Parameters used in the PIFA.
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Internet of Things (IoT) aims to connect existing sensors and devices to the internet in real time. Constantly collecting the information from surrounding help users making wiser decision, leading to higher quality in daily life and higher efficiency in industries [1, 2, 3, 4, 5]. Short-range and long-range wireless techniques are suitable used in different IoT applications. One of the wireless techniques for short-range IoT applications is bluetooth low energy (BLE) under 2.4 GHz industrial, scientific, and medical (ISM) band because of its low power consumption [6, 7]. On the other hand, cellular communications provide larger coverage in long-range IoT applications but they have high power consumption [8]. In RF/microwave modules, the size reduction and performance enhancement of the antenna are key design parameters, therefore, planar antenna, i.e., integrated on printed circuit board (PCB) is a suitable antenna for IoT applications.
In this chapter, the fundamental of antenna is firstly discussed. Printed Inverted-F Antenna (PIFA) is taken as an example to explain the design process of simple planar antenna and a size-reduced 2.4 GHz ISM band PIFA is used for experimental explanation for the short-range applications. Finally, a wideband antenna is shown as another approach on wideband planar antenna for short-range and long-range IoT applications.
Dipole antenna is one of the simple antenna that demonstrates the fundamental concept of antenna and it is a foundation of many practical antennas [9]. In Figure 1, dipole antenna is configured with two symmetric conductive arms carrying radio frequency current. Its length is required to be half wavelength (0.5λ) for maximum response and a half wavelength corresponds to approximately 6 cm (in air) in the 2.4 GHz ISM band. The current across the dipole generates the electromagnetic wave radiation propagating from the dipole arms.
Configuration of a half wavelength dipole antenna [10].
A good conductive and reflective ground plane reduces the half wavelength dipole antenna to be quarter wavelength antenna [11]. This ground plane plays the same role of one of the arms and becomes a part of the antenna. This ground plane is considered as a mirror. In an optical mirror, if an object is placed in front of a mirror, a virtual image is generated with the same size and the same distance behind the mirror. In this case, if a signal source is placed above the ground plane, a virtual image of the source is generated with same current flowing direction and same phase shown in Figure 2, therefore, a quarter wavelength antenna and a ground plane form a half wavelength antenna. A well-designed ground plane should be very much larger in its dimensions than the half wavelength itself [11]. The active antenna measurement such as the over-the-air (OTA) measurement is a good method to indicate the overall antenna performance in the complete products compared to passive antenna measurement [12]. If the ground plane is significantly small, poor radiation performance is predicted in active antenna measurement.
Signal source and ground plane effect [11]. (a) Actual condition above a ground plane. (b) Equivalent condition with a virtual image under the ground plane.
An electric field with wavelength λ1 propagates toward to a dipole antenna with length L equals to 0.5λ1. This induces a sinusoidal current distribution shown in Figure 3(a), given that the current distribution on the dipole is uniform. If the incident wave has wavelength λ2 which is much longer than the dipole length, for example L = 0.1λ2, current distribution is induced in triangular shape. The maximum current occurs at the center feed point and decreased linearly toward two ends to zero, as shown in Figure 3(b).
(a) Sinusoidal current distribution for L = 0.5λ1. (b) Triangular current distribution for L = 0.1λ2 [9].
For a dipole with uniform current distribution, the radiation resistance
The radiation resistance of Figure 3(b) is much smaller than that of Figure 3(a) based on Eq. (1). Low radiation resistance is an indication of inefficient radiation. Most of the power is not radiated by the antenna when the length of antenna is not designed based on the wavelength of incident signal. This poor radiating condition occurs when the antenna operates not equal to its resonant frequency. Matching network is usually used to maximize the power transfer from the radio transceiver to the antenna [10]. Matching network sometimes is used to tune the operating frequency back to the desired value if the resonant frequency is little shifted to desired frequency.
The printed inverted-F antenna (PIFA) is one of common planar antennas used in the commercial and medical devices because of its small size, low profile and low cost [13, 14, 15, 16, 17, 18, 19, 20]. The typical PIFA structure is shown in Figure 4. Its working principle is same as monopole antenna with quarter-wave long along the main resonant line in Figure 4, therefore, the size of the ground plane is also an important part of antenna. It has a shorting feed point at the end of the main resonant line. This folded part introduces capacitance to the input impedance of the PIFA which is canceled by the shorting feed point. This foldable part, therefore, reduces the antenna size.
Typical PIFA structure [13].
The matching network in Figure 4 is used for maximum power transfer and, hence, efficient radiation [10]. Lump elements are normally used in matching network to minimize the size. In this section, PIFA is used as example of planar antenna since PIFA fulfills the requirements of IoT applications.
Figure 4 shows a typical PIFA structure on a printed circuit board (PCB) which is indicated with the dotted area at the PCB upper layer. Meandering line is commonly used to increase the total length in antenna design. The meandering line in Figure 5 is used to replace the main resonant line in PIFA shown by combination of horizontal and vertical lines to form multiple turns.
PIFA with meandering line.
The requirements of the PIFA are the operation frequency, power transmission efficiency, size and even cost. Simulation, fabrication and measurement are conducted until the antenna fulfills the defined application requirements. In general, a well-designed PIFA has the feature of having resonance at the operation frequency and good return loss, i.e., effective power transmission to antenna and compact in size.
High directivity sometimes is considered in certain situation. However, it will not be discussed here since most of planar antennas are omni-directional transmission and reception instead of unidirectional antennas. The basic design rules and antenna performance characterization methods are addressed by case study in 2.4 GHz ISM band. The operation frequency of the antenna is governed by the basic dispersion relation c = fλ. The letter c represents the speed of electromagnetic wave in the air, which is a constant if only consider the wave traveling in single medium. In previous section, it shows that a dipole antenna resonates when the physical length of antenna equals to the quarter wavelength of incident signal and a sufficiently large ground plane form the mirror image under the plane. The length of the resonant line occupies a considerable area on the PCB, which is around one third of a wireless module. Proper selection of traces’ length and width reduces the occupied area and impedance matching network for maximum power transfer [13].
Powerful computer simulation tools are used to drastically reduce the design time. Advanced Design System (from Keysight) is one of the electromagnetic (EM) simulators used to estimate the performance of certain designs in this chapter. Normally, there is small variation between the simulation and measurement results because of the fabrication variation, material variation and connectors mismatch, etc. There is limited effect on frequency below 6 GHz, however, this becomes significant when the frequencies are in millimeter wave. Two antennas are designed based on structure in Figure 5. The dimensions of these two examples (called Antenna PCB A and Antenna PCB B) of PIFA shown in Table 1 and in Figure 6.
Parameters | Length (mm) |
---|---|
w1 | 0.9 |
w2 | 0.5 |
s1 | 2.0 |
s2 | 1.7 |
l1 | 2.5 |
l2 (Antenna PCB A) | 4.2 |
l3 (Antenna PCB B) | 2.9 |
Parameters used in the PIFA.
PIFA: (a) Antenna PCB A (l2 = 4.2 mm) and Antenna PCB B (l3 = 2.9 mm) (b) and Antenna PCB C.
Antennas in Figure 6 were simulated on FR4 substrate with a dielectric constant of 4.6 and 0.8 mm thickness. The PCB design mainly contains PIFA, ground plane, transmission line and 3.5 mm SMA connector. The size of PCB, 18.8 mm× 43.2 mm was chosen, which is the normal size of a 2.4 GHz ISM band wireless module. At end of meandering line is 4.2 mm for Antenna PCB A and 2.9 mm for Antenna PCB B. The resonance frequency of Antenna PCB A is expected to be lower due to the longer trace. Antenna PCB C was fabricated to calibrate the transmission line by the port extension measurement. The simulated results of Antenna PCB A and Antenna PCB B are shown in Figure 7 and the return loss indicates the resonant frequency of the antennas [9]. The input feed point in the simulation is at Port A in Figure 6(a) which is without the transmission line and connector but others are the same as in Figure 6(a).
Simulated S-parameter, S11 of Antenna PCB A and Antenna PCB B at Port A.
In Figure 7, the resonance frequency of Antenna PCB A is lower than that of Antenna PCB B. Antenna PCB A and Antenna PCB B were fabricated with the transmission line and connector in Figure 6(a). The width of the transmission line is 1.5 mm so that the characteristic impedance of the line is equal to 50 Ohm. The return losses of antenna were measured by vector network analyzer (VNA). If the return losses are not significant high enough, matching network is needed for maximum power transfer. Antenna PCB C is used for port extension by VNA so that the measurement reference plane is moved to Port A since the VNA can predict the open circuit at end of the transmission line from the connector in Antenna PCB C by the electrical length L of the transmission line. The simulated and measured results of Antenna PCB B are plotted in Figure 8. It is also shown that the overall performance of antenna at Port B is close to the same at Port A. The radiation patterns and gain measurement are carried out by passive antenna measurement system. The active antenna measurement sometimes is used to indicate the overall transmission and reception of the complete products. The maximum gain of the PIFA is normally around 3 dBi. Antenna PCB B, therefore, is suitable for 2.4 GHz ISM band applications. Table 2 shows the comparison table of different antennas, which shows that the dielectric antennas have a little size smaller than the PIFA. However, PIFAs were only fabricated on PCB, which is approximately zero in thickness as well as zero cost of antenna and matching components.
Antenna PCB B: Simulated (at Port A) and measured (at Port A and B) S-parameter, S11.
Antenna | Plane | Total average (dBi) | Area (mm2) |
---|---|---|---|
PIFA (Antenna PCB B) | Y-Z | 1.60 | 16 × 7.0 |
X-Z | 3.30 | ||
X-Y | 1.10 | ||
Miniaturized PIFA [13] | Y-Z | −0.70 | 15 × 6.0 |
X-Z | −1.98 | ||
X-Y | −1.26 | ||
Capacitive-loaded antenna | Y-Z | — | 12 × 5.0 |
X-Z | −1.76 | ||
X-Y | −3.32 | ||
Dielectric antenna (3 mm length) | Y-Z | 0.89 | 12 × 5.0 |
X-Z | −1.85 | ||
X-Y | −2.56 | ||
Dielectric antenna (5 mm length) | Y-Z | −3.22 | 18 × 11 |
X-Z | −3.24 | ||
X-Y | −3.12 |
Gain between dielectric and PCB antennas [10] (includes the area of matching network, but not the ground plane).
Various IoT applications use different solutions to connect devices and sensors. Low power technologies such as Bluetooth and Zigbee are preferred for short-range applications because of their low power usage. Cellular communication technologies sometimes are required used for large coverage and high data rate applications despite its large power consumption. Multiple narrowband antennas are needed when different technologies are used in IoT applications. One wideband antenna, therefore, is an attractive approach to replace multiple narrowband antennas. Different wideband structures were proposed to combine different frequency bands into one individual wideband antenna to serve different technologies in order to reduce the size and simplicity [21, 22, 23]. The wideband antenna is still large to be used in portable devices, therefore, foldable design [21] provides flexibility of IoT products as well as further size reduction.
Dipole antenna in Figure 1 could be extended to be a wideband antenna. Two conductive arms are replaced by thicker wire or even a plane to extend the bandwidth. One of example for wideband planar foldable and non-foldable antennas is shown in Figure 9.
Wideband planar foldable and non-foldable antennas [21].
This planar antenna consists of two rectangular metal planes. The important parameters could be tuned in this design are width W, length L and gap G. The length is used for tuning in this example as it has significant impact on the performance of antenna. All parameters are fixed in Table 3 except the length L which is the parameter chosen to be tuned for foldable and non-foldable antennas. The foldable design was fabricated in the metal sheet and the non-foldable design was fabricated on the FR4 substrate with a dielectric constant of 4.6 and thickness of 0.8 mm. The simulated results of return loss are shown in Figure 10 with different lengths of sheet L. In Figure 10, the frequency range is shifted to the lower side with a longer length L because the length L is closer to the quarter-wavelength of a lower frequency.
Parameters | Length (mm) |
---|---|
G | 0.9 |
W (foldable design) | 29 |
W (non-foldable design) | 25 |
Parameters used in the wideband planar foldable and non-foldable antennas.
Simulated results of wideband planar antennas [21]: (a) foldable and (b) non-foldable.
Figure 11 shows the comparison between simulated and measured results of wideband planar foldable and non-foldable antennas. Figure 11(a) shows the simulated and measured results of the fabricated foldable antenna which shows that the simulated and measured results are close to each other with the bandwidth of 76% from 1.3 to 2.9 GHz. This range covers the applications in GPS, the 2.4 GHz ISM band, and the general 3GPP WCDMA bands and LTE bands. Figure 11(b) shows the simulated and measured results with L equal to 36 and 41 mm (same width of W = 25 mm). Simulated and measured results show that they are close to each other with the bandwidth of 76% from 1.35 to 2.75 GHz, which is little worse than the foldable design in Figure 11(a). The maximum gain of the non-foldable is between 2.5 and 3.5 dBi.
Comparison between simulated and measured results of wideband planar antennas [21]: (a) foldable and (b) non-foldable.
The architecture of the PIFA on PCB with meandering line was shown. The measurement results of return loss and gain performances shown that it has better performances compared to the dielectric antennas as well as without any extra matching components. When only single communication technology is used in IoT product, PIFA is recommended. Using meandering line can reduce the antenna size as well as keeping the performance. PIFA design, therefore, is suitable for ISM band and other IoT applications. In the product utilizing numbers of communication technologies at same times, one wideband antenna integrated in the product is more suitable. Both foldable and non-foldable wideband structures, therefore, were proposed and fabricated for their different uses in IoT applications. Both measurement results of two structures show more than 65% in bandwidth. Their operating frequency covers IoT applications in GPS, the 2.4 GHz ISM band, and the common 3GPP WCDMA and LTE bands. And the foldable structure has advantage of wearable applications.
During the design process, the type of antenna is firstly confirmed and then the key parameters such as frequency and size need to be determined. Simulation software and measurement equipment are important tools to verify its performance and further design iterations may be required for fine-tuning the performance. Internet of Things industrial, scientific, and medical bluetooth low energy printed inverted-F antenna printed circuit board over-the-air electromagnetic vector network analyzer global positioning system wideband code division multiple access long-term evolution 3rd generation partnership projectAbbreviations
Population genetic studies deal with allele frequencies and processes that shape their variation within and among populations. Multiple studies have addressed genetic variation and their structure based on the screening of molecular markers such as allozymes (began with Lewontin and Hubby [1]), random amplified polymorphic DNA (RAPD) [2], amplified fragment length polymorphism (AFLP) [3], microsatellites or simple sequence repeats (SSR) [4], intersimple sequence repeats (ISSR) [5] and single nucleotide polymorphisms (SNP). The use of allozyme markers started up a series of population genetic studies, allowing relatively precise estimation of heterozygosity levels due to their codominance nature. Those markers were largely employed until the end of the 1990s. The development of techniques for screening directly at the level of DNA has accelerated the discovery of numberless markers in humans, animals, plants, fungi, and other organisms. RAPD, ISSR, and AFLP, in general, are more limited in describing genetic variation due to their dominance. In contrast, several SSR markers have been developed for studying a diverse set of species, enabling precise estimates of genetic diversity, gene flow, spatial genetic structure, paternity, linkage, and association mapping.
\nUltimately, SNP markers have arisen as powerful markers for fine-scale genetic diversity, structure, and association mapping studies. The direct comparison among sequences of specific fragments generated by Sanger sequencing allowed the discovery of the first set of SNP. However, the revolution in sequencing technology of the last decade has provided numberless sequences for comparing individuals and deciphering population genetic mechanisms with high accuracy. The next-generation sequencing platforms generate millions of sequences that often result in thousands of SNP markers.
\nNonetheless, the sole use of molecular data provides no definitive responses on evolutionary mechanisms operating in populations. An examination of the ecological factors, that drive the fate of individuals over generations or how current mechanisms impact in their adaptation or acclimation, is a much-needed task to better understand all species. Adequate statistical methods combining genetic and environmental variables are then necessary. Landscape genetics emerged as a field for the improvement of our understanding of the influence of geographical and environmental variables on the genetic structure of populations [6]. It diverges from the traditional basis of population genetics in the sense of more profound tests of the influence of landscape and environmental factors such as altitude, topography, and ground cover on population processes such as gene flow and population structure [7]. The rapid boost in genome-scale analyses also generated the terminology landscape genomics, as proposed by Joost et al. [8]. Landscape genomics differs from landscape genetics in the sense that it has become a powerful approach for scanning genes involved in complex adaptation mechanisms of species at populations and individual levels [9, 10].
\nThis chapter is intended to provide brief concepts that cover the subject of landscape genetics and genomics. Furthermore, we outline potential applications of landscape genetic studies in the comprehension of adaptive traits of plants and animals and how such results may assist in the design of conservation strategies for endangered species. It is not our intent to provide an exhaustive panorama of landscape genetics studies so far, but rather contextualize concepts and applications with chosen case studies. Moreover, we briefly contextualize how landscape genetics is contributing in the comprehension of historical human migrations and the dispersion of human diseases.
\nThe most popular molecular markers employed in population genetic studies are SSR [4] and SNP. Simple sequence repeats are tandem repeated motifs with 1–6 bp [11] or up to 10 bp [12] with high frequency in genomes of all organisms. Plants commonly have AT-type repeats, whereas animals have the AC motif as the most common repeat unit [13]. High mutation rates are characteristics of microsatellite markers [12] providing markers with several alleles. SSR are codominant, hypervariable, and Mendelian inherited [14], which is implicated in high heterozygosity levels, increasing the discriminatory power among individuals and populations. Originally, SSR were developed from DNA libraries that required extensive laboratory work. Currently, however, the easiest way of discovering novel microsatellites if though direct sequencing of genomes and transcriptomes generated from NGS platforms [12]. With that available, SNP markers have actually been the most studied markers in recent years. SNP markers are the most abundant polymorphisms along plant and animal genomes. SNP consist on single base-pair changes present in the genome sequence that can occur as transitions or transversions, as nucleotide substitutions [15]. They can reach much higher density than all other types of markers in genomes. Next-generation sequencing can generate large amounts of sequence data, enabling the detection of thousands of SNP [16].
\nMicrosatellites and SNP markers are powerful tools for population genetic analyses. They have been extensively employed in studies with humans as well as animal and plant models and non-model species. The codominance and multiallelic nature of microsatellites make them suitable for estimating variables such as heterozygosity, inbreeding, gene flow, outcrossing rates, differentiation among populations and population structure [17]. SNP markers are generally employed for determining population structure as well, but with much higher density of markers and therefore genomic coverage to explain such subdivision. A series of studies have used SNP to dissect complex traits with QTL mapping and genome-wide association studies (GWAS) [15].
\nLandscape genetics is concerned with testing the effects of landscape features on gene flow and genetic population structure. In general, the first studies of landscape genetics involved an exploratory phase, by geographically widespread sampling of populations and analysis of the effects of various landscape variables [18]. Landscape features or variables consist of any biotic, climatic, soil, or other conditions that comprise the habitat of organisms [6]. The population structure means the organization of genetic variation as influenced by a combination of evolutionary forces such as recombination, mutation, drift, natural selection, and historic demographic processes [19]. This leads to the idea that a group of subpopulations that exchange migrants in an occasional fashion are part of metapopulations [6].
\nThe current status of genomic technologies allows the discovery of thousands of SNP markers, which has increased the resolution power for studying the association of environmental variables with specific genomics regions, also with a much deeper understanding of evolutionary processes. Genotyping-by-sequencing has enabled the discovery of SNP markers even in non-model species, which may lack a reference genome so far [20, 21]. This is where the concept of landscape genomics comes forward. Landscape genomics focuses on detecting candidate genes under selection as putative signals of local adaptation. The design of a landscape genomics experiment involves replicated sampling of environmental factors that might be driving selection, augmenting the resolution for detection of candidate loci under selection [10].
\nIn a landscape genetics study, two steps of analyses are normally required. The first involves the analysis of patterns of genetic variation. Next, such patterns are correlated with landscape variables based on statistical methods [22]. To test for association of environmental variables with genetic data, one of the simplest and commonly used methods is the Mantel’s test, originally developed for identifying time-space clustering of diseases [23]. The test uses permutations to address the significance of the linear correlation coefficient between two pair-wise similarity or dissimilarity matrices [22]. One of the simplest examples of its application in landscape genetics is to correlate the genetic distances between individuals with their geographic location [24].
\nThe methods for determining association of genetic data with environmental variables can be broadly categorized into approaches that deal with (i) pair-wise landscape data and (ii) location-specific landscape data, as reviewed by Balkenhol et al. [22]. The development of methods in landscape genomics, however, expanded the range of tests for detecting loci under selection using genome scans, approaches for candidate gene discovery, QTL mapping and GWAS. Genome scans use two methods for detecting loci under selection, the differentiation outlier methods and the genetic-environmental association test, as reviewed by Storfer et al. [10]. Novel methods are continuously being developed, as more genomes are becoming sequenced or resequenced in populations.
\nSeveral applications of landscape genetics or genomics can be described. We briefly account for case studies in plant and animal systems within this section. Moreover, a few examples of studies applied to humans are also given. In general, landscape genetics or genomics studies have provided association among geographic, abiotic, and biotic factors and genetic data provided by the screening of molecular markers in populations of diverse organisms. It has increased our power to detail inferences of movement and gene flow and potential adaptation to the landscape populations occur. However, studies for several organisms are still scarce or inexistent.
\nCultivated crops such as maize, soybean, rice, and common bean were domesticated from wild progenitors which reflect their current adaptation to distinct environments. Landscape genomics studies have enabled a deeper understanding of processes shaping their distribution across multiple environments. Common bean (Phaseolus vulgaris L.) is an exceptional example of a widespread species original from America. Molecular data of wild germplasm identified two major gene pools, the Andean from Argentina to Colombia, and the Mesoamerican from Colombia to Mexico [25, 26]. A third smaller pool of wilds is also distinctive in a narrow area between Peru-Equador [27]. Microsatellites markers were broadly used to screen the genetic structure of wild and domesticated accessions of common bean (Phaseolus vulgaris L.), distinguishing from the broadest Andean and Mesoamerican gene pools to further subdivision within each one of them [25]. SNP markers from single fragments sequenced by Sanger also allowed an accurate distinction between Andean and Mesoamerican accessions, as well as their subdivisions [28]. The recognition of a parallel domestication event in each of the two major pools was also possible based on the detection of SNP markers in specific genomic regions of Andean and Mesoamerican genotypes [29]. Recent landscape genomics approaches enabled a more detailed description of the major events that determined the range expansion of P. vulgaris in America and how they were accompanied by environmental changes [26]. The climatic variability was also associated with differential drought adaptation and specific SNP markers were statistically related to root and shoot traits varying in a Mesoamerican panel of genotypes originated from regions with distinct precipitation regimes throughout the year [30].
\nAnother application of landscape genomics concerns with the understanding of range expansion and ecological dominance of insect pests. The first step toward that is to know the population structure, gene flow and how natural selection is affecting adaptation. Zucchi et al. [31] described and addressed such problem by examining the population structure of Piezodous guildiniis, a soybean pest, in the United States and Brazil. A GBS-based set of SNP markers revealed genetic structure according to their geographic environment of origin. About 10% of loci were under positive selection, and their annotation revealed genes involved in genome reorganization, neuropeptides, and energy mobilization [31]. Addressing such problem is to assist future endeavors at managing pest spreading in cultivated crops.
\nAnother equally important questions addressed by landscape genomics are the consequences of climate change and human intervention to natural populations of wilds plants and animals. Euterpe edulis Martius is a palm species native to the Atlantic Rain Forest in Brazil, known as heart-of-palm [32]. The species is the list of endangered species to extinction [33]. Several studies have addressed the genetic diversity and structure of natural populations of this palm (for a compilation see [34]). Soares et al. [35] studied the genetic diversity and structure of remnant fragments of E. edulis in Bahia state and related the data to landscape metrics such as composition and configuration and local variables including the logging activity as human disturbance variable. No evidence of spatial genetic structure was detected, but distinct genetic clusters could be identified, suggesting a reduction in gene flow between the fragments of this study [35]. Natural populations located in other regions of Brazil, such as in Sao Paulo state, revealed to have high genetic diversity, as shown from microsatellite markers. Adjacent populations that have been generated though germplasm collection for management and cultivation showed similar genetic diversity. Those genetic materials could be used for recovering overexploited populations [36].
\nLandscape genetics studies with wild animals have been focused in recognizing their patterns of moving across their habitats. On terrestrial lands, landscape genetics of animals has particular features in comparison to aquatic environments or even to terrestrial plants. Landscape patterns interfere with organism behavior, thereby affecting mating and dispersal and reflecting on population processes [37].
\nGenomic technologies have also enabled studies to uncover historical human migrations and the genetic structure and diversity of human populations. For example, a genome-wide study of Malaysian ethnic groups using a SNP array revealed that humans from the peninsular area of Malaysia had higher genetic diversity, which the authors associated with a contact zone for recent human migrations in the Asian continent [38]. Such an example suggests the association between the genetic structure of human populations with geographic variables. In fact, Peter et al. [39] show that genetic differentiation generally tends to increase over higher geographic distances; however, distortions in those patterns also frequently occur. The human population structure, then, seems to be quite dynamic.
\nLandscape genetics also has been employed in epidemiological studies of human diseases. Statistical methods can be used in the identification of hotspot areas of disease movement [40]. This will have important implications in designing strategies for spread containment. One challenge, however, has been the application of landscape genetics methods in vector-borne diseases, which was reviewed by Hemming-Schroeder [40]. A few studies have been dedicated to such goal with human diseases. One interesting example is the correlation found between the genetic structure of Aedes mcintochi, a major vector for Rift Valley fever in Kenya, and mean precipitation values [41].
\nIn 2020, one of the major global health issues concerns the new COVID-19. Sequencing technologies coupled with landscape genomics approaches have the potential to identify dispersal patterns of the virus in order to contain its spreading. Landscape genetic approaches have the power of assisting the decision-making process.
\nClimate change and human interference are no longer to be neglected on natural ecosystems. Among several fields of study devoted to deciphering the impact of these processes, landscape genetics will provide a better comprehension of the interaction between organisms and their environment of origin. The boost in sequencing technologies is enabling the study of the most diverse range of organisms. In fact, the Earth BioGenome Project is intended to sequence, catalog, and characterize all eukaryotic diversity in the forthcoming decade [42]. With that information available, resequencing to the level of population and their association with landscape variables will provide information for designing appropriate strategies for the conservation of endangered forms of life as well as any other species. The resequencing of several human genomes will also enable a better comprehension of the human population structure throughout the world and how the landscape shapes its organization. This has been and will be continuing valuable information to comprehending the dispersion of human diseases as well.
\nThe authors declare no conflict of interest.
Edited by Jan Oxholm Gordeladze, ISBN 978-953-51-3020-8, Print ISBN 978-953-51-3019-2, 336 pages,
\nPublisher: IntechOpen
\nChapters published March 22, 2017 under CC BY 3.0 license
\nDOI: 10.5772/61430
\nEdited Volume
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\\n\\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\\n\\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\\n\\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\\n\\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\\n\\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\\n\\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\\n\\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\\n\\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\\n\\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\\n\\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\\n\\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\\n"}]'},components:[{type:"htmlEditorComponent",content:'This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\n\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\n\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\n\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\n\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\n\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\n\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\n\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\n\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\n\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\n\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\n\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5706},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10249},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15658}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"9538",title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:null,bookSignature:"Ph.D. Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse - an Interdisciplinary Approach",subtitle:null,isOpenForSubmission:!0,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:null,bookSignature:"Dr. Ersi Abaci Kalfoglou and Dr. Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:null,editors:[{id:"68678",title:"Dr.",name:"Ersi Abaci",surname:"Kalfoglou",slug:"ersi-abaci-kalfoglou",fullName:"Ersi Abaci Kalfoglou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10811",title:"Urban Transition - Perspectives on Urban Systems and Environments",subtitle:null,isOpenForSubmission:!0,hash:"4885cfa30ba6184b0da9f575aee65998",slug:null,bookSignature:"Ph.D. Marita Wallhagen and Dr. Mathias Cehlin",coverURL:"https://cdn.intechopen.com/books/images_new/10811.jpg",editedByType:null,editors:[{id:"337569",title:"Ph.D.",name:"Marita",surname:"Wallhagen",slug:"marita-wallhagen",fullName:"Marita Wallhagen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10911",title:"Higher Education",subtitle:null,isOpenForSubmission:!0,hash:"c76f86ebdc949d57e4a7bdbec100e66b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"331",title:"Forestry Science",slug:"agricultural-and-biological-sciences-ecology-forestry-science",parent:{title:"Ecology",slug:"agricultural-and-biological-sciences-ecology"},numberOfBooks:15,numberOfAuthorsAndEditors:463,numberOfWosCitations:290,numberOfCrossrefCitations:181,numberOfDimensionsCitations:468,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-and-biological-sciences-ecology-forestry-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9720",title:"Advances in Forest Management under Global Change",subtitle:null,isOpenForSubmission:!1,hash:"df888eab42f96e1bd89b300edfaec25a",slug:"advances-in-forest-management-under-global-change",bookSignature:"Ling Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/9720.jpg",editedByType:"Edited by",editors:[{id:"219350",title:"Dr.",name:"Ling",middleName:null,surname:"Zhang",slug:"ling-zhang",fullName:"Ling Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9351",title:"Silvicultures",subtitle:"Management and Conservation",isOpenForSubmission:!1,hash:"f15a0f8b37429d28751d44f084e0ca69",slug:"silvicultures-management-and-conservation",bookSignature:"Fernando Allende Álvarez, Gillian Gomez-Mediavilla and Nieves López-Estébanez",coverURL:"https://cdn.intechopen.com/books/images_new/9351.jpg",editedByType:"Edited by",editors:[{id:"139581",title:"Dr.",name:"Fernando",middleName:null,surname:"Allende Álvarez",slug:"fernando-allende-alvarez",fullName:"Fernando Allende Álvarez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"6264",title:"Forest Biomass and Carbon",subtitle:null,isOpenForSubmission:!1,hash:"964f96c9209ff2a3eaf3c5c6a54d81c3",slug:"forest-biomass-and-carbon",bookSignature:"Gopal Shukla and Sumit Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/6264.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6304",title:"Forest Fire",subtitle:null,isOpenForSubmission:!1,hash:"5d379ad4bcbaa4c9b702c13254a45f76",slug:"forest-fire",bookSignature:"Janusz Szmyt",coverURL:"https://cdn.intechopen.com/books/images_new/6304.jpg",editedByType:"Edited by",editors:[{id:"180608",title:"Dr.",name:"Janusz",middleName:null,surname:"Szmyt",slug:"janusz-szmyt",fullName:"Janusz Szmyt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6162",title:"New Perspectives in Forest Science",subtitle:null,isOpenForSubmission:!1,hash:"514f8da8e59157028c3707db0deec202",slug:"new-perspectives-in-forest-science",bookSignature:"Helder Filipe dos Santos Viana and Francisco Antonio García Morote",coverURL:"https://cdn.intechopen.com/books/images_new/6162.jpg",editedByType:"Edited by",editors:[{id:"37172",title:"Prof.",name:"Helder",middleName:null,surname:"Viana",slug:"helder-viana",fullName:"Helder Viana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5877",title:"Plant Ecology",subtitle:"Traditional Approaches to Recent Trends",isOpenForSubmission:!1,hash:"788a981ecedf0d9c0205869788524a80",slug:"plant-ecology-traditional-approaches-to-recent-trends",bookSignature:"Zubaida Yousaf",coverURL:"https://cdn.intechopen.com/books/images_new/5877.jpg",editedByType:"Edited by",editors:[{id:"196003",title:"Dr.",name:"Zubaida",middleName:null,surname:"Yousaf",slug:"zubaida-yousaf",fullName:"Zubaida Yousaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5988",title:"New Insights into Morphometry Studies",subtitle:null,isOpenForSubmission:!1,hash:"3c8701d62860a9cdfb6d09d9ffb32493",slug:"new-insights-into-morphometry-studies",bookSignature:"Pere M. Pares-Casanova",coverURL:"https://cdn.intechopen.com/books/images_new/5988.jpg",editedByType:"Edited by",editors:[{id:"199463",title:"Dr.",name:"Pere M.",middleName:null,surname:"Pares-Casanova",slug:"pere-m.-pares-casanova",fullName:"Pere M. Pares-Casanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5455",title:"Global Exposition of Wildlife Management",subtitle:null,isOpenForSubmission:!1,hash:"0c60fd890b4af7771afc5211fdabe762",slug:"global-exposition-of-wildlife-management",bookSignature:"Gbolagade Stephen A. Lameed",coverURL:"https://cdn.intechopen.com/books/images_new/5455.jpg",editedByType:"Edited by",editors:[{id:"142349",title:"Dr.",name:"Gbolagade Akeem",middleName:null,surname:"Lameed",slug:"gbolagade-akeem-lameed",fullName:"Gbolagade Akeem Lameed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4757",title:"Precious Forests",subtitle:"Precious Earth",isOpenForSubmission:!1,hash:"6bd8329fb8128da2fc08c1c6d8a22613",slug:"precious-forests-precious-earth",bookSignature:"Miodrag Zlatic",coverURL:"https://cdn.intechopen.com/books/images_new/4757.jpg",editedByType:"Edited by",editors:[{id:"174414",title:"Dr.",name:"Miodrag",middleName:"Dusan",surname:"Zlatic",slug:"miodrag-zlatic",fullName:"Miodrag Zlatic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"617",title:"Sustainable Forest Management",subtitle:"Current Research",isOpenForSubmission:!1,hash:"a8d91cf4745e90f7510e056fd508dc46",slug:"sustainable-forest-management-current-research",bookSignature:"Jorge Martin Garcia and Julio Javier Diez Casero",coverURL:"https://cdn.intechopen.com/books/images_new/617.jpg",editedByType:"Edited by",editors:[{id:"88987",title:"Dr.",name:"Julio J.",middleName:null,surname:"Diez",slug:"julio-j.-diez",fullName:"Julio J. Diez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1815",title:"New Advances and Contributions to Forestry Research",subtitle:null,isOpenForSubmission:!1,hash:"fb2caa8ab3683ea8aeba1810e7903a4a",slug:"new-advances-and-contributions-to-forestry-research",bookSignature:"Andrew Akwasi Oteng-Amoako",coverURL:"https://cdn.intechopen.com/books/images_new/1815.jpg",editedByType:"Edited by",editors:[{id:"119148",title:"Dr.",name:"Dr. Andrew A.",middleName:null,surname:"Oteng-Amoako",slug:"dr.-andrew-a.-oteng-amoako",fullName:"Dr. Andrew A. Oteng-Amoako"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2246",title:"Global Perspectives on Sustainable Forest Management",subtitle:null,isOpenForSubmission:!1,hash:"b633fc6fc6a3a8f24dd4c4373fb14cb7",slug:"global-perspectives-on-sustainable-forest-management",bookSignature:"Okia Clement Akais",coverURL:"https://cdn.intechopen.com/books/images_new/2246.jpg",editedByType:"Edited by",editors:[{id:"119660",title:"Dr.",name:"Dr. Clement A.",middleName:null,surname:"Okia",slug:"dr.-clement-a.-okia",fullName:"Dr. Clement A. Okia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:15,mostCitedChapters:[{id:"36125",doi:"10.5772/33342",title:"Deforestation: Causes, Effects and Control Strategies",slug:"deforestation-causes-effects-and-control-strategies",totalDownloads:157048,totalCrossrefCites:22,totalDimensionsCites:59,book:{slug:"global-perspectives-on-sustainable-forest-management",title:"Global Perspectives on Sustainable Forest Management",fullTitle:"Global Perspectives on Sustainable Forest Management"},signatures:"Sumit Chakravarty, S. K. Ghosh, C. P. Suresh, A. N. Dey and Gopal Shukla",authors:[{id:"94999",title:"Dr.",name:"Sumit",middleName:null,surname:"Chakravarty",slug:"sumit-chakravarty",fullName:"Sumit Chakravarty"},{id:"101102",title:"Prof.",name:"Swapan Kr.",middleName:null,surname:"Ghosh",slug:"swapan-kr.-ghosh",fullName:"Swapan Kr. Ghosh"},{id:"101103",title:"Dr.",name:"C. P.",middleName:null,surname:"Suresh",slug:"c.-p.-suresh",fullName:"C. P. Suresh"},{id:"101104",title:"Dr.",name:"A N",middleName:null,surname:"Dey",slug:"a-n-dey",fullName:"A N Dey"},{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}]},{id:"30816",doi:"10.5772/30596",title:"Entomopathogenic Fungi as an Important Natural Regulator of Insect Outbreaks in Forests (Review)",slug:"entomopathogenic-fungi-as-an-important-natural-regulator-of-insect-outbreaks-in-forests-review-",totalDownloads:6034,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"forest-ecosystems-more-than-just-trees",title:"Forest Ecosystems",fullTitle:"Forest Ecosystems - More than Just Trees"},signatures:"Anna Augustyniuk-Kram and Karol J. Kram",authors:[{id:"83229",title:"Dr.",name:"Karol",middleName:"J.",surname:"Kram",slug:"karol-kram",fullName:"Karol Kram"},{id:"87728",title:"Dr.",name:"Anna",middleName:null,surname:"Augustyniuk-Kram",slug:"anna-augustyniuk-kram",fullName:"Anna Augustyniuk-Kram"}]},{id:"36984",doi:"10.5772/29590",title:"Individual-Based Models and Scaling Methods for Ecological Forestry: Implications of Tree Phenotypic Plasticity",slug:"individual-based-models-and-scaling-methods-for-ecological-forestry-implications-of-tree-phenotypic-",totalDownloads:2125,totalCrossrefCites:3,totalDimensionsCites:19,book:{slug:"sustainable-forest-management-current-research",title:"Sustainable Forest Management",fullTitle:"Sustainable Forest Management - Current Research"},signatures:"Nikolay Strigul",authors:[{id:"78465",title:"Prof.",name:"Nikolay",middleName:null,surname:"Strigul",slug:"nikolay-strigul",fullName:"Nikolay Strigul"}]}],mostDownloadedChaptersLast30Days:[{id:"36125",title:"Deforestation: Causes, Effects and Control Strategies",slug:"deforestation-causes-effects-and-control-strategies",totalDownloads:157050,totalCrossrefCites:22,totalDimensionsCites:59,book:{slug:"global-perspectives-on-sustainable-forest-management",title:"Global Perspectives on Sustainable Forest Management",fullTitle:"Global Perspectives on Sustainable Forest Management"},signatures:"Sumit Chakravarty, S. K. Ghosh, C. P. Suresh, A. N. Dey and Gopal Shukla",authors:[{id:"94999",title:"Dr.",name:"Sumit",middleName:null,surname:"Chakravarty",slug:"sumit-chakravarty",fullName:"Sumit Chakravarty"},{id:"101102",title:"Prof.",name:"Swapan Kr.",middleName:null,surname:"Ghosh",slug:"swapan-kr.-ghosh",fullName:"Swapan Kr. Ghosh"},{id:"101103",title:"Dr.",name:"C. P.",middleName:null,surname:"Suresh",slug:"c.-p.-suresh",fullName:"C. P. Suresh"},{id:"101104",title:"Dr.",name:"A N",middleName:null,surname:"Dey",slug:"a-n-dey",fullName:"A N Dey"},{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}]},{id:"55309",title:"Plant-Microbe Ecology: Interactions of Plants and Symbiotic Microbial Communities",slug:"plant-microbe-ecology-interactions-of-plants-and-symbiotic-microbial-communities",totalDownloads:3598,totalCrossrefCites:8,totalDimensionsCites:16,book:{slug:"plant-ecology-traditional-approaches-to-recent-trends",title:"Plant Ecology",fullTitle:"Plant Ecology - Traditional Approaches to Recent Trends"},signatures:"Ying-Ning Ho, Dony Chacko Mathew and Chieh-Chen Huang",authors:[{id:"198872",title:"Dr.",name:"Ying-Ning",middleName:null,surname:"Ho",slug:"ying-ning-ho",fullName:"Ying-Ning Ho"},{id:"199676",title:"Prof.",name:"Chieh-Chen",middleName:null,surname:"Huang",slug:"chieh-chen-huang",fullName:"Chieh-Chen Huang"},{id:"201133",title:"Dr.",name:"Dony",middleName:"Chacko",surname:"Mathew",slug:"dony-mathew",fullName:"Dony Mathew"}]},{id:"48904",title:"Realities on Deforestation in Tanzania — Trends, Drivers, Implications and the Way Forward",slug:"realities-on-deforestation-in-tanzania-trends-drivers-implications-and-the-way-forward",totalDownloads:2750,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"precious-forests-precious-earth",title:"Precious Forests",fullTitle:"Precious Forests - Precious Earth"},signatures:"Jafari R. Kideghesho",authors:[{id:"106119",title:"Prof.",name:"Jafari",middleName:"Ramadhani",surname:"Kideghesho",slug:"jafari-kideghesho",fullName:"Jafari Kideghesho"}]},{id:"52823",title:"Community Forestry Management and its Role in Biodiversity Conservation in Nepal",slug:"community-forestry-management-and-its-role-in-biodiversity-conservation-in-nepal",totalDownloads:2271,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"global-exposition-of-wildlife-management",title:"Global Exposition of Wildlife Management",fullTitle:"Global Exposition of Wildlife Management"},signatures:"Anup K.C.",authors:[{id:"178579",title:"Mr.",name:"Anup",middleName:null,surname:"K.C.",slug:"anup-k.c.",fullName:"Anup K.C."}]},{id:"74564",title:"Ticks from the Brazilian Amazon: Species, Distribution and Host-Relations",slug:"ticks-from-the-brazilian-amazon-species-distribution-and-host-relations",totalDownloads:79,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Ecosystem and Biodiversity of Amazonia",fullTitle:"Ecosystem and Biodiversity of Amazonia"},signatures:"Hermes R. Luz, Thiago F. Martins, Sebastián Muñoz-Leal, Francisco B. Costa, Sérgio L. Gianizella, João Luiz H. Faccini and Marcelo B. Labruna",authors:null},{id:"55813",title:"Introductory Chapter - Morphometric Studies: Beyond Pure Anatomical Form Analysis",slug:"introductory-chapter-morphometric-studies-beyond-pure-anatomical-form-analysis",totalDownloads:1029,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-insights-into-morphometry-studies",title:"New Insights into Morphometry Studies",fullTitle:"New Insights into Morphometry Studies"},signatures:"Pere M. Parés‐Casanova",authors:[{id:"199463",title:"Dr.",name:"Pere M.",middleName:null,surname:"Pares-Casanova",slug:"pere-m.-pares-casanova",fullName:"Pere M. Pares-Casanova"}]},{id:"58511",title:"Effects of Eucalyptus and Pinus Forest Management on Soil Organic Carbon in Brazilian Wooded-Savanna",slug:"effects-of-eucalyptus-and-pinus-forest-management-on-soil-organic-carbon-in-brazilian-wooded-savanna",totalDownloads:635,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"forest-biomass-and-carbon",title:"Forest Biomass and Carbon",fullTitle:"Forest Biomass and Carbon"},signatures:"Leda Lorenzo Montero and Welington Delitti",authors:[{id:"210947",title:"Ph.D.",name:"Leda",middleName:null,surname:"Lorenzo",slug:"leda-lorenzo",fullName:"Leda Lorenzo"},{id:"223960",title:"Prof.",name:"Welington",middleName:null,surname:"Delitti",slug:"welington-delitti",fullName:"Welington Delitti"}]},{id:"48987",title:"Japanese Forestation Policies During the 20 Years Following World War II",slug:"japanese-forestation-policies-during-the-20-years-following-world-war-ii",totalDownloads:1068,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"precious-forests-precious-earth",title:"Precious Forests",fullTitle:"Precious Forests - Precious Earth"},signatures:"Koji Matsushita",authors:[{id:"80129",title:"Dr.",name:"Koji",middleName:null,surname:"Matsushita",slug:"koji-matsushita",fullName:"Koji Matsushita"}]},{id:"60311",title:"Forest Soil C: Stock and Stability under Global Change",slug:"forest-soil-c-stock-and-stability-under-global-change",totalDownloads:739,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-perspectives-in-forest-science",title:"New Perspectives in Forest Science",fullTitle:"New Perspectives in Forest Science"},signatures:"Iftekhar Uddin Ahmed",authors:[{id:"208624",title:"Dr.",name:"Iftekhar",middleName:null,surname:"Ahmed",slug:"iftekhar-ahmed",fullName:"Iftekhar Ahmed"}]},{id:"48718",title:"Possibilities and Perspectives of Agroforestry in Chhattisgarh",slug:"possibilities-and-perspectives-of-agroforestry-in-chhattisgarh",totalDownloads:2093,totalCrossrefCites:13,totalDimensionsCites:14,book:{slug:"precious-forests-precious-earth",title:"Precious Forests",fullTitle:"Precious Forests - Precious Earth"},signatures:"M.K. Jhariya, S.S. Bargali and Abhishek Raj",authors:[{id:"175133",title:"Dr.",name:"S. S.",middleName:null,surname:"Bargali",slug:"s.-s.-bargali",fullName:"S. S. Bargali"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-and-biological-sciences-ecology-forestry-science",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74564",title:"Ticks from the Brazilian Amazon: Species, Distribution and Host-Relations",slug:"ticks-from-the-brazilian-amazon-species-distribution-and-host-relations",totalDownloads:79,totalDimensionsCites:0,doi:"10.5772/intechopen.94862",book:{title:"Ecosystem and Biodiversity of Amazonia"},signatures:"Hermes R. Luz, Thiago F. Martins, Sebastián Muñoz-Leal, Francisco B. Costa, Sérgio L. Gianizella, João Luiz H. Faccini and Marcelo B. Labruna"},{id:"74359",title:"Diversity of the Owl Species in the Amazon Region",slug:"diversity-of-the-owl-species-in-the-amazon-region",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.94977",book:{title:"Ecosystem and Biodiversity of Amazonia"},signatures:"Heimo Juhani Mikkola"},{id:"74281",title:"Social Changes in the Peruvian Amazon Due to Foreign Influence",slug:"social-changes-in-the-peruvian-amazon-due-to-foreign-influence",totalDownloads:35,totalDimensionsCites:0,doi:"10.5772/intechopen.94772",book:{title:"Ecosystem and Biodiversity of Amazonia"},signatures:"Zoran Stiperski and Tomica Hruška"}],onlineFirstChaptersTotal:11},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/18548/shao-yi-chien",hash:"",query:{},params:{id:"18548",slug:"shao-yi-chien"},fullPath:"/profiles/18548/shao-yi-chien",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()