\r\n\tHydrogen gas is the key energy source for hydrogen-based society. Ozone dissolved water is expected as the sterilization and cleaning agent that can comply with the new law enacted by the US Food and Drug Administration (FDA). The law “FDA Food Safety Modernization Act” requires sterilization and washing of foods to prevent food poisoning and has a strict provision that vegetables, meat, and fish must be washed with non-chlorine cleaning agents to make E. coli adhering to food down to “zero”. If ozone dissolved water could be successively applied in this field, electrochemistry would make a significant contribution to society.
\r\n\r\n\t
\r\n\tOxygen-enriched water is said to promote the growth of farmed fish. Hydrogen dissolved water is said to be able to efficiently remove minute dust on the silicon wafer when used in combination with ultrasonic irradiation.
\r\n\tAt present researches on direct water electrolysis have shown significant progress. For example, boron-doped diamonds and complex metal oxides are widely used as an electrode, and the interposing polymer electrolyte membrane (PEM) between electrodes has become one of the major processes of water electrolysis.
\r\n\t
\r\n\tThe purpose of this book is to show the latest water electrolysis technology and the future of society applying it.
Aircraft parabolic flights are used in many countries [1], firstly by space agencies to conduct research and to prepare for space flight missions, and secondly by private operators to provide the general public with the opportunity to experience reduced gravity1 conditions.
Aircraft parabolic flights are a useful tool for performing short duration scientific and technological experiments in reduced gravity, to train astronauts in this new environment and in associated procedures and protocols, and to test experiments and instrumentation prior to future space missions. The principal value of parabolic flights is in the verification tests that can be conducted prior to space experiments in order to improve their quality and success rate, and after a space mission to confirm or invalidate (sometimes conflicting) results obtained from space experiments.
The main advantages of parabolic flights for reduced gravity investigations are:
the short turn-around time (typically of a few months between the experiment proposal and its performance);
the low cost involved (space agencies provide the flight opportunity free of charge to selected investigators);
the flexibility of experimental approach (laboratory type instrumentation is most commonly used);
the possibility of direct intervention by investigators on board the aircraft during and between parabolas, and the possibility of modifying the experiment set-up between flights.
Furthermore, aircraft parabolic flights are the only suborbital carrier to provide the opportunity to carry out medical and physiological experiments on human subjects under conditions of microgravity or reduced gravity such as that found on other planetary bodies (Martian 0.38 g, Lunar 0.16 g), to prepare for extra-terrestrial planetary exploration.
This chapter presents first the experimental objectives of parabolic flights with the capability of conducting investigations at Moon and Mars gravity levels in addition to microgravity; second, the parabolic flight manoeuvres, the accelerations and the technical capabilities of a parabolic flight aircraft; third, the type of flights organised, including the safety and medical aspects; and fourth, a summary of the aircraft used throughout the world.
An aircraft in parabolic flight provides investigators with a laboratory for scientific experimentation where the gravity levels are changed repetitively, giving successive periods of either 0.38 g (Mars gravity) for up to 32 s, or 0.16 g (Moon gravity) for up to 25 s or 0 g for 20 s, preceded and followed by periods of 20 s at approximately 1.8 g (Figure 1), where g is the acceleration created by gravity at Earth’s surface, on average 9.81 m/s2.
NASA’s KC-135 during the pull-up phase (Credit: NASA).
Parabolic flight objectives pursued by investigators vary. From a scientific point of view, the following objectives can be attained:
the performance of short experiments for which the reduced gravity is low enough for: qualitative experiments of the ‘look and see’ type, using laboratory type equipment to observe and record phenomena; and quantitative experiments to measure phenomena in reduced gravity, yielding direct quantitative exploitable results;
the ability for experimenters to perform their own experiments in reduced gravity with the possibility of direct interventions on the experiment in progress during the low g periods and direct interaction by changing experiment parameters between the reduced gravity periods (Figure 2);
the study of transient phenomena occurring during the transition between high to low and low to high g phases.
Experiment on vibrational phenomena during an ESA campaign (Credit: ESA).
Furthermore, for scientific experiments to be performed during space missions, the following goals can be pursued during parabolic flights:
assessment of preliminary results for newly proposed experiments, which can improve the final design of the experiment hardware;
test of experiment critical phases on which the experiment success depends;
for human physiology experiments foreseen to be conducted on astronauts in space, to obtain prior to, or after a space mission, a broader microgravity data baseline by conducting parts of the space experiments on a group of subjects other than astronauts;
to repeat shortly after a space mission parts of experiments that were not fully satisfactory in space or that yielded conflicting results, giving indications on possible interpretations of experiment results.
Results of all experiments conducted during parabolic flights can be found in ESA’s Erasmus Experiment Archive database [2]. Some experiment results of European parabolic flight campaigns are presented in [3, 4, 5, 6, 7].
From a technical point of view, in preparing experiment hardware for manned spaceflight or robotic missions, the following objectives can also be achieved:
test of equipment hardware in reduced gravity;
assessment of the safety aspects of instrument operation in reduced gravity;
training of astronauts on experimental procedures and instrument operation (Figures 3 and 4).
ESA Astronaut Alexander Gerst training on a treadmill on board the ESA/CNES/DLR Airbus A310 during an ESA campaign before his ISS mission (Credit: ESA).
Astronaut training for an EVA exit out of a mock-up airlock on board the NASA KC-135 aircraft (Credit: NASA).
Laboratory aircraft flights allow also to generate partial-g levels between 0 and 1 g. Typically Moon and Mars gravity levels are created during flight manoeuvres that are not exactly parabolic flights but that are still called (albeit erroneously) Moon and Mars parabolas. This approach allowed to answer the growing request of the scientific community to perform complementary research at partial-g levels, and to conduct studies and tests to prepare for future human and robotic exploration missions. The interest in partial-g parabolas is multifold. It allows to complement microgravity experiment results in providing additional data points at intermediate g levels in a variety of scientific fields in physical sciences (e.g., fluid and soft matter physics), life sciences (cell, plant and animal biology, human physiology) and technology. In particular, in Life Sciences, investigations can be conducted on living systems to understand how humans, small animals, cells and plants are affected by a low gravity environment similar to those on the Moon and Mars. Many issues of relevance for the preparation of future human space exploration that includes stays on the surface of planetary bodies can also be investigated (Figure 5). Some experiment results of European partial-g campaigns can be found in [8, 9].
NASA Astronauts Alan Shepard and Edgar Mitchell training on the KC-135 before their Apollo-14 mission (Credit: NASA).
Other gravity levels are also achievable during flights and can be used by investigators: e.g., during pull-up and pull-out manoeuvres, periods of 20 s of 1.8–2 g are achieved, and spiral turn manoeuvres provide for longer periods or other levels of high g. These hypergravity periods can be used for certain type of gravity dependent investigations, e.g., in combustion or physiology areas.
Finally, since a few years, parabolic flights are also used in the USA, Europe and Russia to allow the general public to discover the 0 g environment and to enjoy for a few moments the sensations that astronauts experience during their spaceflights.
For microgravity flights, let us recall first that a body is in free fall if it is subjected to the only force of gravity in an inertial reference frame and this body and all its content are in a state of weightlessness in the non-inertial reference frame attached to the body. Weightlessness thus appears in a non-inertial reference frame, which is in a state of free fall with respect to an inertial reference frame. Weightlessness is a dynamical state that requires a free-fall movement [10]. Note as well that any kind of movement of a vehicle that is subjected to the action of the sole force of gravity is a free-fall movement, and weightlessness is then generated in the vehicle.
Consider now an aircraft flying in Earth’s atmosphere, assumed to be quiet. There are usually four forces acting on the aircraft in a straight and level horizontal flight (Figure 6):
its own weight, oriented vertically downwards,
the aerodynamic lift, induced by the shape of its wings, oriented vertically upward,
the aerodynamic drag, created by air resistance, oriented horizontally backward,
the aircraft engine thrust, oriented horizontally forward.
The four forces acting on an aircraft in a straight and level horizontal flight.
At steady state (dynamic equilibrium), the lift equilibrates the weight and the thrust should be larger than the drag for the plane to move forward.
To come to a free-fall configuration, the pilot should nullify all forces acting on the aircraft other than gravitational forces, i.e., the weight. Therefore, the resulting force along the aircraft velocity vector should be null, i.e., the thrust should exactly balance the drag for the duration of the free-fall manoeuvre. On the other hand, the lift must also be brought to zero. The lift is due to the shape of the wings and to the angle of attack, which is the inclination of the chord line of the wings with respect to the direction of the air flow. To nullify the angle of attack, the pilot must lower the nose of the aircraft to bring the wing chord line parallel to the air flow direction. However, the natural shape of the wing is such that there is always a small remaining lift, even for a zero angle of attack. Therefore, the pilot has to lower the nose a little bit more to bring it to a slightly negative angle of attack, called the zero-lift angle of attack, to completely nullify the aircraft lift. The aircraft is now in a real free-fall state, and as one can imagine, it is not an easy configuration to fly an aircraft.
The microgravity environment is then created in an aircraft flying the following manoeuvres (Figure 7):
from steady horizontal flight, the aircraft climbs at approx. 45–50° (pull-up) for about 20 s with accelerations between 1.8 and 2 g;
the thrust of each aircraft engine is then significantly reduced for about 20–25 s, compensating the effect of air drag (parabolic free fall);
the aircraft dives at 45–50° (pull-out), accelerating at about 1.8–2 g for approximately 20 s, to come back to a steady horizontal flight.
The parabolic flight manoeuvre of the Airbus A310 (Credit: ESA).
One shows easily that the shape of the free-fall trajectory followed by the aircraft is a parabola. Assuming a constant and parallel gravity field and no resistance of the atmosphere, the aircraft at the moment of injection has a certain speed v0 inclined on the horizontal by an angle α. Gravity being the only acting force on the aircraft, the horizontal component vx of the velocity is constant throughout the free-fall manoeuvre while the vertical component vz of the velocity varies with time t
Integrating the two velocity components and replacing the time t between them gives the trajectory
which is a parabola equation, yielding the horizontal distance travelled during the free-fall manoeuvre
The duration T of the free-fall phase is found from (1) and (3), yielding
which depends only on the velocity vector at injection, i.e., its norm v0 and its direction given by the angle α. With typical parameter values for aircraft flying parabolas (velocity at injection v0 = 500 km/h and α = 45°), one obtains T = 20 s.
In reality, this parabolic arc is an approximation of an elliptic arc which is a part of an elliptic orbit that would intersect the Earth’s surface. The relative error committed by this approximation is in the order of 10−4, which justifies that these flights are still called parabolic flights (see [11]).
For partial-g parabolas, the engine thrust is reduced sufficiently to a point where the remaining vertical acceleration in the cabin is approximately 0.16 g for approximately 25 s or 0.38 g for approximately 32 s with angles at injection of approximately 42 and 38°, respectively, for Moon and Mars parabolas.
These manoeuvres are flown separated by intervals of several minutes. The duration of intervals between parabolas can be arranged prior to the flight so as to give enough time to investigators to change an experimental set-up. A typical flight duration is about two to two and half hours, allowing for 20–30 parabolas to be flown per flight, in sets of five, with 2 min intervals between parabolas and with 4–6 min between sets of parabolas. Durations between parabolas and groups of parabolas can be adjusted to the needs of investigators. Parabolas are flown in dedicated air zones controlled by well-trained air traffic controllers. The piloting is usually done manually along the X-axis (aft to front direction) by adjusting the engines thrust, the Y-axis (right to left), and along the Z-axis (floor to ceiling) using visual references utilising coarse (+2 g to –2 g) and fine (+0.1 g to −0.1 g) accelerometers.
Typical acceleration levels are shown in Figures 8–10 for, respectively, microgravity, lunar and Martian parabolas for the aircraft X, Y and Z axes, measured during a parabola with micro-accelerometers strapped down on the cabin floor structure. During the reduced gravity period of, respectively, microgravity, lunar and Martian parabolas, a transitory phase of a few seconds appears first, with variations of about 10−1 g around respectively 0, 0.16 and 0.38 g in the Z direction, followed by a period of respectively approximately 20, 25 and 32 s with acceleration levels of about, respectively, a few 10−2, 0.16 and 0.38 g. Accelerations along the aircraft longitudinal X-axis (aft to front) and transversal Y-axis (right to left) are less than 10−2 g for all parabola types [12].
Acceleration levels for a 0 g parabola.
Acceleration levels for a lunar g parabola for Z axis (brown), X axis (green), Y axis (blue) (Units: vertical axis: 0.05 g; horizontal axis: 5 s).
Acceleration levels for a Martian g parabola for Z axis (brown), X axis (green), Y axis (blue) (Units: vertical axis: 0.1 g; horizontal axis: 5 s).
For microgravity parabolas, the residual accelerations sensed by experimental set-ups attached to the aircraft floor structure are typically in the order of 10−2 g, while for an experiment left free floating in the cabin, the levels can be improved to typically 10−3 g.
As aircraft parabolic flights are considered as test flights, particular precautions are taken to ensure that all operations during flights are made safely and that flying participants are adequately prepared for the repeated high and low gravity environments. All flight participants must pass a medical examination and certifications are verified prior to the first flight. Flight participants attend a mandatory flight briefing before the first parabolic flight.
Scientists are regularly invited by space agencies to submit experiment proposals to be conducted during parabolic flights, either in microgravity of at lunar or Mars gravity levels. These proposals are evaluated by panels of experts who review them for scientific content and for technical feasibility. Upon recommendation, scientists are formally selected by space agencies and invited to prepare their experiments to be flown on dedicated campaigns.
Prior to a campaign, support is provided for experiment equipment design and related safety aspects. All experiments to be performed and all equipment to be embarked on board the aircraft are reviewed by technical experts several months before the campaign from structural, mechanical, electrical, safety and operational points of view. Technical visits are made to experimenters’ institutions to review equipment. A safety review is held approximately 1 month before the campaign. During this review, the integration of all equipment is discussed and the overall safety aspect of the campaign is assessed. Finally, a safety visit is made in the aircraft prior to the first flight to verify that all embarked equipment complies with the safety standards.
During flights, specialised personnel supervise and support the in-flight experiment operations (Figure 11). In addition, a Flight Surgeon participates in all parabolic flights to supervise the medical aspect of in-flight operations and to assist participants in case of sickness. Due to the association of flight phases of low and high gravity, motion sickness is quite common among participants of parabolic flights, sometimes hampering them in the conduct of their tasks. Prior to the flights, anti-motion sickness medication (usually based on Scopolamine) is made available on the request of flying participants.
Seating subjects performing the ‘Sensorimotor coordination under partial gravity: movement control and adaptation’ experiment (see [13, 14]) (Photo: ESA).
The campaign itself takes place over 2 weeks. The first week is devoted to the experiment preparation and loading in the aircraft, culminating with a safety visit at the end of the week to assess that all safety recommendations have been implemented. During the second week, a flight briefing is organised on the Monday afternoon to present the flight manoeuvres, the emergency procedures and medical recommendations, and all experiments are shortly presented by the investigators. The flights take place on the mornings of the following days. A post-flight debriefing is organised after each flight, during which needs and requests of investigators are reviewed and discussed. Due to bad weather or technical problems, a flight can be postponed from the morning to the afternoon or to the next day. Downloading of all experiments takes place on the afternoon after the last flight.
A post campaign workshop is usually organised a few months after the campaign where investigators are invited to present their results. Investigators are further invited to publish the results of their experiments and to communicate their findings online, for example using the Erasmus Experiment Archive database of the European Space Agency, accessible on Internet [2].
Since several years, the general public can participate to parabolic flights. Various private companies all over the world commercialise this type of flights.
Flight participants receive a pre-flight briefing similar to the pre-flight briefing of scientific campaigns. A discovery flight usually consists of 12–15 parabolas, including a Martian parabola and one or two Moon parabolas, followed by 10–12 0 g parabolas. A post-flight celebration debriefing is usually held, familiarly called ‘regravitation party’, where experiences are exchanged and 0 g diplomas are awarded to flying participants.
In the USA, the Zero Gravity Corporation operates a modified Boeing 727-200, named ‘G-FORCE ONE’ for discovery flights [15]. The Russian Ilyushin IL-76 MDK, located at the Yu. Gagarin Cosmonaut Training Centre at the Star City, near Moscow, is marketed since the 1990s by several private operators for discovery flights open to the public. The European Airbus A310 is also used for flights open to the general public.
Many airplanes are used all over the world to conduct parabolic flights. A review is given in [1, 16]. These can usually be classified in three categories: (1) the large-body aircraft, (2) the medium size aircraft and (3) the small airplanes, jets and gliders.
Large airplanes used for parabolic flights are defined as those aircraft used for flying several (typically 10 or more) experiments and embarking several tens of passengers, either for research purposes or for discovery reduced gravity flights for paying passengers. The large-body aircraft presently in use in the world are:
a modified Boeing 727-200 of Zero Gravity Corporation in the USA,
an Ilyushin IL-76 MDK (MDK stands for ‘latest modifications’ in Russian) in Russia, and
an Airbus A310 (Figure 12) used in Europe by space agencies in Europe, the European Space Agency (ESA), the Centre National d’Etudes Spatiales (CNES, French Space Agency) and the Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR, German Aerospace Center).
The Airbus A310 ZERO-G during the pull-up phase (Photo: Eric Magnan/Airborne Films).
Medium size airplanes are defined as those aircraft used for flying single experiments with several operators and/or subjects. Medium size aircraft in Europe includes:
the Cessna Citation II (Figure 13) based in The Netherlands and operated by the Technology University of Delft and the Dutch National Aerospace Laboratory (NLR) [17];
a Falcon 20 in Canada operated by the National Research Council’s Institute for Aerospace Research (NRC/IAR) [18]; and
two jets, a MU-300 and a Gulfstream-II jets in Japan, operated by Diamond Air Service [19].
The Dutch NLR Cessna Citation II in flight (Credit: NLR).
Small airplanes, jets and gliders used for parabolic flights are defined as those aircraft used for flying single passengers and small experiments. These airplanes include presently:
a jet fighter F-5E Tiger II aircraft of the Swiss Air Force used in Switzerland for automated science experiments [20];
a Cessna 206, which was tested in the frame of the MiGrOp project to be used for science experiments in Germany [21];
a Mudry Cap10B aircraft (Figure 14), a two-seat training aerobatic aircraft, used by the Universitat Politecnica de Catalunya with the Aero Club Barcelona Sabadell, in Spain for small science and student experiments [22];
several Schleicher ASK-21 two-seat gliders have been used for students experiments in Belgium [23, 24] and Israel [25, 26, 27], with added advantages of a low-cost approach and ease of deployment at close-by geographical locations.
The Mudry Cap10B aircraft operated by the Aero Club Barcelona Sabadell (Credit: Universitat Politecnica de Catalunya).
However, as any small or large airplane could basically be used to undergo a parabolic trajectory, it is important to choose carefully which aircraft would be best suited for scientific investigations, in terms of quality and duration of reduced gravity level but also ease of access and technical support from the integration team.
Aircraft parabolic flight manoeuvres are a very useful tool to investigate gravity related phenomena, whether in complete weightlessness or at partial-g levels. The quality and duration of microgravity obtained, the flexibility and variety of possibilities for experiments and tests and the easiness in flight preparation make aircraft parabolic flights a unique and versatile tool for scientists and engineers to perform experiments and tests at different gravity levels, from microgravity to hypergravity, including at Moon and Mars g levels. Parabolic flight campaigns for research in reduced gravity throughout the world provided a huge amount of scientific and technical data and knowledge, yielding hundreds of scientific publications, thesis or industrial applications, showing the uniqueness of this versatile tool to conduct gravity related investigations, complementing those on other microgravity carriers and preparing for space missions and for future extra-terrestrial planetary exploration missions.
In addition, opening the access of parabolic flights, traditionally reserved to scientists and astronauts, to the general public increases the perception of the public for space research and exploration, contributing to an enhanced interest for future endeavour of mankind in space.
Today, information has become the main component of what we produce, do, buy, and consume. Having an economic value in almost all products and services that meet the needs of today’s societies, it has been now obligatory for individuals and organizations to obtain information technologies and to actively use them in both work and social life domains. Hence, in the current information age, where information is seen as power, this situation has made it imperative for organizations to become increasingly information-based and to benefit from information technologies in many processes and activities.
The intensive use of information technologies in many functions and processes has also required some changes in organizations [1]. This is due to the fact that information technologies, unlike traditional technologies, do not only change the technical fields but also affect the communication channels, decision-making functions and mechanisms, control, etc. [2]. Consequently, one of the most striking developments is on organizational structures that are becoming increasingly flattened and horizontal. Relatedly, information technologies have begun to take over the role of middle management, which supports decision-making processes of senior management and has reduced the importance of this level [3, 4, 5]. Similarly, while information technologies enable managers to obtain faster, more accurate, and more information [6, 7, 8], it also provides lower-level managers with more information about the general situation of the organization, the nature of current problems, and important organizational matters [9, 10, 11, 12].
Moreover, information technologies also have an important potential in determining whether organizations have a mechanical or an organic structure [13]. Within the mechanical organizational structures, people do not have much autonomy, and behaviors expected from employees are being careful and obedience to upper authority and respect for traditions. In such organizations, predictability, consistency, and stability are desirable phenomena. In contrast, people in organic structures have more freedom in shaping and controlling their activities, and being enthusiastic, creative, and taking risks have important places among the desired behaviors [14].
Accordingly, information technologies begin to influence the cultural values of the organization over time, through these transformations they create on organizational structures, processes, and operations. In other words, the fact that organizational structures are mechanical or organic causes the formation of diverse cultural values in organizations [15]. Therefore, the desired cultural values in mechanical organizations are quite different from those in organic structures [1, 16, 17]. In this context, this chapter deals with the influences of information technologies on cultural characteristics of organizations along with the reflections of the use of these technologies on organizational structures and their functioning.
When we look at studies on the relations between organizational culture and information technologies, we generally see the studies on the effects of culture on technology adaptation or use [18, 19, 20, 21], as well as on the effects of certain specific information technologies and applications (e.g., e-mail use, group support practices, etc.) on some aspects of any organizational culture [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, the number of studies that consider the use of information technologies as a “whole” and that address “why” and “how” its effects on organizational culture occurred is still limited. And so, this chapter aims to examine and discuss the overall effects of the usage and intensity of information technologies established in organizations on the cultural life within.
In this context, the chapter plan is as follows: Firstly, the basic concepts related to information and information technologies are included. Emphasis is placed on the meaning differences between knowledge and information, and their connections to information technologies are tried to be explained briefly. Secondly, the effects of information technologies on organizational structure are given particular attention. The reason for this is that as a system of values, beliefs, assumptions, and practices [32], organizational culture encompasses many features closely related to structures of organizations. Thirdly, possible links between organizational structure and organizational culture are included. Fourthly, important theoretical approaches and studies on the relationships between information technologies and organizational culture are provided. Finally, by deepening a bit more and by emphasizing key points, some important arguments are discussed.
In the literature, the concepts of information and knowledge are sometimes expressed by a single term, “information.” However, although the concepts of knowledge and information are intertwined, they are two different concepts that have different meanings and describe different phenomena. The reason for this is that knowledge is also included in the concept of information as it is transformed into a commodity when it begins to be processed, stored, and shared by information technologies.
Becoming the basic elements of today’s economic, social, and cultural systems, information is obtained in a certain hierarchy. The images are at the beginning of the process, and the process is completed with a hierarchical staging in the form of data, information, and knowledge, respectively [33]. Image is located in the first step of the process. Humans copy the picture of any object and event they previously perceived by sensory organs. When faced with a similar phenomenon in the later stages of life, these pictures in the mind are redesigned. We call these pictures of realities occurring in the human mind as images [33]. The next stage, the data, contains symbols that represent events and their properties. For this reason, data are expressed as figures and/or facts without content and interpretation [34]. Information that constitutes the next stage of the process and is mixed with knowledge and used interchangeably is expressed as a reporting of one system’s own status to another system [33]. In information, associated data are combined for a specific purpose. Therefore, we can explain information as meaningful data [35]. Knowledge, on the other hand, is defined as personalized information that allows people to fully and accurately grasp what is happening around them and manifests itself in the form of thoughts, insights, intuition, ideas, lessons learned, practices, and experiences [36]. According to Kautz and Thaysen [37] who stated that knowledge is found only in the people’s minds, knowledge is, therefore, a subjective formation. In other words, knowledge is the form of information enriched with interpretation, analysis, and context [38]. However, here, it should be emphasized again by highlighting a very important issue that knowledge is also accepted as information when this knowledge begins to be processed, stored, shared, and used over information technologies. Therefore, after this, when talking about information, one should consider not only the information created by the data brought together in a meaningful way but also the knowledge shared and used over information technologies.
On the other hand, information technologies, used as the most important tool of generating value today, are defined as the technologies that enable processes such as recording and storing data, producing information through certain operational processes, and accessing, storing, and transmitting this produced information effectively and efficiently [39, 40, 41, 42, 43, 44, 45, 46]. The term information technologies is used to cover computer and electronic communication technologies, as they are now inseparably intertwined in literature and everyday use and are generally used in this way [47]. In this context, data processing systems, management information systems (MIS), office automation systems, executive support systems, expert systems, intranet and extranet, electronic mail (e-mail), group applications (groupware), database management systems, decision support systems, artificial intelligence, and telecommunication systems can be given as examples of information technologies [33, 48, 49].
Towards the end of the twentieth century, the rapid changes with the impact of developments in information technologies led to the emergence of customer satisfaction-based, learning, knowledge-based, and constantly changing organizations [50]. The fact that organizations have become considerably information-based and benefit from information technologies intensively in their activities and processes has made also the changes in their organizational structures mandatory [1]. Accordingly, the effects of information technologies on organizational structure will be summarized under the subtitles of differentiation, centralization, and standardization/formalization, which are the three main components of organizational structure [15].
Differentiation within an organization occurs in three ways: Specialization/division of labor, horizontal and vertical differentiation, and hierarchy and size [15]. Specialization refers to the amount of different expertise or types of work [51, 52]. Specialization generally increases the number of subunits and makes it harder to understand the larger structure that people contribute to with their skills and expertise [53]. Information technologies have the potential to reduce this tendency by providing more access to information and experts at this point. In this way, access to information resources provides synergy [54].
Vertical and horizontal differentiation refers to the amount of hierarchical levels in an organization [55]. Information technologies, with the support of problem solving and decision-making, lead to the emergence of more flattened organizational structures as they require fewer levels within the hierarchy [56]. Since information technologies give employees in lower positions more autonomy to harmonize their activities, this can allow them to find and try better methods while performing their work. In this context, we can increasingly see that organizational structures have become horizontal and strengthened and that virtual organizations have begun to emerge as the most cost-effective structure [17].
In terms of hierarchy and size, Heinze and Stuart [4] argue that the mid-level management staff is unnecessary, increases bureaucracy, reduces efficiency, and has no function in organizations any more. Since most of the tasks performed by mid-level executives can be fulfilled by computers, both less costly and faster, information technology has begun to take over the role of mid-level management, which supports the decision-making process of senior management [5]. Sharing the same opinion, Fulk and DeSanctis [57] also stated that the largely witnessed situation in modern organizational designs is the reduction of intermediate-level managers and administrative support.
Centralization points to the extent to which decision-making power within an organization is scattered or centered [58]. Due to increasing local and global competition, many companies have started to leave their strategic decision-making task further down the organization to benefit from the expert people with more precise and timely local knowledge [10]. Information technologies affect these efforts directly in two ways. Firstly, information technologies increase local knowledge by contributing to obtaining closer information about market trends, opportunities, and customers. Secondly, information technologies can create synergies for organizations because, thanks to information technologies, communication and coordination between distributed decision makers, central planners, and senior managers can be realized more effectively and efficiently [59].
However, whether information technologies will lead to centralization or decentralization is a very controversial question. Regarding centralization, it enables managers to acquire faster, more accurate, and more information, reduces uncertainty, and allows them to make decisions that they cannot make before [6, 7, 8]. Conversely, by the use of other forms of information technologies (e.g., electronic bulletin boards), decentralization provides more information to lower- and mid-level managers about the general situation of the organization and the nature of current matters and problems [9, 10, 11, 12]. Raymond et al. [60] argued that because information technologies facilitate the use and transmission of information by all levels and units in the organization, it enables top management, which is the decision authority, to be disabled in certain areas and the decentralization of control. Thach and Woodman [61] maintained that this is due to the fact that as a result of sharing information at lower levels with the help of information technologies, this power of senior management has decreased to a certain extent, and the knowledge and participation of the staff in organizational matters have increased.
The literature shows that information technologies allow both centralization and decentralization. Researchers are in the agreement that information technologies make it possible for organizational managers to leave their decision-making power to a large part of the hierarchical levels without compromising the quality and timeliness of the decision [62, 63]. Keen [64] combined the concepts of centralization and decentralization and used the term “federated organization” in which organizations do not have to choose either because information technologies simultaneously allow centralization-decentralization [64, 65].
Formalization is the process of detailing how activities are coordinated for organizational purposes in order for employees and organizational units to respond routinely to recurring situations [51, 66]. Formalization involves rules, instructions, shared values, and norms [67]. In fact, formalization is based on the objective of more efficiency and less uncertainty [13].
Information technologies provide the ability to reduce the negative effects of formalization by facilitating the documenting and retrieving of information on organizational occurrences and endeavors that make behaviors and processes more consistent through formalization [63]. The more information technologies assist in reducing search times and preventing downtime, the more the administrative cost of formalization decreases and the productivity increases, which ultimately benefits the path to innovation [68].
Different organizational structures lead to the development of different cultural values [15]. The fact that the structure which an organization has established to control its activities and is defined as a formal system consisting of duties and authority relations is mechanical or organic causes the emergence of completely different cultural values, rules, and norms [69]. While mechanical structures are vertical, highly centralized, and almost everything in them are standardized, organic structures are horizontal, decentralized, and based on mutual adaptation [14]. People feel relatively less autonomous in vertical and centralized organizations, and being careful, obeying the upper authority, and respecting traditions are among the desired behaviors. Therefore, in a mechanical organizational structure, there are cultural values where predictability and stability are important [69]. In contrast, in horizontal and decentralized organizations, people can freely choose their own activities and control them. Creativity, courage, and risk-taking are given importance as desired behaviors. Therefore, organic structures contribute to the formation of cultures that value innovation and flexibility [15].
Organizational structure is also important for the development of cultural values that support integration and coordination. In a structure with stable task and role relations, sharing of rules and norms is more since there will be no communication problems and the information flow will be fast [70]. In organizations where the sharing of cultural values, norms, and rules is at a high level, the level of performance also increases [15]. Particularly in team or matrix structures where face-to-face communication is intense, the sharing of these cultural values and common reactions to the problems develop more rapidly [9].
Whether an organization is centralized or not causes different cultural values to emerge. In decentralized structures, authority is divided into subordinate levels, and an environment is created for the formation of cultural values in which creativity and innovation are rewarded [13]. Employees are allowed to use the organization’s resources and work in projects that they want, by spending some of their time in these projects, thus contributing to the production of innovative and creative products and services [15]. The structures of such organizations constitute the cultural values that give their employees the message “as long as it is in the interest of the organization, it is okay to do things in an innovative and the way you want.”
Conversely, in some organizations, it may be more important for employees not to decide on their own and all activities to be followed and controlled by their superiors. In such cases, a centralized structure is preferred to create cultural values that will ensure accountability and obedience [71]. Through norms and rules, all employees are expected to behave honestly and consistently and inform their superiors about wrongs or mistakes, because this is the only acceptable form of behavior within these structures [72].
Since working on the factors that determine the consequences of the adoption and use of information technologies, researchers have focused on people’s beliefs, values, assumptions, and codes of conduct. As a result, they have given names to this research field such as “socio-technical systems,” “social system,” “social structure,” and most recently “culture” [73]. For example, Markus and Robey [23] using “social elements” and Barley [26] using “social system” or “social structure” tried to explain this phenomenon. When examined more closely, it is seen that the details that these authors emphasize while depicting the case are the assumptions, beliefs, and values that exist in common among the group members, and this corresponds to the definition of organizational culture.
Research examining the relationships between information technologies and values, beliefs, and norms belonging to a particular group has gone through certain stages and used rich and complex research models to explain the relationships in each of these stages [74]. In the first studies on information technology applications, it has been suggested that information technologies cause changes in various organizational phenomena including structural features and thus have certain effects on organizations [74]. For instance, in some studies on adoption of groupware software, several researchers have used this deterministic approach to describe how groupware use affects communication and collaboration among employees and their productivity [27, 28]. These studies assume that certain results will certainly emerge after the adoption of information technologies, without considering the motives or activities that shape the use of information technologies by managers and employees. Like much more deterministic studies, these authors often assumed that information technologies would have predetermined influences on the adoption of information technologies, regardless of the environment in which information technologies were applied, how they were applied, and the users’ specific behaviors and particular purposes.
The second group of views concerning the relationships between organizational culture and information technologies includes the fact that information technologies are seen as a tool that can be used for any change that managers desire to make in organizational practices [22]. In studies in this approach, researchers believe that there is a wide range of possibilities to identify changes in organizational culture, structure, processes, and performance [22, 75]. Researchers from this tradition presume that with the right choice of information technologies and appropriate system design, managers can achieve whatever goals they desire.
These works were mostly adopted in the 1980s and reflect a perspective that managers think can manipulate organizational culture in the way they want. Often called “management and control,” “a functional or instrumental approach” to organizational culture, this methodology has caused serious debate in the literature [76]. This approach attributes great powers to the management level in this regard, which conflicts with anthropologists’ views that culture cannot be consciously controlled and goes much deeper to understand it [76]. Robey and Azevido [77] also do not accept the rational thought on the assumption that culture can be manipulated directly in this way.
Studies with this rational perspective in the information technology literature assume that managers can use information technologies as a leverage to make changes in the norms of behavior, strategy, structure, and performance among members within the organization. For example, in studies on group support systems (GSS), we find managers’ beliefs that they can use collaborative technologies to create a more cooperative organizational culture. This perspective was not accepted by Karsten [78] and some experimental research on GSS [30, 79]. Organizational necessity is no longer accepted, as it is viewed by information technology researchers as an overly simple approach [23, 80].
Researchers who take another approach suggest that information technologies and organizational culture can interact with each other to produce various results [22, 23]. These results can be in the form of adoption and effective use of information technologies (if there is a harmony between organizational culture and information technologies) or user reluctance, refusal, or sabotage (if no fit). Researchers who have been working on information systems since the 1980s have focused on understanding information technology features and functionality that cause effective or problematic information technology applications and the interaction between users’ values, assumptions, and other elements of organizational culture. In this regard, Romm et al. [81] argued that many forms of information technologies comprise cultural assumptions embedded within themselves and these assumptions may conflict with existing values of a particular organization. The authors argued that these embedded assumptions present information technologies as a “cultural boundary” and that a cultural analysis should be made to predict compliance or incompatibility. The authors in this approach warn managers to think of organizational culture as a binding limitation in information technology applications. In a warning by Pliskin et al. [76], managers are advised not to try to change the culture of the organization. Regarding this issue, Orlikowski [30] cites Lotus Notes (a group software) application at Alpha Corporation, a consultancy company. In this example, this system, which was established by the CEO of the company only with the benefits to be obtained, did not create the expected effects, became unsuccessful, and disappointed due to reasons such as no cultural analysis and inadequate training. Employees responded to the use of Notes with resistance and refrained from using it. The reason for this was that the employees in this organization, which had a competitive culture where information was seen as a power, avoided sharing information with others. As a result, this incompatibility between the collaborative culture that Notes had in itself and the competitive culture of the organization in question had failed this application of information technologies.
In a different approach, it is stated that information technologies and culture are not fixed and they are more flexible in terms of change [23, 75]. Managers in this approach may set specific goals for the use of information technologies, but actual results of the use of information technologies are not deterministic, and results cannot be predicted or controlled even under the best conditions [23]. The effects of information technologies are not deterministic because technology has interpretable flexibility considering that it can have different meanings for different employees. Similar technology can be interpreted in a different way by distinct people, based on certain assumptions, beliefs, and values. Robey and coauthors [24, 25], for instance, showed that it would be an empty attempt for organizational managers to try to intentionally manipulate the effects of these technologies, since there are many ways that diverse employees can configure a particular technology in different social environments.
Gopal and Prasad [31] also achieved similar results in their work on group support system (GSS), claiming that for researchers seeking fixed laws or regulations on how information technologies affect user behaviors, this would be an impossible goal to pursue. Conversely, the results of using information technologies depend on the symbolic meanings that information technologies have for a particular user. This work of Gopal and Prasad [31] expresses similar results with the work of Barley [26] and Robey and Sahay [25]. The authors stated that the symbolic meanings of certain technologies for users affect their perceptions of information technologies and their specific behaviors.
In the light of the above-mentioned approaches, arguments, and important studies in the literature, it will be useful to discuss some important points by deepening a little more and by emphasizing the key features related to the concepts of information, information technologies, and organizational culture.
First, organizational culture is a complex phenomenon that develops and changes in a historical process [32, 82, 83]. Thus, although it might seem like a plain and simple concept, organizational culture includes many subdimensions and processes. When considered as a complex pattern of these interactions of many factors with each other, it is also a difficult process to identify the direct and indirect effects of information technologies on organizational culture within this cluster of relationships and interactions. Moreover, culture is not a phenomenon that changes and develops in a short time and is therefore open to manipulations of managers. On the contrary, from this point of view, it is not possible to easily achieve control over cultural changes, and it is necessary to go much deeper [76]. So, it is not rational to expect that the rapid developments and changes in information technologies will cause changes in cultural characteristics at the same speed. In this sense, it could be inaccurate to seek direct relationships between two phenomena in question, whose rates of change are quite different.
Second, for cultural changes, there must also be changes in the basic assumptions, beliefs, and values on which the culture is built [84]. It would be misleading to expect little or intensive use of information technologies to cause changes in these rooted assumptions. For the desired changes in these basic assumptions, beliefs, and values, it is necessary to design the structure accordingly, to recruit employees who are qualified for the targeted culture, and to set ethical values and property rights to employees in accordance with this culture [15]. In this sense, information technologies may only catalyze the contribution of organizational structure to organizational culture.
Third, there are many and different types of hardware and software that fall under the scope of information technologies. It is not logical to accept all of them as homogeneous technologies in all aspects (with the same functions and features, similar usage areas, standard conditions they are applied, similar intentions, and behaviors of all users), and it can be, therefore, misleading to carry out research under a single “IT” concept from this perspective. The reason for this is that, as stated in the sections above, cultural features of each information technology application or product embedded in it might be different. The interactions between the cultural characteristics of the environment in which information technologies are applied and the unique cultural contents of information technologies may cause different results on the culture of the organization.
Fourth, contrary to what is believed, some of cultural features that we anticipate to support information technology applications and products may be interpreted otherwise by diverse people contingent on different assumptions, beliefs, and values. In fact, Robey et al. [24, 25] showed that managers cannot control the effects of these technologies, since different users can configure a particular technology in numerous ways in different social environments. Also, Gopal and Prasad [31] argued that this would be an impossible achievement for researchers looking for fixed laws or regulations on how information technologies affect user behaviors.
Fifth, information technologies were defined above as technologies that enable processing, storage, and sharing of information. The key concept in this definition is “knowledge-based” information and not the technology itself. Therefore, what makes information technologies essential and important is the information itself. According to the definition of knowledge, the most significant characteristic that differentiates it from information is its being a product of the human mind [37]. Because knowledge is the interpretation of information and expresses the value produced from it, qualifying information technologies as good-bad, useful-useless, and necessary-unnecessary can be a meaningless evaluation. So, the basic thing that creates value-added for organizations is not the technology used but the information itself, which is processed, stored, and shared on this technology. In this context, even if it is the latest, most advanced, and most expensive technology in the world, if the organization does not have a qualified human resource capable of producing knowledge that will create value-added, an appropriate organizational structure and culture that will activate this creative potential, and a management approach, all investments in these technologies will also be wasted.
This chapter has aimed to examine the impacts of information technologies on organizations’ cultures, and for this purpose, a special emphasis is given to the concept of “organizational structure” within the theoretical framework presented above. The most important reason for this is that relevant literature shows that organizational culture and organizational structure are in a very close relationship. Indeed, when the question items in the Denison organizational culture scale [85], which is the most frequently used in the literature, are examined, it is possible to see that most of these items point to many features of organizational structure concerning centralization, formalization, and differentiation dimensions. Therefore, it is a very rational approach to expect that information technologies can have direct and indirect effects on organizational cultures based on the influences of information technologies on structures of organizations. However, it should be underlined that different and controversial approaches and findings in the literature mentioned above on the relations between information technologies and organizational culture generate question marks in the minds as well.
In this regard, it is already quite difficult to draw a clear picture of the impacts of information technologies on cultural characteristics of organizations. The number of studies on the subject in the literature is still very limited. Accordingly, it is necessary to underline the great need for interdisciplinary studies in this field. But still, this study argues that the main factor that determines the actual impact and value of information technologies, which have become an integral part of human life in today’s world, is the information itself rather than technology, and it should be kept in mind that information technologies can only function as a means or tool in this knowledge-based social, economic, and cultural life. In other words, the determinant of the benefits, meaning, and importance of information technologies might be the conditions created by organizational factors such as cultural environment and organizational structure where knowledge is created, developed, and used and human resources have become the most important capital element and source of wealth.
The author declares no conflict of interest.
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"289905",title:"Dr.",name:null,middleName:null,surname:"Inamuddin",slug:"inamuddin",fullName:"Inamuddin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289905/images/system/289905.jpeg",biography:"Dr. Inamuddin is currently working as an assistant professor in the Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, and more specifically, renewable energy and the environment. He has published 127 research articles in international journals of repute and 18 book chapters in knowledge-based book editions published by renowned international publishers. He has published 39 edited books with Springer, United Kingdom, Elsevier, Nova Science Publishers, Inc. USA, CRC Press Taylor & Francis, Asia Pacific, Trans Tech Publications Ltd., Switzerland, and Materials Science Forum, USA. He is a member of various editorial boards serving as associate editor for journals such as Environmental Chemistry Letter, Applied Water Science, Euro-Mediterranean Journal for Environmental Integration, Springer-Nature, Scientific Reports-Nature, and the editor of Eurasian Journal of Analytical Chemistry.",institutionString:"King Abdulaziz University",institution:{name:"King Abdulaziz University",country:{name:"Saudi Arabia"}}},{id:"99002",title:"Dr.",name:null,middleName:null,surname:"Koontongkaew",slug:"koontongkaew",fullName:"Koontongkaew",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thammasat University",country:{name:"Thailand"}}},{id:"156647",title:"Dr.",name:"A K M Mamunur",middleName:null,surname:"Rashid",slug:"a-k-m-mamunur-rashid",fullName:"A K M Mamunur Rashid",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"MBBS, DCH, MD(Paed.), Grad. Cert. P. Rheum.(UWA, Australia), FRCP(Edin.)",institutionString:null,institution:{name:"Khulna Medical College",country:{name:"Bangladesh"}}},{id:"234696",title:"Prof.",name:"A K M Mominul",middleName:null,surname:"Islam",slug:"a-k-m-mominul-islam",fullName:"A K M Mominul Islam",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8dpQAC/Co2_Profile_Picture-1588761796759",biography:"Prof. Dr. A. K. M. Mominul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that, he joined as Lecturer of Agronomy at Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, and became Professor in the same department of the university. Dr. Islam did his second Master’s in Physical Land Resources from Ghent University, Belgium. He is currently serving as a postdoctoral researcher at the Department of Horticulture & Landscape Architecture at Purdue University, USA. Dr. Islam has obtained his Ph.D. degree in Plant Allelopathy from The United Graduate School of Agricultural Sciences, Ehime University, Japan. The dissertation title of Dr. Islam was “Allelopathy of five Lamiaceae medicinal plant species”. Dr. Islam is the author of 38 articles published in nationally and internationally reputed journals, 1 book chapter, and 3 books. He is a member of the editorial board and referee of several national and international journals. He is supervising the research of MS and Ph.D. students in areas of Agronomy. Prof. Islam is conducting research on crop management, bio-herbicides, and allelopathy.",institutionString:"Bangladesh Agricultural University",institution:{name:"Bangladesh Agricultural University",country:{name:"Bangladesh"}}},{id:"214531",title:"Mr.",name:"A T M Sakiur",middleName:null,surname:"Rahman",slug:"a-t-m-sakiur-rahman",fullName:"A T M Sakiur Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Rajshahi",country:{name:"Bangladesh"}}},{id:"66545",title:"Dr.",name:"A. F.",middleName:null,surname:"Omar",slug:"a.-f.-omar",fullName:"A. F. Omar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. A. F. Omar obtained\nhis Bachelor degree in electrical and\nelectronics engineering from Universiti\nSains Malaysia in 2002, Master of Science in electronics\nengineering from Open University\nMalaysia in 2008 and PhD in optical physics from Universiti\nSains Malaysia in 2012. His research mainly\nfocuses on the development of optical\nand electronics systems for spectroscopy\napplication in environmental monitoring,\nagriculture and dermatology. He has\nmore than 10 years of teaching\nexperience in subjects related to\nelectronics, mathematics and applied optics for\nuniversity students and industrial engineers.",institutionString:null,institution:{name:"Universiti Sains Malaysia",country:{name:"Malaysia"}}},{id:"191072",title:"Prof.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191072/images/system/191072.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph D degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was “Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 98 articles published in nationally and internationally reputed journals, 11 book chapters and 3 books. He is a member of editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar and research Secretary of JICA Alumni Association of Bangladesh and member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 Ph D students. Prof. Islam currently supervising research of 5 MS and 3 Ph D students in areas Plant Breeding & Seed Technologies. Conducting research on development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"322225",title:"Dr.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph.D. degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was 'Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 99 articles published in nationally and internationally reputed journals, 11 book chapters, 3 books, and 20 proceedings and conference paper. He is a member of the editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar, and research Secretary of JICA Alumni Association of Bangladesh and a member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 PhD students. Prof. Islam currently supervising the research of 5 MS and 3 PhD students in areas Plant Breeding & Seed Technologies. Conducting research on the development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"91977",title:"Dr.",name:"A.B.M. Sharif",middleName:null,surname:"Hossain",slug:"a.b.m.-sharif-hossain",fullName:"A.B.M. Sharif Hossain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"97123",title:"Prof.",name:"A.M.M.",middleName:null,surname:"Sharif Ullah",slug:"a.m.m.-sharif-ullah",fullName:"A.M.M. Sharif Ullah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/97123/images/4209_n.jpg",biography:"AMM Sharif Ullah is currently an Associate Professor of Design and Manufacturing in Department of Mechanical Engineering at Kitami Institute of Technology, Japan. He received the Bachelor of Science Degree in Mechanical Engineering in 1992 from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. In 1993, he moved to Japan for graduate studies. He received the Master of Engineering degree in 1996 from the Kansai University Graduate School of Engineering in Mechanical Engineering (Major: Manufacturing Engineering). He also received the Doctor of Engineering degree from the same institute in the same field in 1999. He began his academic career in 2000 as an Assistant Professor in the Industrial Systems Engineering Program at the Asian Institute of Technology, Thailand, as an Assistant Professor in the Industrial Systems Engineering Program. In 2002, he took up the position of Assistant Professor in the Department of Mechanical Engineering at the United Arab Emirates (UAE) University. He was promoted to Associate Professor in 2006 at the UAE University. He moved to his current employer in 2009. His research field is product realization engineering (design, manufacturing, operations, and sustainability). He teaches design and manufacturing related courses at undergraduate and graduate degree programs. He has been mentoring a large number of students for their senior design projects and theses. He has published more than 90 papers in refereed journals, edited books, and international conference proceedings. He made more than 35 oral presentations. Since 2005, he directs the advanced manufacturing engineering research laboratory at Kitami Institute of Technology.",institutionString:null,institution:{name:"Kitami Institute of Technology",country:{name:"Japan"}}},{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Anna University, Chennai",country:{name:"India"}}},{id:"172688",title:"Prof.",name:"A.V.",middleName:null,surname:"Salker",slug:"a.v.-salker",fullName:"A.V. Salker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Goa University",country:{name:"India"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:10241},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!0,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1254",title:"Mobile Robot",slug:"android-science-mobile-robot",parent:{title:"Android Science",slug:"android-science"},numberOfBooks:1,numberOfAuthorsAndEditors:59,numberOfWosCitations:48,numberOfCrossrefCitations:29,numberOfDimensionsCitations:52,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"android-science-mobile-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1881",title:"Mobile Robots",subtitle:"Current Trends",isOpenForSubmission:!1,hash:"6f1ee45d3e50f6d5295a1d8c190b646c",slug:"mobile-robots-current-trends",bookSignature:"Zoran Gacovski",coverURL:"https://cdn.intechopen.com/books/images_new/1881.jpg",editedByType:"Edited by",editors:[{id:"89211",title:"Dr.",name:"Zoran",middleName:null,surname:"Gacovski",slug:"zoran-gacovski",fullName:"Zoran Gacovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"22300",doi:"10.5772/26512",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22305",doi:"10.5772/25497",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22308",doi:"10.5772/25936",title:"Design and Prototyping of Autonomous Ball Wheel Mobile Robots",slug:"design-and-prototyping-of-autonomous-ball-wheel-mobile-robots",totalDownloads:2415,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"H. Ghariblu, A. Moharrami and B. Ghalamchi",authors:[{id:"65019",title:"Dr.",name:"Hashem",middleName:null,surname:"Ghariblu",slug:"hashem-ghariblu",fullName:"Hashem Ghariblu"},{id:"72044",title:"Ms.",name:"Ali",middleName:null,surname:"Moharrami",slug:"ali-moharrami",fullName:"Ali Moharrami"},{id:"72048",title:"Ms.",name:"Behnam",middleName:null,surname:"Ghalamchi",slug:"behnam-ghalamchi",fullName:"Behnam Ghalamchi"}]}],mostDownloadedChaptersLast30Days:[{id:"22298",title:"Mobile Platform with Leg-Wheel Mechanism for Practical Use",slug:"mobile-platform-with-leg-wheel-mechanism-for-practical-use",totalDownloads:3178,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Shuro Nakajima",authors:[{id:"63562",title:"Prof.",name:"Shuro",middleName:null,surname:"Nakajima",slug:"shuro-nakajima",fullName:"Shuro Nakajima"}]},{id:"22292",title:"Autonomous Mobile Robot Emmy III",slug:"autonomous-mobile-robot-emmy-iii",totalDownloads:2069,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Cláudio Rodrigo Torres, Jair Minoro Abe, Germano Lambert-Torres and João Inácio da Silva Filho",authors:[{id:"65919",title:"Dr.",name:"Claudio",middleName:"Rodrigo",surname:"Torres",slug:"claudio-torres",fullName:"Claudio Torres"},{id:"112971",title:"Prof.",name:"Germano",middleName:null,surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"},{id:"137199",title:"Dr.",name:"Jair Minoro",middleName:null,surname:"Abe",slug:"jair-minoro-abe",fullName:"Jair Minoro Abe"},{id:"137200",title:"Dr.",name:"João Inácio",middleName:null,surname:"da Silva Filho",slug:"joao-inacio-da-silva-filho",fullName:"João Inácio da Silva Filho"}]},{id:"22293",title:"Mobile Robotics in Education and Research",slug:"mobile-robotics-in-education-and-research",totalDownloads:5113,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Georgios A. Demetriou",authors:[{id:"66153",title:"Dr.",name:"Georgios A.",middleName:null,surname:"Demetriou",slug:"georgios-a.-demetriou",fullName:"Georgios A. Demetriou"}]},{id:"22300",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22294",title:"The KCLBOT: A Framework of the Nonholonomic Mobile Robot Platform Using Double Compass Self-Localisation",slug:"the-kclbot-a-framework-of-the-nonholonomic-mobile-robot-platform-using-double-compass-self-localisat",totalDownloads:1861,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Evangelos Georgiou, Jian Dai and Michael Luck",authors:[{id:"63454",title:"MSc.",name:"Evangelos",middleName:null,surname:"Georgiou",slug:"evangelos-georgiou",fullName:"Evangelos Georgiou"},{id:"68156",title:"Prof.",name:"Jian",middleName:null,surname:"Dai",slug:"jian-dai",fullName:"Jian Dai"},{id:"68157",title:"Prof.",name:"Michael",middleName:null,surname:"Luck",slug:"michael-luck",fullName:"Michael Luck"}]},{id:"22307",title:"The Development of the Omnidirectional Mobile Home Care Robot",slug:"the-development-of-the-omnidirectional-mobile-home-care-robot",totalDownloads:1994,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Jie-Tong Zou",authors:[{id:"67765",title:"Prof.",name:"Jie-Tong",middleName:"Tong",surname:"Zou",slug:"jie-tong-zou",fullName:"Jie-Tong Zou"}]},{id:"22299",title:"A Micro Mobile Robot with Suction Cups in the Abdominal Cavity for NOTES",slug:"a-micro-mobile-robot-with-suction-cups-in-the-abdominal-cavity-for-notes",totalDownloads:1890,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Chika Hiroki and Wenwei Yu",authors:[{id:"48648",title:"Prof.",name:"Wenwei",middleName:null,surname:"Yu",slug:"wenwei-yu",fullName:"Wenwei Yu"},{id:"71018",title:"Ms.",name:"Chika",middleName:null,surname:"Hiroki",slug:"chika-hiroki",fullName:"Chika Hiroki"}]},{id:"22301",title:"Development of Mobile Robot Based on I2C Bus System",slug:"development-of-mobile-robot-based-on-i2c-bus-system",totalDownloads:3123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Surachai Panich",authors:[{id:"5704",title:"Dr.",name:"Surachai",middleName:null,surname:"Panich",slug:"surachai-panich",fullName:"Surachai Panich"}]},{id:"22305",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22295",title:"Gaining Control Knowledge Through an Applied Mobile Robotics Course",slug:"gaining-control-knowledge-through-an-applied-mobile-robotics-course",totalDownloads:1938,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Lluís Pacheco, Ningsu Luo, Inès Ferrer, Xavier Cufí and Roger Arbuse",authors:[{id:"30281",title:"Dr.",name:"Lluís",middleName:null,surname:"Pacheco",slug:"lluis-pacheco",fullName:"Lluís Pacheco"},{id:"32046",title:"Dr.",name:"Ningsu",middleName:null,surname:"Luo",slug:"ningsu-luo",fullName:"Ningsu Luo"},{id:"118672",title:"Dr.",name:"Xavier",middleName:null,surname:"Cufí",slug:"xavier-cufi",fullName:"Xavier Cufí"},{id:"137380",title:"Dr.",name:"Inès",middleName:null,surname:"Ferrer",slug:"ines-ferrer",fullName:"Inès Ferrer"},{id:"137381",title:"Mr.",name:"Roger",middleName:null,surname:"Arbuse",slug:"roger-arbuse",fullName:"Roger Arbuse"}]}],onlineFirstChaptersFilter:{topicSlug:"android-science-mobile-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/185593/shaoqing-xiao",hash:"",query:{},params:{id:"185593",slug:"shaoqing-xiao"},fullPath:"/profiles/185593/shaoqing-xiao",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()