, the medicinal uses of rose leaves, flowers and fruits were also widespread in human history [13, 54, 75-78].
The best known uses for roses are their flowers as ornamental on tables, in home backyards, public gardens and spaces. Historically, only very few wild rose species (at most 5 to 11 species) have been involved as parents in the today flower roses. One example of using native rose species in North America is related to the Parkland Rose series developed at AAFC in Morden, Manitoba. These flower roses are hardy, winter resistant and some of these rose varieties involve in their pedigree R. Arkansana which is encountered east of the Rocky Mountain in Canada. Beside, its ornamental features, rose flowers are valuable for the cosmetic industry [75, 76, 78].
The fruits of roses, the hips, have been highly regarded as important food and medicinal sources [13, 54, 79]. Rosehip is appreciated as traditional vitamin C rich soup in Sweden where the demand is particularly high [80]. Its flesh and seeds have been used in concoctions and tonics for various ailments, including the use as laxative and diuretic, against common cold, gastroinstestinal disorders, gastric ulcers [77, 81, 82], and anti-inflammatory diseases such as arthritis [83]. A review on the major chemical components of dogrose hips from was recently made by Werlemark [13]. However, a marked variation in chemical composition is associated with species, genotypes, and environments in which the plants evolve. For example, Melville and Pyke [84] found a weak correlation between latitude and vitamin C content of British rosehip populations from Scotland and England. Similarly, Werlemark [13] hypothesised that rosehips produced in a colder climate, especially with colder summer, may have higher vitamin C content compared to those that have been maturing in a warmer climate and also anticipated that local variations in precipitations and temperatures during summer may affect the chemical content of rosehips. It is reasonable to assume that, with different species and cooler summer and fall (Table 2), the Canadian Maritime wild rose species would show different chemical composition, especially in terms of relative amount when compared to their European and South American counterparts. By comparing some rosehip samples from Prince Edward Island, Denmark, Chile and South Africa, our group observed differences between origins, especially with regards to total oil content and fatty acid profiles (Figure 2). Nonetheless, sample preparation (harvesting time and conditioning) can also be a major source of variation. It will be of interest to compare the chemical composition of rosehips collected in each of these regions during the same summer or fall for obtaining factual and conclusive answers to these assumptions.
Comparative study of rosehip samples from Prince Edward Island, Denmark, Chile, and South Africa.
Rosehip seed contains pretty well balanced omega-6 (18:2) / omega-3 (18:3) fatty acid ratio and also shows relatively high level of oleic acid as compared to olive and canola oils that are rich in oleic acid but low in both linoleic and linolenic acids (Figure 3). As genetic variability for fatty acid composition has been observed in PEI wild roses (Ghose et al, submitted) and the seed oil content is relatively low, breeding efforts could contribute to increase the oil content.
Comparative fatty acid profile of rosehip with three oilseed crops.
Although a high value was recognized to rosehip throughout centuries, it is only recently that the wild roses are being domesticated and cultivated for their fruits and to develop agronomic practices that ensure an economic production of the hips [28, 51, 52, 56, 77, 85]. However, due to the diversity of species, genotypes, soils and climates, different agronomic practices are being implemented and tested in different regions, including Denmark, Turkey, Bulgaria, Chile and Canada. Whereas Chilean started their trials by developing a nursery built on the "Tunnel" greenhouse model with a capacity to accommodate 15.000 cuttings, under an irrigation system with nebulizers to reduce temperature and humidification before a developmental stage in the fields, the Danish, Swedish and Canadian choose to established field trials using wild cutting, spacing, density and nutrient management trials [28, 55]. In Sweden, the germplasm used were mostly concentrated on the Scandinavian Rosa species of section Caninae especially, R. dumalis,\n\t\t\t\t\t\t\tR. rubiginosa and their interspecific hybrids [86] whereas Danish rosehips are produced mainly from R. canina (www.hyben-vital.com) although it may also involve other Scandinavian species. In Chile, the current production is mainly focused on wild hand-harvested hips from uncharacterized and naturalized species introduced to south America by Spanish and is mostly a mixture of R. rubiginosa, R. canina, R. moschata and many other species found in western Europe [66]. In Prince Edwards Island, (Canada), current recent genetic study based on 30 wild ecotypes collected from this province suggested that all accessions currently under field trial are from R. virginiana and its natural hybrids with R. Carolina (Ghose et al, submitted). At present, very few cultivars have been named and released for commercial fruit production. One cultivar, the cultivar “Mechthilde von Neuerburg” derived from R. rubiginosa was reported in Germany. Two cultivars (Sylwia and Sylwana) derived from R. canina were reported in Poland, whereas cultivar Plovdiv 1 from R. canina, and cultivar Karpatia from R. villosa were reported in Bulgaria and Slovakia, respectively [13]. For all of these semi-domesticated wild rosehips, it is not known or reported whether the ongoing domestication process has already impacted on some of the phenotypic traits such fruit size, fruit setting or metabolite profile. By comparing the pomology characteristics of 5 wild rosehip ecotypes growing in the wild or in the field settings, we observed that the field setting contributed to increase the fruits size and delayed the maturity when compared with growing in the wild, suggesting an occurrence of a domestication syndrome for these traits (Fofana, personal observation). However, no significant difference was found between the two environments for the number of seed in each of the ecotype.
Although originally native to temperate regions of the globe, roses have adapted to warmer regions and grow well now in very diversified habitats and soil types [13, 79]. The soil should be well drained though and not heavy. Species preference for soil type has nonetheless been reported. R. villosa was reported to grow better in a dry soil with low calcium content whereas R. canina and R. dumalis prefer more calcareous soil. R. rubiginosa also prefers more calcium and grows well in a relatively heavy soil [13]. R. palustris grows in marshes and R. nitida in bogs. Similarly, R. virginiana likes salt marshes and salty soils (Joly, personal communications). In Prince Edwards Island province (Canada), wild rosehips are found in a variety of habitats including hedgerows, wet and dry pastures, thickets, swamps and uplands in dry orthic humo-ferric Podzol sandy soils [55]. In hard winter climates such as Canada, plant survival rate in the field setting can vary from genotype to genotype and for the same genotype, plastic coverage has been shown to increase the winter survival rate (Figure 4).
Effect of planting beds coverage with plastic on winter survival.
\n\t\t\t\t | \n\t\t\t\t\tTemperature (°C)\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tPrecipitations (mm)\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tSoil type\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tLatitude\n\t\t\t\t | \n\t\t\t||
\n\t\t\t | Summer | \n\t\t\tFall | \n\t\t\tSummer | \n\t\t\tFall | \n\t\t||
PEI Canada | \n\t\t\t16 – 22 | \n\t\t\t7 – 18 | \n\t\t\t270 | \n\t\t\t300 | \n\t\t\tOrthic humo-ferric Podzol with sandy loam | \n\t\t\t46.04 – 46.57 | \n\t\t
Denmark | \n\t\t\t17 | \n\t\t\t9 | \n\t\t\t170 | \n\t\t\t150 | \n\t\t\tTypic Fragiudalf | \n\t\t\t55 – 57.4 | \n\t\t
Sweden | \n\t\t\t13 | \n\t\t\t5 | \n\t\t\t180 | \n\t\t\t120- 140 | \n\t\t\tAeric Endoaquept | \n\t\t\t55 – 68 N | \n\t\t
Turkey | \n\t\t\t17 – 29 | \n\t\t\t6 – 7 | \n\t\t\t50 | \n\t\t\t70 | \n\t\t\tTypic Haploxeroll | \n\t\t\t36 – 42 N | \n\t\t
Bulgaria | \n\t\t\t25 | \n\t\t\t14 | \n\t\t\t180 | \n\t\t\t120 | \n\t\t\tpseudopodzolic- podzolic | \n\t\t\t41 – 43 N | \n\t\t
Chile | \n\t\t\t17 – 28 | \n\t\t\t8 - 20 | \n\t\t\t350- 500 | \n\t\t\t200 -300 | \n\t\t\tAndisol - Ultisol | \n\t\t\t18 – 58 S | \n\t\t
Comparison of average temperature and precipitations during summer and fall in major rosehip production countries.
Barry et al [55] described the first time the establishment of field trial for North American wild roses belonging to the R. carolina complex, with as an objective to investigate the effects of several field management practices on commercial rosehip production in Atlantic Canada. Treatments were applied at planting in a factorial randomized complete block design in June 2004 and included three in-row mulch (none, bark, and straw) treatments, three in-row fertility (none, compost, and fertilizer) treatments, and two interrow management (tilled and sod) treatments. The compost consisted of an initial mix of softwood sawdust, lobster waste, and old hay. Prior to planting, compost was applied at 60 t ha−1 (54 kg plot−1) in a 1-m band over the row and was incorporated by hand raking. The fertilizer used was a commercial grade (5N-20P-20K). This fertilizer formulation was chosen for use during the first year to promote root development and plant establishment. During the second year (2005), compost was reapplied as top-dress on 22 June 2005 and the fertilizer used was a commercial grade (10N-10P-10K), which was applied as top-dress on 25 May 2005. A fertilizer with higher nitrogen content was chosen with the aim of improving overall plant health and yield during the second growing season. Fertilizer was applied at a rate of 800 kg ha−1 (648 g plot−1) in a 1-m band over the planting row. In Dogroses, Werlemark and Nybom [13] reported 50 g NPK for each plant at planting and 300 kg/ha of organic-mineral NKP in the subsequent year, with additional calcium amendment depending on soil types and species. In Prince Edwards Island, mulching increased nutrient uptake of N and P and increased plant growth. Fertilizer increased plant growth and yield of rose hips compared to no fertilizer or compost treatments. Tilled interrow treatment increased in shoot lengths, diameters, and plant spreads compared to interrow sod. The study indicated that during the early establishment years of a rose hip plantation in Atlantic Canada, wild roses grow best with the use of mulch, fertilizer, and tillage between the rows [55].
Traditionally, fungal diseases such as black spot caused by Diplocarpon rosae, powdery mildew (Podosphaera pannosa) rusts (Phargmidium spp) and leaf spot (Sphaceloma rosarum) have been reported to be problematic in ornamental roses [87-90] and field-grown dogroses [13, 48, 91, 92]. These fungal diseases management is carried through fungicide treatment [93] and selection of genetic resistance [94-96]. Genetic resistance sources within wild rose species within Caninae section have been investigated for field rosehip production. Fungal disease tolerance characteristics were identified in R. rubiginosa and in interspecific hybrids involving species from Caninae and Cinnamomae sections [48]. Up to date, no such disease resistance screening has been performed within the R. carolina complex for a commercial wild rosehips production in North American. However, our observations in the field showed evidence of these diseases on PEI wild roses (Figure 5). Research in this field should be carried to mitigate the disease incidence in their new field environment. As for any crop, introduction of elite genotypes in cropping systems for rosehips production will lead to a decreased genetic diversity of the cultigens. It is thus anticipated that more susceptibility to major diseases could be observed in the field as compared to the wild populations from which they derive. The preservation of natural habitats hosting the wild populations is of great importance to ensure an availability of genetic stocks to be used in the introgression of disease resistance genes from the wild types to the cultigens.
Insects such aphids (Aphidina), grasshoppers (Orthoptera), mites (Tetranychidae), sawflies (Tenthredinidae), gall-making cynipids (Diplolepis) as well as the rosehip fly (Rhagoletis alternate) have also been reported in dogrose orchards and to cause severe damage in some cases [13]. Nematode (Pratylenchus penetrans) is causal pests of severe lesions to roots in a wide range of ornamental hosts, including roses, mainly in temperate regions. Peng [97] reported that R. virginiana is a good nematode resistance source. Because Prince Edwards Island is world leading potato producing area with prevalence of nematodes in the agricultural landscape, development of rosehips orchards with R. virginiana genetic background could be a mean for reducing nematode populations in highly infested fields.
Foliar and fruits diseases in wild roses. A, powdery mildew; B, leaf spot; C, lesions on immature rosehips probably caused by Phargmidium spp (Rust) or Sphaceloma rosarum (leaf spot).
Rosehip yield vary considerably depending on the plant material, cultivation procedures, age of orchard, and harvesting methods. Werlemark and Nybom [13] reported that up to 8 kg of rosehips per bush could be harvested by hand in commercial planting of dogrose hybrid PiRo 3. Similarly up to 3 t/ha could be obtained from R. dumalis and R. rubiginosa with mechanical harvesting in Sweden. In these cases however, no mention is made about the age of the orchards as yield increases markedly several years after planting. In contrast, Sanderson and Fillmore [56], reported in 14 rosehip ecotypes of the R. Carolina complex grown in field condition an average rosehip yield ranging between 411 and 2000 kg/ha, with a fruit mean weight of 1.01 – 1.62 g, over the first four hand harvesting years. The lowest and highest yielding selections showed 910 and 3634 kg/ha in the fourth years, respectively (Table 3). Compared with reports by Ercisli and Guleryuz [98], Dogan and Kazankaya [99], Güneş and Dölek [100], the fruit weight reported by Sanderson is lower but showed relatively narrow range of variation between ecotypes, reflecting the relatively narrow genetic diversity among these ecotypes. Joly (personal communication) reported that R. virginiana and R. Arkansana are the two species with the greatest number of fruits per flowering branches. They have more fruits than R. carolina and the height of R.\n\t\t\t\t\t\t\t\tvirginiana makes it one of the most productive North American roses. To preserve the integrity of rosehip bioactives, the postharvest handling and storage conditions are key factors. Both sun-drying and mechanical dryers are being used at commercial scale and the reader can see more details in Werlemark and Nybom [13].
\n\t\t\t\t\tSelection\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tBiological yield\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tMean fruit weight\n\t\t\t\t | \n\t\t\t||||
\n\t\t\t\t\t2006\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\tMean\n\t\t\t\t | \n\t\t\t||
\n\t\t\t\t | \n\t\t\t\t\t(kg ha-1)\n\t\t\t\t | \n\t\t\t\t\n\t\t\t\t\t(g)\n\t\t\t\t | \n\t\t\t||||
s26 | \n\t\t\t877 | \n\t\t\t1413 | \n\t\t\t2368 | \n\t\t\t3634 | \n\t\t\t2000 | \n\t\t\t1.62 | \n\t\t
s30 | \n\t\t\t347 | \n\t\t\t569 | \n\t\t\t1557 | \n\t\t\t2676 | \n\t\t\t1431 | \n\t\t\t1.31 | \n\t\t
s28 | \n\t\t\t498 | \n\t\t\t335 | \n\t\t\t1136 | \n\t\t\t1759 | \n\t\t\t946 | \n\t\t\t1.57 | \n\t\t
s22 | \n\t\t\t416 | \n\t\t\t422 | \n\t\t\t831 | \n\t\t\t1464 | \n\t\t\t783 | \n\t\t\t1.29 | \n\t\t
s67 | \n\t\t\t270 | \n\t\t\t338 | \n\t\t\t910 | \n\t\t\t1440 | \n\t\t\t740 | \n\t\t\t1.39 | \n\t\t
s25 | \n\t\t\t355 | \n\t\t\t116 | \n\t\t\t562 | \n\t\t\t1725 | \n\t\t\t719 | \n\t\t\t1.29 | \n\t\t
s57 | \n\t\t\t195 | \n\t\t\t371 | \n\t\t\t941 | \n\t\t\t1178 | \n\t\t\t675 | \n\t\t\t1.03 | \n\t\t
s33 | \n\t\t\t395 | \n\t\t\t330 | \n\t\t\t654 | \n\t\t\t1227 | \n\t\t\t657 | \n\t\t\t1.33 | \n\t\t
s55 | \n\t\t\t313 | \n\t\t\t384 | \n\t\t\t679 | \n\t\t\t1167 | \n\t\t\t638 | \n\t\t\t1.42 | \n\t\t
s36 | \n\t\t\t181 | \n\t\t\t166 | \n\t\t\t862 | \n\t\t\t1307 | \n\t\t\t622 | \n\t\t\t1.01 | \n\t\t
s140 | \n\t\t\t300 | \n\t\t\t186 | \n\t\t\t576 | \n\t\t\t1342 | \n\t\t\t610 | \n\t\t\t1.21 | \n\t\t
s142 | \n\t\t\t406 | \n\t\t\t430 | \n\t\t\t464 | \n\t\t\t956 | \n\t\t\t568 | \n\t\t\t1.17 | \n\t\t
s68 | \n\t\t\t284 | \n\t\t\t281 | \n\t\t\t430 | \n\t\t\t1092 | \n\t\t\t514 | \n\t\t\t1.21 | \n\t\t
s122 | \n\t\t\t246 | \n\t\t\t83 | \n\t\t\t416 | \n\t\t\t910 | \n\t\t\t411 | \n\t\t\t1.12 | \n\t\t
Grand mean | \n\t\t\t363 | \n\t\t\t387 | \n\t\t\t885 | \n\t\t\t1563 | \n\t\t\t808 | \n\t\t\t1.28 | \n\t\t
Yield progression over four years after plantation and mean fruit weight of 14 rosehip ecotypes grown in field (2006-2009)
One of the shortcoming issues for the establishment of commercial rosehip production orchard is the availability plant materials for large acreages. So far, all established fields are based on cuttings or seedlings obtained from wild selections. Because of the genetic diversity within the genus Rosa and morphological similarities between species, hybrids (interspecific and intraspecific) and their parental species at the collection sites, an accurate identification at the collection site and the traceability of the putative cultivars under development is challenging and not guaranteed. This issue will become major issues in a near future as rosehip provenances will increase and the bioactive metabolites that are associated to each species, provenance, and ecotypes are made available for marketing purposes. Thus, the use of combined morphological, cytological, and molecular biology tools for assigning a genetic identity, and the use of regeneration technologies that ensure mass plant production and ensuring the genetic integrity of clones is a research direction that should be undertaken similarly to the ornamental flower industry.
3.3.2.2.1.1. Regeneration by seed
The use of plant regeneration from seed for commercial production has been reported [85, 101]. It ensures the production of higher number of plants for field planting in a relatively short period of time. However, the mating system of Rosa species is a major source of genetic variability between plant materials obtained using such an approach, especially when the seed is collected from uncontrolled sources like wild plants.
3.3.2.2.1.2. Cutting and explants
Cuttings and explants are currently the materials of choice in commercial wild rose production [64, 86, 101], and most, if not all, of these explants (Figure 6) are derived from wild plants. Wild rose plants grow in the nature as populations that can involve different species, interspecific and intraspecifc hybrids, parental and sibling all growing in a confined area. Collecting cuttings in such an environment, even from the same patch, does not ensure the genetic integrity of the collected material for propagation. Once collected, the material should be well characterized and identified. Now, remains our ability to get enough characterized plant materials for large field planting. We believe that the well characterized plant material should be used as starting point for plant regeneration and mass production in the form of rooted seedling or cuttings. This is the approach we pursue in Canada for commercial wild rose production (Figure 7).
3.3.2.2.1.3. Tissue culture
Tissue protocols have been developed and available for flower roses [102-104] and could be applied to rosehip production. Once elite genotypes such as those reported by Sanderson and Fillmore [56] are identified, tissue culture should be able to ensure a sustainable plant production or field planting by growers (Figure 7).
Similar to tissue culture, rose plants can be regenerated by cell culture. Contrary to tissue culture however, the new plants are obtained from callus generated from sterile explants. This method leads to pure line but can also create new lines different from the mother plant from which the explant was obtained because of somaclonal variations that may occur during the induction of callus and regeneration processes. Thus, for the production of mass plant production from a selected elite wild ecotype, tissue culture appears more appropriate as it minimizes the risk of somaclonal variations while showing high rate of plant multiplication.
Rose cuttings for multiplication. Sterile rose dormant stems were conditioned to break dormancy. Note the active buds sprouting.
Mass rosehip plant regeneration from active buds of well characterized rosehip genotypes. A, active buds in regeneration media; B, regenerated rose plant; C, plant multiplication in rooting media; and D, acclimation in greenhouse.
With the increasing demands for natural heath products, plant biodiversity is being thoroughly revisited. The genus Rosa has a complex taxonomy that is still being investigated with scrutiny. East of the Rocky Mountain, Rosa species belonging to R. carolina complex in the Cinnamomae section include five diploid species, three tetraploid species and their natural hybrid. Several of these species as well as their interspecific hybrids are encountered on Prince Edwards Islands, Canada. A commercial rosehip production program using wild selected ecotypes has been developed and elite selections with high yielding potential have been identified and agronomic practices set for field management. The collection has been characterised using a combined morphological, cytological and molecular tools and appears to be made of R. virginina and its natural hybrids with R. carolina. Genetic and metabolite diversity among these wild ecotypes was observed and could be of high potential for large field production and breeding programs. However, the disease resistance status in this complex is unknown. As for any new crop, increased incidence of exiting diseases and recruitment of new diseases is anticipated in the field setting as compared to the wild populations from which they derive. The preservation of natural habitats hosting the wild populations as source of genetic stocks is critical to ensure gene transfer from the wild types to the cultigens through breeding. Future works should also aim at developing mass plant production to ensure sustainable plant material supply from the elite selections.
Nowadays, the energy demand worldwide is steadily increasing due to the fast progress in technology in all fields of life. On the other hand, the fossil fuel had been taken to decrease, and the alternatives of energy sources are still under research to raise their efficiency. Besides, the fossil fuel has led to the environment degradation and global warming [1].
Revolution of nanotechnology and its unique features compared with the large scale of its originality has been given a major focus. This dramatic growth stemmed from the multiapplications in various fields of life: medicine, agriculture, engineering, and industry. Nanotechnology, as a scientific major, studies the properties of nanoscale materials. Nanotechnology-based techniques could be produced by small particles in the size of nano of some solid materials such as alumina and titanium oxide that have relatively high thermal conductivity. The word “nano” is described as 1 billionth of meter or 10−9 m. Figure 1 shows a comparative sample of different sizes of materials from large scales to nanoscales. These nanosized particles are mixed in the base fluid of heat transfer forming a colloidal solution in the stable case, while its addition to the base fluids of low thermal conductivity probably increases the heat transfer characteristics of the base fluids. This creative fluid is known as nanofluid, which has a new heat transfer characteristic as one of the recent outcomes of nanotechnology. This makes, of course, saving energy exactly similar to reducing the volume of heat transfer equipment.
A comparative of things from large scale to nanoscale.
Nanotechnology has been widely used in various engineering applications as a promising alternative in saving energy and reducing the cost of producing engineering facilities. This important application is represented by the reduction of nanoparticles to the size of the nanoparticles and their mixing with fluids of low thermal properties to give a good type of fluid known as nanofluid.
With the advancement of nanotechnology and its ability to increase the performance of solar devices by exploiting it, a new fluid known as nanofluid has been originated. This is assembled by mixing the base fluid of low thermal conductivity with solid nanoparticles of high thermal conductivity, and hence the new fluid (nanofluids) has high transfer characteristic compared with the base fluids [1, 2]. A nanofluid is a fluid in which nanometer-sized particles, suspended in the base fluid, form a colloidal solution of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, carbides, or carbon nanotubes, while the base fluids include water, ethylene glycol, and oil. Nanofluids have novel properties that make them potentially useful in many applications in heat transfer, including microelectronics, fuel cells, pharmaceutical processes, and
Nanofluids are produced by several techniques: first step, second step, and other techniques. To avoid the sedimentation of nanoparticles during its operation, surfactant may be added to them. Nanofluid preparation is the first step ahead of any implementations. Therefore, it entails more focus from researchers to obtain a good stage of stability. Colloidal theory states that sedimentation in suspensions ceases when the particle size is below a critical radius due to counterbalancing gravity forces by the Brownian forces. Nanoparticles of a smaller size may be a better size in the different applications. However, it has a high surface which leads to the formation of agglomerates among them [3, 4]. Therefore, to obtain a stable nanofluid with optimum particle diameter and concentration, it is considered a big challenge for researchers. Two common methods are used to produce nanofluids, the two-step method and the one step method, and others have worked up some innovations.
The two-step method is the common method to produce nanofluids. Nanoparticles of different materials including nanofibers, nanotubes, or other nanomaterials are first produced as nanosized from 10 to 100 nm by chemical or physical methods. Then, the nanosized powder will be dispersed in base fluids with the help of intensive magnetic force agitation, ultrasonic agitation, high-shear mixing, homogenizing, and ball milling. As resulting from high surface area and surface activity, nanoparticles tend to aggregate reflecting adversely on the stability of nanofluid [4, 5, 6, 7, 8]. To avoid that effect, the surfactant is added to the nanofluids.
The two-method preparation has been done by many researchers [9, 10, 11, 12, 13, 14].
Figure 2 shows a block diagram of preparation of two-step method [15].
Two-step method of preparation of nanofluids [15].
The one-step process is simultaneously making and dispersing the particles in the base fluids which could be reduced to the agglomeration of nanoparticles. This method makes the nanofluid more stable with a limitation of the high cost of the process [16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
Some researchers create other methods to obtain new prepared methods for nanofluid with relatively high characteristics and more stability. Wei et al. [26] developed a method to synthesize copper nanofluids. This method can be synthesized through a novel precursor transformation with the help of ultrasonic and microwave irradiation [27]. Chen et al. [28] obtain monodisperse noble-metal colloids through using a phase-transfer method. Feng et al. [29] have used the aqueous-organic phase-transfer method for preparing gold, silver, and platinum nanoparticles with the solubility in water. Phase-transfer method is also used to prepare stable kerosene-based F3O4 nanofluids [30]. As stated above, the research proved that nanofluids synthesized by chemical solution method could be enhanced in conductivity with more stability [31].
Nanofluids have novel properties different from base fluids that included thermophysical properties such as specific heat, density, viscosity, and thermal conductivity.
Mixing the nanoparticles into the base fluid changes the thermophysical properties of the base fluid. The most important thermophysical properties of nanofluids are nanofluid viscosity, nanofluid convective heat transfer, nanofluid thermal conductivity, and nanofluid specific heat.
The value of specific heat and density of the nanofluids can be determined by correlations, whereas the viscosity and thermal conductivity have different correlations.
Conventional heat transfer fluids, such as oil, water, and ethylene glycol (EG) mixture, are poor heat transfer fluids. Hence, many trials by researchers to enhance the heat transfer convection of these fluids through increasing their thermal conductivity. High thermal conductivity is obtained for the nanofluids by adding nanoparticle of solid materials of high thermal conductivity.
Nanofluids are basically advanced heat transfer fluids as an alternative to the pure base fluids to improve the heat transfer process through the addition of nanoparticle materials that have the properties of higher thermal conductivity. This attracted the attention of researchers to test many nanoparticles that have different thermal conductivity to obtain a high rate of heat transfer and use them in different applications.
The literature reported multiequations describing the thermal conductivity of nanofluids. The prominent results reported that there are improvements of 5–10% of the thermal conductivity of nanofluids using the base fluid (water, PAO). As is reported, there is no critical improvement in the thermal conductivity in comparison to the conventional base fluid dependent on particle size and base fluid thermal conductivity [32, 33, 34, 35, 36, 37].
Conventional models of effective thermal conductivity of suspensions are reported for some researchers [32].
where keff is the effective thermal conductivity of the suspension, n is a shape factor of nanoparticle, ν is nanoparticle volume fraction, and km and kc are the thermal conductivity of the suspending medium and solid particle, respectively. Also α and β are empirical fitting parameters which are defined as (kc/km) and (α −1)/(α +1).
Nanofluids have been proven a great potential for heat transfer enhancement [44, 45, 46, 47]. Nanofluids have been presented as a promising tool and a good alternative to base fluids to save energy, compact devices of low cost and design of multiequipment used in a different applications with nanofluids as working fluids.
Experimental investigation [38] on Cu- or water-based nanofluids has demonstrated great enhancement of heat transfer and also reported that friction factor has a very meager part in the application process. Other scholars [39] have concluded that a systematic and definite deterioration of the natural convective heat transfer occurs for the forced convection reliant on the solution concentration, the particle density, and the aspect ratio of the cylinder. Experimental investigation on Al2O3 nanofluids using water as base fluid has been studied by various research groups, and they concluded that the heat transfer coefficient in laminar flow [40, 41, 42] increases up to 12–15% and in the case of turbulent flow, it ranges up to 8% [43, 44]. CNT, CuO, SiO, and TiO2 nanofluids using water have been investigated [45, 46, 47]. Among these, CNT nanofluid produced similar results to that of Al2O3 nanofluid. Ding et al. [48] have concluded that the enhancement of heat transfer could be obtained by varying the flow condition and the fluid concentration. Alternatively, CuO has been investigated for several wall boundary conditions, and it has reached good results [3]. The increase in the concentration of the nanofluid on contrary gives very weak results on the heat transfer coefficient for volume fraction greater than 0.3% [49]. It is noted from the experiments that the heat transfer coefficient enhancement can be achieved in the range of 2–5%.
Viscosity is one of the parameters that influences the behavior of nanofluids. Researchers have conducted experiments to test the viscosity through adding the nanoparticles to the different base fluids, and hence they found out that the viscosity is significantly affected by both variations of temperature and volume fraction of nanoparticles [50, 51, 52, 53, 54, 55, 56]. They have reported correlated equations to quantify the viscosity based on their experiments using different nanofluids. The following correlated equations are examples that have been reported by some researchers.
Model for spherical nanoparticles [57]:
Model for simple hard sphere systems, the relative viscosity increases with particle volume fraction ø [57]:
The model is valid for spherical nanoparticles and for 0.5236 ≤ Φ ≤ 0.7405 [55]. Meaning of Φ = volume fraction and
The SiO2 nanofluid has been investigated [48] and concluded that nanofluid viscosity is dependent on the volume fraction. Other researchers [58] have analyzed commercial engine coolants dispersed with alumina particles. They found out that the nanofluid produced with calculated amount of oleic acid (surfactant) has been tested for stability. While the pure base fluid demonstrates Newtonian behavior over the measured temperature, it turns to a non-Newtonian fluid with addition of a few alumina nanoparticles.
The specific heat of material is quite an important property to define the thermal performance of any material [36]. Specific heats of nanofluids may differ according to the type of base fluids, nanomaterials, and concentration of nanoparticles found in base fluids. Pak and Cho [59] have investigated the impact of volume fraction of Al2O3 on specific heat. The investigation showed that 1.10–2.27% decrease in specific heat occurred for 1.34–2.78% volume fraction of nanoparticle size of 13 nm. Zhao et al. [68] also noticed a fall in the specific heat capacity of CuO nanofluid by 1.16–5% compared to base fluid EG for volume fraction of 0.1–0.6% and particle size which ranges from 25 to 500 nm. Some nanofluids show inconsistent behavior with volume convergence. Shahrul et al. [60] have conducted a comparative revision on the specific heat of nanofluids used in energy applications. They have concluded that for most nanomaterials in base fluids, specific heat decreases with the increase in volume fraction. Sonawane et al. [61] have investigated specific heat of Al2O3/ATF and reported the anomalous conduct of specific heat with volume convergence. Increase in specific heat capacity has also been reported in experimental observations [36, 62, 63, 64, 65, 66, 67, 68]. Fakoor Pakdaman et al. [69] have found out that there is 21–42% decrease in specific heat capacity of MWCNT/water nanofluid for 0.1–0.4% vol. a fraction in the range of 5–20 nm size. However, Kumaresan et al. [64] have observed 2.31–9.35% gain. In specific heat capacity of MWCNT/(EG/DW, 30/70) nanofluid for 0.15–0.45% concentration, particle size was kept at 30–50 nm. Nowadays, the result of experimental data does not signal a discreet and clear-cut indication that there is the only reduction in the heat capacity with an increment of volume concentration, as has been reported by several academic figures. Experimental observations on various nanofluids show increase of specific heat capacity [62, 63, 64, 65, 66, 67, 68, 69, 70], whereas experimental observations exhibit decrease in specific heat capacity performed by many researchers [59, 61, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81].
The specific heat of nanofluid can be determined as function of the particle volume concentration using the following equation [80]:
And
Nowadays, nanofluids play a vital role in heat transfer equipment as a good alternative in developing the efficiency of the heat transfer equipment and in turn of reducing the size of the equipment and saving energy.
Since water is a good medium for heat transfer and it is also a good medium for receiving and storing solar energy during sunrise time, therefore, water is a good medium for the heating processes and one important source for the application of solar energy [2, 82, 83]. It is granted that the thermal efficiency of the FPSWH is relatively low, and therefore researchers have exerted many efforts to increase its performance. The thermal efficiency of the FPSWH has improved by using specific techniques [84]. Researchers to enhance the performance of FPSWH and the thermal efficiency using different methods [85, 86, 87, 88, 89] have conducted many studies.
The recent researches have revealed that nanofluids have a large effect on increasing heat transfer. This is done through mixing the nanoparticles materials that have high thermal conductivity into the working fluid (or called the base fluid).
Now, nanofluids are promising mediums as alternatives to the base fluids, and hence the researches are still under investigation to improve and develop the heat transfer equipment systems.
Many works have been conducted to improve the performance of flat plate solar water heater using different nanoparticles to the base fluid [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73].
To improve the performance of flat plate solar collector, scholars had conducted experimental and theoretical studies on flat plate solar collector using nanofluids with different binary materials (nanoparticles + base fluids) as a working fluid.
Salem Ahmed et al. [90] have conducted an experimental work on the performance of chilled water air conditioning unit with and without alumina nanofluids.
They have used the first method to prepare Al2O3 water nanofluids with different concentrations by weight, which vary from 0.1, 0.2, 0.3, and 1% wt. Under operation conditions, experiments have been investigated including a variation of flow rate of chilled water/alumina nanofluids and the air through the cooling coil. The results have shown that less time is scored to get the desired chilled fluid temperature for all the different concentrations of nanofluids (Al2O3-water) compared with pure water.
Again, the findings have shown a reduction of the power consumption and increase in the cooling capacity, which is in turn an increase in the COP by about 5 and 17% for alumina nanoparticles, concentration of 0.1 and 1% by weight, respectively. A schematic diagram of the experimental work shown in Figures 3 and 4 shows the TEM image of the alumina nanoparticles (Al2O3) used in the experiments.
A schematic diagram of the chilled-water air conditioning unit [90].
TEM image of Al2O3 nanoparticles used in the experiments [90].
Xu et al. [91] have conducted experimental and theoretical studies comparing a novel of parabolic trough concentrator with traditional solar water heater using nanofluid, CuO/oil. Figure 5 shows a configuration of the novel parabolic trough concentrator and the traditional solar heater.
Schematics of solar collection principles. (a) A conventional indirect absorption solar collector (IASC); (b) the proposed novel nanofluid-based direct absorption solar collector (NDASC); and (c) the heat transfer around nanoparticles inside the tube of NDASC [91].
As is shown in Figure 5b, a kind of oil added with certain nanoparticles (CuO) acts as a working fluid. The nanoparticles dispersed in the oil inside the inner tube directly capture the solar radiation instead of the tube wall coating. The solar collection efficiency curves for the two collectors suggested that the NDASC was superior to a conventional IASC within a preferred working temperature range, but inferior when the tf exceeded a specific critical temperature (tcr) as shown in Figure 6.
Variations of solar collection efficiencies with tf,i for both the NDASC and the IASC [91].
Said et al. [92] have used TiO2-water nanofluid as a working fluid for enhancing the performance of a flat plate solar collector for the volume fraction of the nanoparticles 0.1 and 0.3%, respectively, and mass flow rates of the nanofluid vary from 0.5 to 1.5 kg/min, respectively. Thermophysical properties and reduced sedimentation for TiO2 nanofluid have been obtained using PEG 400 dispersant. Energy efficiency has increased by 76.6% for 0.1% volume fraction and 0.5 kg/min flow rate, whereas the highest energy efficiency obtained has been 16.9% for 0.1% volume fraction and 0.5 kg/min flow rate.
The thermal efficiency of the FPSC (μ) and the energy efficiency are given, respectively, as [92].
The schematic of the solar collector and the experiment is presented in Figure 7. They also showed that the pressure drop and pumping power of TiO2 nanofluid were very close to the base fluid for the studied volume fractions [92].
The presentation of the experimental setup in schematic diagram [92].
Polvongsri et al. [93] have performed an experimental work to study the performance of a flat plate solar collector (Figure 8) using a silver nanofluid as the working fluid, while water was mixed with 20 nm silver nano with concentrations of 1000 and 10,000 ppm. The operating conditions of experiments to be done at a flow rate of working fluid between 0.8 and 1.2 l/min-m2 and the inlet temperature were controlled in a range of 35–65°C.
Diagram of the experimental setup [93].
It is remarkable that using silver nanofluid as a working fluid could improve the thermal performance of flat plate collector compared with water, especially at high inlet temperature as shown in Figure 9.
The performance curves of silver nanofluid at 10,000 and 1000 ppm and water [93].
This chapter reviews the recent applications of nanotechnology for nanofluids. These applications revealed that nanofluids have a promising alternative to enhance the performance of heat transfer equipment considering the cost, safety, potential of size reduction, and environmental protection. The present chapter provides a comprehensive overview of nanofluid as one of the important applications of nanotechnology and how to obtain it and its thermal properties. There are challenges hindering the preparation of nanomaterials, including the stability of nanofluids to take into consideration and worthy of attention on the part of researchers.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"32",title:"Aquaculture",slug:"aquaculture",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:8,numberOfAuthorsAndEditors:274,numberOfWosCitations:510,numberOfCrossrefCitations:271,numberOfDimensionsCitations:732,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"aquaculture",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8928",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"9bfeadf50d4d57ea0b440f005d420752",slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",bookSignature:"Qian Lu and Mohammad Serajuddin",coverURL:"https://cdn.intechopen.com/books/images_new/8928.jpg",editedByType:"Edited by",editors:[{id:"304473",title:"Prof.",name:"Qian",middleName:null,surname:"Lu",slug:"qian-lu",fullName:"Qian Lu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7229",title:"Aquaculture",subtitle:"Plants and Invertebrates",isOpenForSubmission:!1,hash:"12cedbde363e45e8dc69fd5017482a6c",slug:"aquaculture-plants-and-invertebrates",bookSignature:"Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/7229.jpg",editedByType:"Edited by",editors:[{id:"198991",title:"Dr.",name:"Genaro",middleName:null,surname:"Diarte-Plata",slug:"genaro-diarte-plata",fullName:"Genaro Diarte-Plata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5792",title:"Sea Urchin",subtitle:"From Environment to Aquaculture and Biomedicine",isOpenForSubmission:!1,hash:"03e5af4d15dfb028a11e298e47948799",slug:"sea-urchin-from-environment-to-aquaculture-and-biomedicine",bookSignature:"Maria Agnello",coverURL:"https://cdn.intechopen.com/books/images_new/5792.jpg",editedByType:"Edited by",editors:[{id:"175306",title:"Dr.",name:"Maria",middleName:null,surname:"Agnello",slug:"maria-agnello",fullName:"Maria Agnello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2052",title:"Health and Environment in Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"e9bbb1af278ed9e5df351641aaf598f0",slug:"health-and-environment-in-aquaculture",bookSignature:"Edmir Daniel Carvalho, Gianmarco Silva David and Reinaldo J. Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2052.jpg",editedByType:"Edited by",editors:[{id:"80438",title:"Dr.",name:"Edmir",middleName:"Daniel",surname:"Carvalho",slug:"edmir-carvalho",fullName:"Edmir Carvalho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1689",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!1,hash:"1fcdb7a6dd3ef54b6669111c7b6355ea",slug:"marine-ecosystems",bookSignature:"Antonio Cruzado",coverURL:"https://cdn.intechopen.com/books/images_new/1689.jpg",editedByType:"Edited by",editors:[{id:"122197",title:"Dr.",name:"Antonio",middleName:null,surname:"Cruzado",slug:"antonio-cruzado",fullName:"Antonio Cruzado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1009",title:"Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"ed29c6b4a288a1549dc724e247930545",slug:"aquaculture",bookSignature:"Zainal Abidin Muchlisin",coverURL:"https://cdn.intechopen.com/books/images_new/1009.jpg",editedByType:"Edited by",editors:[{id:"92673",title:"Dr.",name:"Zainal",middleName:"Abidin",surname:"Muchlisin",slug:"zainal-muchlisin",fullName:"Zainal Muchlisin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2053",title:"Aquaculture and the Environment",subtitle:"A Shared Destiny",isOpenForSubmission:!1,hash:"896dc149c63ab74b6f76141f3ed6535d",slug:"aquaculture-and-the-environment-a-shared-destiny",bookSignature:"Barbara Sladonja",coverURL:"https://cdn.intechopen.com/books/images_new/2053.jpg",editedByType:"Edited by",editors:[{id:"88464",title:"Dr.",name:"Barbara",middleName:null,surname:"Sladonja",slug:"barbara-sladonja",fullName:"Barbara Sladonja"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"612",title:"Recent Advances in Fish Farms",subtitle:null,isOpenForSubmission:!1,hash:"531750867c1b8db770f8557eaf1e21bc",slug:"recent-advances-in-fish-farms",bookSignature:"Faruk Aral and Zafer Doğu",coverURL:"https://cdn.intechopen.com/books/images_new/612.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"35141",doi:"10.5772/28157",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:18371,totalCrossrefCites:81,totalDimensionsCites:162,book:{slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"27104",doi:"10.5772/30576",title:"Nutritional Value and Uses of Microalgae in Aquaculture",slug:"nutritional-value-and-uses-of-microalgae-in-aquaculture",totalDownloads:6433,totalCrossrefCites:7,totalDimensionsCites:62,book:{slug:"aquaculture",title:"Aquaculture",fullTitle:"Aquaculture"},signatures:"A. Catarina Guedes and F. Xavier Malcata",authors:[{id:"83136",title:"Prof.",name:"F. Xavier",middleName:null,surname:"Malcata",slug:"f.-xavier-malcata",fullName:"F. Xavier Malcata"}]},{id:"30642",doi:"10.5772/34423",title:"Meiofauna as a Tool for Marine Ecosystem Biomonitoring",slug:"meiofauna-as-a-tool-for-marine-ecosystem-monitoring",totalDownloads:3353,totalCrossrefCites:14,totalDimensionsCites:62,book:{slug:"marine-ecosystems",title:"Marine Ecosystems",fullTitle:"Marine Ecosystems"},signatures:"Maria Balsamo, Federica Semprucci, Fabrizio Frontalini and Rodolfo Coccioni",authors:[{id:"100075",title:"Prof.",name:"Maria",middleName:null,surname:"Balsamo",slug:"maria-balsamo",fullName:"Maria Balsamo"},{id:"104309",title:"Dr.",name:"Federica",middleName:null,surname:"Semprucci",slug:"federica-semprucci",fullName:"Federica Semprucci"},{id:"104311",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Frontalini",slug:"fabrizio-frontalini",fullName:"Fabrizio Frontalini"},{id:"104313",title:"Prof.",name:"Rodolfo",middleName:null,surname:"Coccioni",slug:"rodolfo-coccioni",fullName:"Rodolfo Coccioni"}]}],mostDownloadedChaptersLast30Days:[{id:"35141",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:18371,totalCrossrefCites:81,totalDimensionsCites:162,book:{slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"27108",title:"Genomics and Genome Sequencing: Benefits for Finfish Aquaculture",slug:"genomics-and-genome-sequencing-benefits-for-finfish-aquaculture",totalDownloads:2832,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"aquaculture",title:"Aquaculture",fullTitle:"Aquaculture"},signatures:"Nicole L. Quinn, Alejandro P. Gutierrez, Ben F. Koop and William S. Davidson",authors:[{id:"81919",title:"Dr.",name:"William",middleName:"S",surname:"Davidson",slug:"william-davidson",fullName:"William Davidson"},{id:"83990",title:"Dr.",name:"Nicole",middleName:"Lisa",surname:"Quinn",slug:"nicole-quinn",fullName:"Nicole Quinn"},{id:"84002",title:"Dr.",name:"Ben",middleName:null,surname:"Koop",slug:"ben-koop",fullName:"Ben Koop"},{id:"123877",title:"BSc.",name:"Alejandro",middleName:null,surname:"Gutierrez",slug:"alejandro-gutierrez",fullName:"Alejandro Gutierrez"}]},{id:"69948",title:"Floating Cage: A New Innovation of Seaweed Culture",slug:"floating-cage-a-new-innovation-of-seaweed-culture",totalDownloads:236,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",fullTitle:"Emerging Technologies, Environment and Research for Sustainable Aquaculture"},signatures:"Ma’ruf Kasim, Abdul Muis Balubi, Ahmad Mustafa, Rahman Nurdin, Rahmad Sofyan Patadjai and Wardha Jalil",authors:[{id:"309893",title:"Prof.",name:"Maruf",middleName:null,surname:"Kasim",slug:"maruf-kasim",fullName:"Maruf Kasim"},{id:"313040",title:"MSc.",name:"Abdul Muis",middleName:null,surname:"Balubi",slug:"abdul-muis-balubi",fullName:"Abdul Muis Balubi"},{id:"313041",title:"MSc.",name:"Wardha",middleName:null,surname:"Jalil",slug:"wardha-jalil",fullName:"Wardha Jalil"},{id:"313042",title:"MSc.",name:"Ahmad",middleName:null,surname:"Mustafa",slug:"ahmad-mustafa",fullName:"Ahmad Mustafa"},{id:"313043",title:"MSc.",name:"Rahman",middleName:null,surname:"Nurdin",slug:"rahman-nurdin",fullName:"Rahman Nurdin"},{id:"313044",title:"MSc.",name:"Rahmat Sofyan",middleName:null,surname:"Patadjai",slug:"rahmat-sofyan-patadjai",fullName:"Rahmat Sofyan Patadjai"}]},{id:"25455",title:"Aquaculture and Environmental Protection in the Prioritary Mangrove Ecosystem of Baja California Peninsula",slug:"aquaculture-and-environmental-protection-in-the-prioritary-mangrove-ecosystem-of-baja-california-pen",totalDownloads:2396,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"aquaculture-and-the-environment-a-shared-destiny",title:"Aquaculture and the Environment",fullTitle:"Aquaculture and the Environment - A Shared Destiny"},signatures:"Magdalena Lagunas-Vazques, Giovanni Malagrino and Alfredo Ortega-Rubio",authors:[{id:"60732",title:"Dr.",name:"Alfredo",middleName:null,surname:"Ortega-Rubio",slug:"alfredo-ortega-rubio",fullName:"Alfredo Ortega-Rubio"},{id:"85097",title:"Dr.",name:"Magdalena",middleName:null,surname:"Lagunas",slug:"magdalena-lagunas",fullName:"Magdalena Lagunas"}]},{id:"27104",title:"Nutritional Value and Uses of Microalgae in Aquaculture",slug:"nutritional-value-and-uses-of-microalgae-in-aquaculture",totalDownloads:6433,totalCrossrefCites:7,totalDimensionsCites:62,book:{slug:"aquaculture",title:"Aquaculture",fullTitle:"Aquaculture"},signatures:"A. Catarina Guedes and F. Xavier Malcata",authors:[{id:"83136",title:"Prof.",name:"F. Xavier",middleName:null,surname:"Malcata",slug:"f.-xavier-malcata",fullName:"F. Xavier Malcata"}]},{id:"68966",title:"Novel Biofloc Technology (BFT) for Ammonia Assimilation and Reuse in Aquaculture In Situ",slug:"novel-biofloc-technology-bft-for-ammonia-assimilation-and-reuse-in-aquaculture-in-situ",totalDownloads:1169,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",fullTitle:"Emerging Technologies, Environment and Research for Sustainable Aquaculture"},signatures:"Hai-Hong Huang",authors:[{id:"305215",title:"Dr.",name:"Hai-Hong",middleName:null,surname:"Huang",slug:"hai-hong-huang",fullName:"Hai-Hong Huang"}]},{id:"56605",title:"The Sea Urchin Embryo: A Model for Studying Molecular Mechanisms Involved in Human Diseases and for Testing Bioactive Compounds",slug:"the-sea-urchin-embryo-a-model-for-studying-molecular-mechanisms-involved-in-human-diseases-and-for-t",totalDownloads:1033,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"sea-urchin-from-environment-to-aquaculture-and-biomedicine",title:"Sea Urchin",fullTitle:"Sea Urchin - From Environment to Aquaculture and Biomedicine"},signatures:"Maria Di Bernardo and Marta Di Carlo",authors:[{id:"198292",title:"Dr.",name:"Marta",middleName:null,surname:"Di Carlo",slug:"marta-di-carlo",fullName:"Marta Di Carlo"},{id:"198293",title:"Dr.",name:"Maria",middleName:null,surname:"Di Bernardo",slug:"maria-di-bernardo",fullName:"Maria Di Bernardo"}]},{id:"56010",title:"Effects of Environmental Factors on Reproduction of the Sea Urchin Strongylocentrotus Intermedius",slug:"effects-of-environmental-factors-on-reproduction-of-the-sea-urchin-strongylocentrotus-intermedius",totalDownloads:902,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"sea-urchin-from-environment-to-aquaculture-and-biomedicine",title:"Sea Urchin",fullTitle:"Sea Urchin - From Environment to Aquaculture and Biomedicine"},signatures:"Peter M. Zhadan, Marina A. Vaschenko and Tatyana N. Almyashova",authors:[{id:"198112",title:"Dr.",name:"Marina",middleName:null,surname:"Vaschenko",slug:"marina-vaschenko",fullName:"Marina Vaschenko"},{id:"198123",title:"Dr.",name:"Peter",middleName:null,surname:"Zhadan",slug:"peter-zhadan",fullName:"Peter Zhadan"},{id:"198124",title:"Mrs.",name:"Tatiana",middleName:null,surname:"Almyashova",slug:"tatiana-almyashova",fullName:"Tatiana Almyashova"}]},{id:"35136",title:"Transmission Biology of the Myxozoa",slug:"transmission-biology-of-the-myxozoa",totalDownloads:2097,totalCrossrefCites:30,totalDimensionsCites:58,book:{slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Hiroshi Yokoyama, Daniel Grabner and Sho Shirakashi",authors:[{id:"78409",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Yokoyama",slug:"hiroshi-yokoyama",fullName:"Hiroshi Yokoyama"},{id:"83562",title:"Dr.",name:"Daniel",middleName:"Stefan",surname:"Grabner",slug:"daniel-grabner",fullName:"Daniel Grabner"},{id:"122643",title:"Dr.",name:"Sho",middleName:null,surname:"Shirakashi",slug:"sho-shirakashi",fullName:"Sho Shirakashi"}]},{id:"55822",title:"Morphological and Biochemical Profiles of the Gonadal Cycle in the Sea Urchin Paracentrotus lividus: Wild Type vs. Bred",slug:"morphological-and-biochemical-profiles-of-the-gonadal-cycle-in-the-sea-urchin-paracentrotus-lividus-",totalDownloads:935,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sea-urchin-from-environment-to-aquaculture-and-biomedicine",title:"Sea Urchin",fullTitle:"Sea Urchin - From Environment to Aquaculture and Biomedicine"},signatures:"Bernardetta Anna Tenuzzo, Elisabetta Carata, Stefania Mariano and\nLuciana Dini",authors:[{id:"103116",title:"Prof.",name:"Luciana",middleName:null,surname:"Dini",slug:"luciana-dini",fullName:"Luciana Dini"},{id:"206595",title:"Dr.",name:"Bernardetta Anna",middleName:null,surname:"Tenuzzo",slug:"bernardetta-anna-tenuzzo",fullName:"Bernardetta Anna Tenuzzo"},{id:"206596",title:"Dr.",name:"Elisabetta",middleName:null,surname:"Carata",slug:"elisabetta-carata",fullName:"Elisabetta Carata"},{id:"206597",title:"Dr.",name:"Stefania",middleName:null,surname:"Mariano",slug:"stefania-mariano",fullName:"Stefania Mariano"}]}],onlineFirstChaptersFilter:{topicSlug:"aquaculture",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/185719/maria-dinescu",hash:"",query:{},params:{id:"185719",slug:"maria-dinescu"},fullPath:"/profiles/185719/maria-dinescu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()