Noise grades and flag colors under limiting conditions.
\r\n\tNeutrophil as a white blood cell helps fight off infections and plays a main role in immune response, especially in infectious diseases and phagocytosis. It can also cause inflammation. Neutrophils are a normal cellular component of the blood and also of certain tissues, including spleen, lymph nodes, thymus, and the submucosal areas of the gastrointestinal, respiratory, and genitourinary tracts. This can happen in many different parts of the body, including the esophagus, heart, lungs, blood, and intestines. This cell has the main role in hemostasis, the physiological function of organs, protective role against many diseases such and syndromes. Neutrophil deficiency in function and count of this cell can lead to the beginning and progress of many diseases and problems.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"c91cdba16ac861ca50e94a70d8135292",bookSignature:"Dr. Seyyed Shamsadin Athari",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9564.jpg",keywords:"Neutrophil, Neutrophilic Diseases, Neutrophilia, Neutropenia, Neutrophilic Toxicity, Neutrophilic Disorders, Neutrophilic Diseases, Neutrophilic Pathophysiological, Infectious Diseases, Bacteria, Neutrophilic Immunology, Allergic Asthma",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 15th 2020",dateEndSecondStepPublish:"June 5th 2020",dateEndThirdStepPublish:"August 4th 2020",dateEndFourthStepPublish:"October 23rd 2020",dateEndFifthStepPublish:"December 22nd 2020",remainingDaysToSecondStep:"9 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Athari has published more than 80 manuscripts on immunology, allergy and asthma and more than 25 books. He is also on the editorial board of more than 60 international journals in medical sciences and has more than 10 inventions in medical sciences and has recorded 4 gene sequences in the gene bank.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",middleName:null,surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari",profilePictureURL:"https://mts.intechopen.com/storage/users/139889/images/system/139889.jpeg",biography:"Dr Seyyed Shamsadin Athari is an assistant professor of immunology in the Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran. He has an allergy and asthma toxicology postdoctorate degree and asthma management and controlling network fellowship. He has published more than 80 manuscripts in international journals on immunology, allergy and asthma and more than 25 books. He is also on the editorial board of more than 60 international journals in medical sciences and has more than 10 inventions in medical sciences and has recorded 4 gene sequences in the gene bank. Dr Athari has been invited as top speaker for more than 35 international congresses and symposiums and has received several scientific awards from different scientific societies as young top researcher and young scientist.",institutionString:"Zanjan University of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Zanjan University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5776",title:"Allergen",subtitle:null,isOpenForSubmission:!1,hash:"20e406e7a94419ea2beba834a8030a79",slug:"allergen",bookSignature:"Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/5776.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6617",title:"Immunoregulatory Aspects of Immunotherapy",subtitle:null,isOpenForSubmission:!1,hash:"a2f42aa78dd846d4a1679066e72a7285",slug:"immunoregulatory-aspects-of-immunotherapy",bookSignature:"Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/6617.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54112",title:"Application of Ionizing Radiation for Control of Salmonella in Food",doi:"10.5772/67408",slug:"application-of-ionizing-radiation-for-control-of-salmonella-in-food",body:'\nIn the last years, the great consumer interest in “natural” or “fresh” foods, nonprocessed or only minimally processed, has caused an increasing interest in nonthermal preservation methods, that is, ionizing radiation, ultraviolet radiation, high-pressure processing (HPP), pulsed electric field (PEF), high-pressure carbon dioxide (HPCD), the use of natural antibacterial compounds, such as extracts of spices and herbs, or the application of various packaging systems. However, at the same time consumer demand for ensuring food safety has to be met. Those two ideas are very often tough to reconcile in practice.
\nA great number of studies have shown that ionizing radiation improve the safety of various foods of animal as well as plant origin. Food irradiation is a process which can be used to inactivate both food-borne pathogens and microorganisms causing spoilage of food, thus extending storage of foods such as red meats, poultry, fish, and so on. It can also extend the storage of vegetables by prevention of sprouting (potatoes, onions, and garlic) or fruits by the delay of ripening. At present time, this technology may be used not only to raw foods but also as post-lethality treatment. The product may be exposed to the post-lethality processing environment into which the product is routed after having been subjected to an initial lethality treatment. The foodstuffs may be exposed to the environment in the area of establishment as a result of, for example, slicing, peeling, and re-bagging, or other procedures. Hotdog products are examples of ready-to-eat (RTE) meat and poultry products that receive a lethality treatment to eliminate pathogens (core temperatures of +70° to +72°C must be reached due to cooking) and they are subsequently exposed to the environment during peeling, slicing, and repackaging operations. Then, the technology of irradiation, used as an intervention step, can be applied to the final product or sealed package of product in order to reduce or eliminate the level of pathogens resulting from contamination from post-lethality exposure. Thus, for example, vacuum-packaged ready-to-eat (RTE) meat products may be subjected to irradiation to reduce or eliminate dangerous food-borne pathogens such as Salmonella spp. and Listeria monocytogenes in a final food product. According to hurdle concept technology, the combination of existing and novel preservation methods can ensure safety of food by applying all treatments as mild as possible [1, 2].
\nA good example of such combination of preservation methods (low-dose irradiation and modified atmosphere packaging (MAP)) is the work of Chouliara et al. [3] who investigated the combined effect of gamma irradiation (2 and 4 kGy) and modified atmosphere (MA) packaging (30% CO2/70% N2 and 70% CO2/30% N2) on shelf-life extension of fresh chicken meat stored under refrigeration. The authors noted the reduction of the number of various groups of bacteria (from 1 to 5 logs), including Enterobacteriaceae family. Sensory evaluation showed that the combination of irradiation at 4 kGy and MAP (70% CO2/30% N2) resulted in the highest shelf-life extension by 12 days compared to the air-packaged samples. A study of Grant and Patterson [4] is another good example of hurdle concept technology: mild heating combined with low-dose irradiation. In this study, thermal treatment (70, 65, or 60°C) was applied alone, directly post 0.8 kGy irradiation or post irradiation combined with refrigerated storage on inactivation of L. monocytogenes and Salmonella typhimurium inoculated into beef and gravy. The researchers observed heat sensitization of S. typhimurium at 60°C, but not at either 65 or 70°C like in the case of L. monocytogenes. In another study [5], the influence of heating and low-dose irradiation S. typhimurium in MDCM (mechanically deboned chicken meat) was examined. The researchers noted that salmonellae irradiated with 0.9 kGy were more heat sensitive; this effect was maintained during 6 weeks of refrigerated storage.
\nThose readers who want to deepen their knowledge of the subject can find an extensive description of microbiological issues associated with all muscle foods, their specific spoilage, safety issues, and their control for meat, poultry, and seafood in the work provided by Sofos et al. [6].
\nThermal treatment is a very effective method for eliminating Salmonella spp. in foods. This organism is rather sensitive to pasteurization temperatures used in meat processing. Properly conducted heat treatment in industrial food processing should cause complete inactivation of these bacteria in meat and meat products; however, recontamination of ready-to-eat meat products with Salmonella spp. after cooking, as well as subsequent storage at abuse temperatures at food establishments or at a consumer’s home, can cause a significant risk to human health. Szczawińska et al. [7] inoculated commercial, smoked, cured, and cooked ham with Salmonella enteritidis and stored the samples at abused temperature (15°C). Lag time for S. enteritidis was at that temperature only 139.08 h, that is, less than 6 days [7]. Usually, the length of time for storage of such product recommended by the food manufacturer is much longer than the time mentioned above. It means that a consumer can contract food-borne salmonellosis during the recommended length of storage time for such ready-to-eat meat product if it was recontaminated with Salmonella. Thus, due to beneficial effects of ionizing radiation treatment of final packaged food product (RTE), we can expect that Salmonella (and other vegetative bacterial pathogens which show similar radiation resistance, e.g., L. monocytogenes) will be significantly reduced or eliminated.
According to the Codex General Standard for Irradiated Foods [8], the following sources of ionizing radiation can be used:
\nRadionuclides, such as Cobalt-60 and Cesium-137, which emit gamma rays (γ-rays)
Machines that produced high-energy electron beams (an energy level up to 10 MeV)
X-rays machines (an energy level up to 5 MeV).
Compared to γ-rays, e-beams are characterized by a low penetrative capacity; therefore, e-beam irradiation is particularly useful for products which can be processed in thin layers or surface-contaminated products.
\nThe dose of radiation received is commonly measured in grays. One gray is a derived unit of ionizing radiation. It is defined as the absorption of one joule of radiation energy in a mass of one kilogram (1 Gy = 1 J/kg). The gray has superseded the older unit—the rad (1 Gy = 100 rad). The gray (symbol: Gy) is used as a measure of absorbed dose.
\nAccording to several objectives for food (fresh or processed meats, poultry, and seafood) irradiation, the following terms are used [9]:
\nRadicidation is the elimination of bacterial pathogens, non-spore formers; doses range 2.5–10 kGy.
Radurization is the significant reduction of the number of saprophytic microorganisms ensuring shelf-life extension of foods; doses range 0.75–2.5 kGy.
Radappertization is based on a similar concept (“botulinum cook”) like in canning industry. It should ensure complete elimination of spore formers in foods, thus significant shelf-life extension (years) and botulism food safety; doses range 30–40 kGy. The term was established to honor Nicolas Appert who invented the method of preserving food from spoilage by placing it in hermetically sealed containers and then sterilized by heat treatment.
In this review, special attention will be paid to radicidation. In case of this technology, one of the most important pathogens, Salmonella spp., public health problem, has been the main target for control, particularly in meat and poultry products (i.e., for example, see Ref. [10]). The most recent European Food Safety Authority (EFSA) summary report has informed us that the total number of food-borne outbreaks in Europe was 5251, including water-borne outbreaks [11]. Salmonella caused 20.0% of all reported food-borne outbreaks in European Union (EU) and it was the second most frequent cause of outbreaks; the largest number of reported food-borne outbreaks was caused by viruses (20.4% of all outbreaks) [11]. High level of noncompliance was noted for poultry meat [11]. Monitoring activities and control programs for Salmonella in fresh broiler meat are based on sampling at the slaughterhouse and/or at processing or cutting plants and at retail. In 2014, Salmonella was found in 0.6% of the 2263 units of RTE broiler meat products tested at retail or at processing (0.4% of single samples and 1.7% of batches) [11].
\nAs in previous years, the two most commonly reported Salmonella serovars in 2014 were S. enteritidis and S. typhimurium, representing 44.4% and 17.4%, respectively, of all reported serovars in confirmed human cases [11]. Generally, there was no major change as regards Salmonella-contaminated foodstuffs compared with previous years. Salmonella was most frequently detected in fresh turkey meat (3.5%), fresh broiler (2.2%), pig (0.5%), and bovine meat (0.1%) [11]. It should be emphasized that according to the European legislation on microbiological criteria for foodstuffs [12] Salmonella spp. is currently included both in food safety as well as food hygiene criteria.
\nThe main reason for the use of food irradiation is the ability of ionizing radiation to inactivate populations of microorganisms including pathogenic bacteria, parasites, and viruses. Depending on irradiation dose, food-borne pathogens can be injured or killed due to DNA damage. Radiation sensitivity depends on many factors such as species of microorganisms, age of cells, and their number. It is also affected by the environment (buffer solution, laboratory medium, or real food product). Thus, the effect of radiation on microorganisms is dependent on intrinsic and extrinsic factors which include temperature, water activity, pH, chemical composition, and structure of food and gaseous environment. Radiation resistance of bacteria is much higher at freezing temperatures than at chill temperatures; however, irradiation of frozen food offers much better results in some foods because it significantly reduces or eliminates some negative sensory changes caused by, for example, lipid oxidation. D10 values (D10 value is defined as decimal reduction dose or the dose of ionizing radiation required for a 90% inactivation of viable colony-forming unit (CFU) or by one logarithmic cycle) are higher in foods with a low water activity because the lack of water means that there are less OH radicals available to cause DNA damage. Hence, higher doses of ionizing radiation have to be used to ensure the elimination of pathogenic bacteria in dry foods such as spices [13].
\nSome authors observed different effects of meat irradiation depending on radiation source. Rajkowski et al. [14] discovered in their study that D10 values for S. typhimurium DT 104 irradiated in ground pork with gamma rays were 0.56–0.62 kGy, whereas D10 values for the same organism treated with e-beams ranged from 0.42 to 0.43 kGy.
\nHowever, Miyahara and Miyahara [15] concluded that both gamma rays and e-beams were similarly effective while irradiating ground beef patties inoculated with S. enteritidis.
\nThe use of ionizing radiation as a means of reducing the risk to human health from food-borne pathogens, including Salmonella spp., is being extensively researched. It seems that the application of ionizing radiation to preserve food or eliminate pathogenic bacteria from food has been so intensively studied like not any other scientific field, because of consumer concerns, particularly associated with fear of nuclear energy and very often occurring confusion between terms, for example, radiation, radioactive contamination, or radioactivity. In general, consumer is rather reluctant to this technology due to well-known nuclear accidents (e.g., Chernobyl and Fukushima) believing that the process of food irradiation can make food radioactive, thus unsafe. Interestingly, there is much less consumer resistance to the high-pressure-processing technology which is used to treat wide range of foods including those of animal origin, for example, RTE products. To date, health and safety authorities in over 60 countries worldwide, for example, the United States, France, Belgium, the Netherlands, Canada, Australia, and New Zealand, granted clearances for irradiation of more than 60 different foods [16]. Frog legs are the most often irradiated food items [17].
\nCurrently, the International Atomic Energy Agency (IAEA) is responsible for updating and maintaining various irradiation databases as resources for researchers, government officials, and the general public. European Food Safety Authority [18] summarized and evaluated an opinion on the efficacy and microbiological safety of irradiation of food taking into consideration recommendations from the two panels: BIOHAZ (the EFSA Panel on Biological Hazards) and CEF (the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids).
\nEFSA emphasizes its standpoint that food irradiation should only be used in conjunction with an integrated food safety management program. With regard to efficacy and microbiological safety, the BIOHAZ Panel recommended that the application of food irradiation should be based on risk assessment and on the desired risk reduction rather than on predefined food classes/commodities and doses [18]). Concerning the safety assessment of irradiation of food, according to the BIOHAZ Panel, there are no microbiological risks for the consumer linked to the use of food irradiation and its consequences on the food microflora. EFSA’s experts conclude that the irradiation dose needed to inactivate food-borne pathogens depends on the targeted pathogen, on the reduction required, and on the physical state of the food, regardless of the food classes as previously proposed [18].
\nVegetative food-borne bacteria, such as Salmonella spp. and L. monocytogenes, are moderately sensitive to ionizing radiation. The medium-dose irradiation processes reduce their populations by several logs. As previously mentioned, various factors influence radiation sensitivity of bacterial cells. The presence of proteins can exert a protective effect on microorganisms subjected to radiation treatment. Maxcy and Tiwari [19] studied the effect of fat content in beef on radioresistance of S. enteritidis. They found D10 value higher in beef with lower level of fat (0.70 kGy) compared to lower D10 value obtained for salmonellae irradiated in beef with higher content of fat (0.49 kGy). Assuming that the low fat level in the meat is correlated with a higher protein content and because the proteins have the properties of free radicals scavenging, it can be suggested that the higher content of protein in meat protects more the bacteria against the damaging effects of radiation treatment.
\nThere have been frequently voiced concerns that the reduction of the competitive microflora by radiation treatment could facilitate growth of pathogens contaminating the food after irradiation or that food pathogens which survived irradiation can grow better than the indigenous, competitive microflora. Dickson and Olson [20] studied the first problem; ground beef was irradiated at 0, 2, or 4 kGy, thus reducing the number of saprophytic microorganisms which cause food spoilage, and then inoculated with a mixture of four serotypes of salmonellae. The meat was stored at 4°C, temperature proper for storage, and at two abused temperatures 15 and 25°C. Bacterial growth was monitored during storage. The authors observed that there was no significant difference in lag-phase duration or generation time, irrespective of the dose to which the ground beef had previously been exposed. This suggests that, although irradiation eliminates a significant portion of the spoilage microflora in ground beef, the absence of this microflora provides no competitive advantage to the growth of salmonellae in ground beef [20]. Szczawińska [21] studied the effect of irradiation on the survival rate of non-sporing bacteria (Staphylococcus aureus, S. typhimurium, Escherichia coli, Pseudomonas fluorescens) during conventional methods of meat preservation (heating, chilling, freezing, salting, curing, and smoking). On the basis of the conducted experiments, it can be concluded that irradiated bacteria stored under conditions preventing their growth die faster compared to unirradiated bacteria or their survival rate is almost identical like unirradiated ones; those organisms which are stored under conditions that allow their growth show a worse adaptability to the environment and begin to grow after a certain delay [21]. In another work, Szczawińska et al. [22] studied the growth of salmonellae in mechanically deboned chicken meat (MDCM), which was irradiated at 0, 1.25, and 2.5 kGy and inoculated with S. dublin, S. enteritidis, and S. typhimurium. Subsequently, the inoculated MDCM was stored at 5, 10, or 20°C and bacterial numbers were determined over storage time. The results of the study suggested that there was no greater risk from the same number of Salmonella cells contaminating irradiated MDCM compared to unirradiated one. In the same study, irradiated indigenous microflora had dose-related increased lag phases and decreased rates of multiplication compared with that of the indigenous microflora in the unirradiated control [22]. Kim and Thayer [23] discovered that the gamma-injured S. typhimurium cells on mechanically deboned chicken meat were much more sensitive to heat than the nonirradiated cells, which implies that any cells surviving the irradiation process were unlikely to survive cooking. This increased sensitivity of the salmonellae to gamma radiation was retained during refrigerated storage of the irradiated chicken. Kim and Thayer [23] explained the mechanism of the heat sensitivity of S. typhimurium subjected to ionizing radiation. The results proved that combined effects of irradiation and heating were always beneficial in regard to food safety due to synergistic (when heating is applied after irradiation) or additive (when heating is applied before irradiation) effects depending on the order of both treatments. Therefore, on the basis of these studies it can be concluded that any microorganisms which survive irradiation are more sensitive to intrinsic or extrinsic factors, such as temperature, water activity, pH, and so on, compared to unirradiated organisms.
\nIrradiation of fresh meat up to an overall average dose of 2 kGy was proposed by the SCF in 1986 [24]. Implication of meat in food-borne salmonellosis still remains a concern, particularly in the countries or regions where traditional dishes are served and consumed as raw and cold. In the Netherlands, Belgium, such meat product is “filet américain” composed of raw beef meat, and often raw egg. Kampelmacher [25] reported that a dose of only 1 kGy decreased Salmonella number in such a product by two log cycles. Rajkowski et al. [14] examined the effect of e-beam and gamma rays irradiation on the mixture of S. typhimurium DT104 strains inoculated into three ground pork products containing various fat contents and obtained D10 values for salmonellae from 0.42 to 0.62 kGy. The data prove that the content of fat had no effect on radiation resistance of salmonellae. The D10 values are similar to the values reported by Szczawińska [26] for S. typhimurium strains inoculated into poultry meat. Clavero et al. [27] subjected raw ground beef patties inoculated with mixture of serovars of S. dublin, S. typhimurium, and S. enteritidis to gamma irradiation (60°C) treatment. The influence of two levels of fat (8–14% (low fat) and 27–28% (high fat)) and temperature (frozen (−17 to −15°C) and refrigerated (3–5°C)) on the inactivation of pathogens by irradiation was investigated. D10 values for salmonellae in beef patties ranged from 0.618 to 0.800 kGy. The authors discovered that temperature did not have a significant effect when salmonellae were irradiated in high-fat ground beef.
\nD10 values for Salmonella spp. have been reported [28] to range from 0.38 to 0.77 kGy at 2°C in mechanically deboned chicken; sensitivity of Salmonella spp. to ionizing radiation has been found to be highly dependent on serovars. Similarly, the D10 values were reported by Szczawińska [26] for S. typhimurium strains inoculated into poultry meat, whereas a D10 value of 0.57 kGy has been observed for the pathogen in ground beef treated at 18–20°C [29].
\nIn another work by Thayer et al. [30], Musculus longissimus dorsi from beef, pork, and lamb and turkey breast and leg meats were inoculated with Salmonella spp., and the gamma radiation resistance of the pathogens was determined at 5°C under identical conditions. The authors concluded that the D-value for a mixture of Salmonella spp. was significantly lower on pork than on beef, lamb, turkey breast, and turkey leg meats; however, all D-values were within expected ranges. Thayer et al. [31] studied the survival of salmonellae in vacuum-canned, commercial MDCM. The MDCM was challenged with S. enteritidis (ca 104 CFU/g of meat) followed by irradiation to 0, 1.5, and 3.0 kGy and storage at 5°C for 0, 2, and 4 weeks. The researchers reported that the number of salmonellae in unirradiated MDCM decreased about one log cycle after 1 month of storage; however, in meat irradiated with 3.0 kGy dose the presence of this pathogen was not detected at the very beginning of storage. Thayer and Boyd also found that S. typhimurium was more resistant to gamma radiation when vacuum packaged than when air was present during irradiation [32]. The final equations predict a reduction in the number of surviving Salmonella in mechanically deboned chicken meat. If MDCM is irradiated at −20°C with a dose of 1.50 kGy in air then the expected reduction of this pathogen is 2.53 and 2.12 logs in vacuum. After 3.0 kGy dose, at −20°C in air the level of bacteria will be lower by 4.78 and 4.29 logs in vacuum [32].
\nBacteria are more resistant when irradiated at frozen temperatures compared to chill or ambient temperatures; Szczawińska [26] reported that the mean D10 value for 13 Salmonella strains irradiated in chicken meat using gamma rays at 4°C amounted to 0.575 kGy, whereas for samples irradiated in a frozen state (at −18°C) the mean D10 value amounted to 0.687 kGy. Gamma-irradiated broiler halves packed in polyethylene pouches with the dose of 2.5 kGy should ensure Salmonella reduction adequate to eliminate naturally occurring contamination. In frozen poultry meat, similar effects can be expected after a dose of 3.5 kGy [26]. In the same work, Szczawińska [26] discovered that the packaging material exerted a very strong effect on radiation resistance of S. typhimurium. Two strains of S. typhimurium were irradiated in ground chicken meat at temperatures +4 and −18°C. D10 values obtained for salmonellae irradiated at +4 and packed in PE pouches were 0.194 and 0.210 kGy, whereas D10 values obtained for salmonellae packed in PA/PE laminate pouches at the same temperature were 0.424 and 0.533 kGy. D10 values obtained for salmonellae irradiated at -18°C and packed in PE pouches were 0.412 and 0.633 kGy, whereas D10 values obtained for salmonellae packed in PA/PE laminate pouches at the same temperature were 0.538 and 0.721 kGy. Thus, the contribution of food-packaging material and packaging system is a very important issue in this technology. Irradiation was also combined with curing salts. The combined effects of 1-kGy irradiation dose and curing salts (NaNO2 and NaCl) on the survival of S. typhimurium, S. agona, and S. cholerasuis in pork meat were studied by Szczawiński et al. [33]. Salmonellae were inoculated in ground M. longissimus dorsi, and irradiated at 1 kGy dose. The three experimental groups were designed. The meat was treated with 100 mg NaNO2, 200 mg NaNO2,and 200 mg NaNO2 plus 3% NaCl. Meat samples were stored at 0–2°C for 3 weeks or at 20°C for 7 days. The authors reported that irradiation at 1 kGy dose reduced Salmonella number by 1.2–2 logs and that an additive effect of curing salts and irradiation was observed at low temperature of storage, and that synergistic effect of irradiation and curing salts was observed at temperature abuse [33].
\nPoultry, as already mentioned, as regards the radicidation, has been recognized as one of the best candidates for irradiation aiming a reduction or elimination of food-borne pathogenic bacteria such as Salmonella spp. and Campylobacter spp. Irradiation of poultry up to an overall average dose of 7 kGy was proposed by the Scientific Committee on Food [24] with the purpose to improve microbiological safety.
\nSalmonella caused 38.18%, the highest number of outbreaks and human cases among all causative agents according to data of EFSA for 2014 [34]. Raw poultry meat and poultry products are vehicles of those two food-borne pathogenic bacteria. In the EU, in 2013 [34], Salmonella was detected in 3.5% of the broiler meat. At retail, the overall proportion of Salmonella-positive samples was 7.5%, higher than at slaughterhouse (4.9%) and at the processing plant (2.6%) level [34]. Since December 2011, a Salmonella criterion for S. enteritidis and S. typhimurium in raw poultry entered into force [35].
\nIn 2013, EFSA [34] reported that Salmonella was found in 0.3% of the 4776 samples of RTE broiler meat products tested at retail or at processing (0.1% of single samples and 1.9% of batches). Of the 2100 tested units of RTE products from turkey meat, only 0.1% in total were found to be Salmonella-positive [34].
\nKudra et al. [36] studied the survival of S. typhimurium subjected to irradiation combined with high-CO2 + CO MAP in chicken meat product. The authors did not find significant difference between D10 values for bacteria irradiated in vacuum (0.55 kGy) or in high-CO2 + CO MAP (0.54 kGy). The dose of 1.5 kGy decreased the number of salmonellae by three logs. Salmonella presence was detected in both packaging systems during cold storage. During storage of this meat product at temperature abuse (25°C), Salmonella was able to grow in both packaging systems. The authors concluded that low-dose irradiation is a suitable method for destruction of this pathogen; however, packaging system did not exert significant influence on Salmonella number during storage at low temperature. The authors concluded that if the initial contamination of these pathogens is high, cross-contamination of ready-to-eat food at temperature abuse of the product is likely to continue to be a food safety concern regardless of irradiation treatment doses or packaging treatments.
\nSzczawińska [26] reported that the mean D10 value for 13 Salmonella strains irradiated in chicken meat using gamma rays at 4°C amounted to 0.575 kGy, whereas for samples irradiated in a frozen state (at −18° C) the mean D10 value amounted to 0.687 kGy. Gamma-irradiated broiler halves packed in polyethylene pouches with the dose of 2.5 kGy should ensure Salmonella reduction adequate to eliminate naturally occurring contamination; in frozen poultry meat, similar effects can be expected after a dose of 3.5 kGy [26].
\nNassar et al. [37] evaluated the survival of Salmonella virchow inoculated into raw chicken carcasses as a result of radiation treatment (dose range of 2–7 kGy) or disinfection with three chemical substances. The presence of salmonellae in chicken meat was not detected after 7 kGy dose; however, after chemical disinfection this pathogen was still present.
\nOn the basis of the various published data, it seems that the dose up to 7 kGy for frozen poultry and about 3.5 kGy for unfrozen meat can be recommended to reduce the most radioresistant vegetative pathogenic bacteria by five logs [18].
\nThayer et al. [38] compared gamma radiation resistance of a mixture of salmonellae (S. dublin, S. enteritidis, S. newport, S. senftenberg, and S. typhimurium) in the so-called “exotic” meats such as ground bison, ostrich, alligator, and caiman meats at 5°C. The type of meat did not significantly alter the radiation resistance of salmonellae, and the D-value of 0.53 ± 0.02 kGy for Salmonella spp. was obtained. In the conclusions, authors emphasized that the efficacy of the radiation treatment in elimination of Salmonella spp. in exotic meats and non-exotic meats (e.g., poultry) is similar, thus similar control measures can be applied to ensure exotic meat safety. When considering cooked chilled and other ready-to-eat poultry meat products, the food-borne pathogens of higher concern are represented by L. monocytogenes and Salmonella spp. Hence, stricter microbiological criteria for poultry meat products intended to be eaten cooked, as amended by the Commission Regulation (EU) No 365/2010, which enhance food safety, must be respected by EU members [39]. Another (EC) regulation [40], which lays down general rules for food business operators on the hygiene of foodstuffs, requires food business operators to comply with microbiological criteria for foodstuffs. Regulation (EC) No 853/2005 [41], which sets specific hygiene rules for foods of animal origin, also requires that food business operators ensure compliance with microbiological criteria.
\nRadiation sensitivity of L. monocytogenes was determined by many authors (i.e., for example, see Ref. [42]). Reported D10 values for L. monocytogenes in cooked turkey nuggets were about 0.70 kGy, making L. monocytogenes generally more radiation-resistant than Campylobacter and Salmonella. Taking into consideration similar radiation sensitivity of L. monocytogenes and Salmonella spp., it can be assumed that doses of ionizing radiation effective for the inactivation of L. monocytogenes will be sufficient to inactivate salmonellae.
Ready-to-eat foods deserve special interest. Very often, they contain not only cooked poultry or other meats and cooked seafoods but also raw meats which are consumed without heat treatment (e.g., “filet américain” composed of raw beef meat). Thus, those complex RTE foods may represent an individual specific hazard to consumers since they are often composed of a mixture of several types of ingredients. RTE foods vary by country and may include, for example, dried meat (beef jerky), uncooked and fermented minced meat products (salami), cooked offal or minced meat products (chicken liver pâté or luncheon sausage), and cooked whole meat products (ham) [43]. Gormley et al. [44] conducted a wide study on microbiological quality of ready-to-eat specialty meats (2359 samples of continental sausages, cured/fermented, and dried meats) and reported that 0.4% were unacceptable due to the presence of Salmonella spp. or L. monocytogenes (>10(2) CFU/g). These unacceptable meats were all prepacked prior to supply to retail premises indicating that contamination with bacterial pathogens occurred earlier in the production chain; the authors emphasize how important it is to prevent food contamination before final packaging and to control conditions of storage.
\nSong et al. [45] investigated the efficacy of radiation treatment and fumaric acid on the reduction of L. monocytogenes and S. typhimurium inoculated into sliced ham. The authors noted the decrease of number of listeriae and salmonellae by 2.42 and 3.78 logs, respectively, after irradiation of this ready-to-eat product while the decrease of only one log for both organisms was found after acid treatment.
\nThe US Food and Drug Administration (FDA) is currently evaluating a petition to allow irradiation of RTE meats in the United States including deli turkey, ham, pastrami, beef bologna, bacon bits, and pepperoni. The basis for the petition is data reported by Sommers and Mackay [46].
\nThe authors observed in their study that irradiation of food-borne pathogenic bacteria with a dose of 3.75 kGy on ready-to-eat meats caused reduction of bacteria comparable to that obtained due to pasteurization, that is, minimum of five logs.
\nSommers and Boyd [47] discovered that doses in the range of 2–4 kGy eliminate Salmonella spp. in many RTE foods.
\nThe ability of ionizing radiation to inactivate E. coli O157:H7, Salmonella, L. monocytogenes, and S. aureus inoculated onto a frankfurter on a roll product containing the antimicrobials sodium diacetate and potassium lactate in the presence of an MA (100% N2, 50% N2 plus 50% CO2, or 100% CO2) was investigated. The authors reported that the radiation resistance (D10 values) for Salmonella in frankfurter on a roll product was from 0.61 to 0.71 kGy. MA had no effect on the radiation resistance of the pathogens. During a 2-week storage period under mild temperature abuse (10°C), both salmonellae and other pathogens were not able to proliferate on the frankfurter on a roll product, regardless of the MA used. Although the pathogens were unable to proliferate on the frankfurter on a roll product during the storage period, the application of a postpackaging intervention step was needed to actually inactivate the food-borne pathogens. The authors concluded that, when applied as a terminal intervention as part of a HACCP plan, food irradiation could reduce the risk of food-borne pathogens on complex ready-to-eat foods such as sandwiches. It seems that intervention technologies including ionizing radiation, antimicrobials, and modified atmospheres (MAs) can be used to inhibit the growth of or inactivate food-borne pathogens on complex ready-to-eat foods such as sandwiches. Cárcel et al. [48] in their study elaborated mathematical model for the most efficient elimination of Salmonella spp. from two poultry products taking into consideration shelf life and sensory attributes. It was concluded that in the case of hamburgers, the optimum calculated dose was 2.04 kGy, which guaranteed the safety of the product and provided the best combination of sensory and instrumental attributes. As regards the steaks, the optimum assessed dose was 1.11 kGy, significantly lower than for hamburgers.
\nAccording to the data of a research project of a joint Food and Agriculture Organization/International Academy of Engineering (FAO/IAE), the application of ionizing radiation combined with other methods used for food preservation offers improved safety of many various prepared meals and longer shelf life [49].
\nKang et al. [50] studied the efficacy of radiation treatment combined with leek (Allium tuberosum R.) extract on the survival of several food-borne pathogens inoculated in pork jerky. The authors used doses in the range of 0.5–4 kGy. The D10-value for S. typhimurium irradiated with leek extract was 0.32 kGy and without this extract 0.39 kGy. The results prove that this combination strengthens both microbiological safety and shelf life of this meat.
Raw fish and shellfish can be contaminated with pathogenic bacteria such as Salmonella, Shigella, Vibrio parahaemolyticus, vulnificus, Vibrio cholerae, S. aureus, and viruses.
\nAccording to the data delivered by the United States Department of Agriculture (USDA) [51], Salmonella was found in 21% of 153 aquaculture catfish collected from aquaculture ponds and retail markets. The U.S. Food and Drug Administration data from 1998 to 2004 on examination of seafood import refusal identified Salmonella contamination to be the most frequent violation in catfish (41.91% of violation categories). Hatha and Laksmanaperumalsamy [52] found Salmonella spp. in 14–25% of fish belonging to 18 families. On the basis of the data presented in the literature, along with outbreak data and FDA import refusal data, it can be concluded that the highest microbial hazard associated with catfish consumption is Salmonella spp. Raw finfish might contain V. parahaemolyticus, Salmonella spp., or L. monocytogenes [53]. According to the report of USDA, nontyphoidal Salmonella spp. in raw and RTE catfish are considered as higher priority microbial hazards [51]. In terms of risk assessment related to catfish consumption, USDA estimated that the mean reduction of Salmonella per catfish serving caused by frying is about two logs, and caused by baking is about three logs [51]. Thus, it seems that such reduction of Salmonella spp. number, taking into consideration that naturally contaminated foods contain usually low levels of salmonellae, may significantly lower the risk of food-borne disease due to consumption of contaminated catfish. These findings could partially explain the differences between a significant contamination of raw finfish by pathogenic bacteria and relatively small number of outbreaks in which etiologic agent is Salmonella spp.
\nThe monthly data on import refusal published in the USA prove that 1/10 of the refused products are seafood products and that second in terms of rejection reason is the detection of Salmonella spp. [54]. Risk analysis conducted in New Zealand by Reed [55] for fillet meat of Pangasius spp. fish from Vietnam considered that contamination of fillets with water not of a suitable purity could result in the presence of exotic strains of Corynebacterium diphtheriae, E. coli, Salmonella spp., V. cholerae, and Cryptosporidia spp., which is a risk to human health. Shabarinath et al. [56] studied the prevalence of Salmonella in seafood samples by conventional culture and by a DNA-based molecular technique, polymerase chain reaction (PCR). Using PCR, which was considered to be better method, they isolated Salmonella spp. from over 50% of seafood samples collected from the southwest coast of India; 14 of 19 isolates belonged to serovar Salmonella enterica Weltevreden.
\nThe FAO experts in their report, after thorough evaluation of Salmonella spp. problem related to seafood, concluded that good hygienic practices during aquaculture production and biosecurity measures can minimize but not eliminate Salmonella in products of aquaculture [57].
\nAmong various seafood, shrimp as the largest single seafood commodity in value terms (at around 15% of the total value of internationally traded fishery products in 2012) mainly produced in developing countries such as South and East Asia and Latin America deserves special attention [58] particularly that the consumption of this commodity consumption has been trending upward.
\nNorhana et al. [59] in their comprehensive review paper on prevalence, persistence, and control of Salmonella and Listeria in shrimp and shrimp products indicated that the continued reporting of the presence of these bacteria in fresh and frozen shrimps, and even in the lightly preserved and ready-to-eat products, shows that the existing hygienic practices in fishery industry are insufficient to eliminate these pathogens which have been isolated from shrimps and shrimp products on a regular basis since the 1980s. Shrimp is frequently imported from tropical and subtropical areas and reports indicate that the product does not always meet the microbiological standards set for EU-producing countries or USA, because of either contaminated production sites or unhygienic processing conditions.
\nSalmonella bacteria are associated with pond water, sediment, and shrimp throughout the culture cycle, including the pre-stocking period, farming phase, and harvest. Untreated chicken manure used to fertilize ponds and droppings from aquatic birds are significant sources of Salmonella. The survival rate of the microorganism is enhanced by nutrients, manure, and feed present in the pond system and by the favorable interaction of various biological and physical factors [60]. Shrimps are usually eaten fully cooked. The major health hazards with these products are contamination during or after processing.
\nPinu et al. [61] evaluated the microbiological condition of the frozen shrimps found in the local markets and departmental chain shops of Dhaka city. Pathogenic bacterial load was found greater in the samples of departmental shops rather than that of local markets. The researchers found Salmonella spp., Vibrio spp., and Shigella spp. in shrimps’ samples and discovered that the samples collected from local markets and departmental shops were heavily contaminated and were of special concern for human consumption.
\nAsai et al. [62] reported that the examination of 353 samples of 29 types of seafood revealed that S. enterica serotype Weltevreden was isolated from two of 47 black tiger prawn samples. The contamination levels of Salmonella were in a range of <30–40 most probable number per 100 g. Asai concluded that these results indicate the possibility that shrimp and prawns contribute to food-borne infections.
\nIn recent years, safety risks are associated to the consumption of raw or subjected to mild heat treatment fish and shellfish; molluscan shellfish (oysters, clams, mussels, and scallops) are often consumed whole and raw. Huss et al. [54] and Olgunoglu [63] in his comprehensive review on Salmonella in fish and fishery products show that the pathogens of concern in this seafood include both bacteria (e.g., Vibrio spp., Salmonella spp., L. monocytogenes, Shigella spp., C. jejuni), viruses (e.g., hepatitis A virus and norovirus), and parasites. Molluscan shellfish feed on phytoplankton and zooplankton. They are passive feeders that filter and concentrate pathogens present in harvest area. Their environment, particularly near-shore harvest water, is contaminated from sewage, which may contain pathogens from both human and animal fecal sources (e.g., V. cholerae O1 and O139, Salmonella spp.). Also, poor sanitary practices on the harvest vessel, poor aquacultural practices, and transportation can cause contamination of fishery products.
\nAs observed in previous years, the food category with the highest level of non-compliance at processing was RTE fishery products (4.7% of single samples and 10.8% of batches), mainly in smoked fish [34].
\nDistribution of strong-evidence outbreaks by food vehicle in the EU in 2014 indicated that crustaceans, shellfish, molluscs, and products thereof were responsible for 8.1% of outbreaks with strong evidence (data from 592 outbreaks with strong evidence) [34]. Taking the above-mentioned data into consideration, health authorities in many countries including European Community emphasized that the increasing trend in raw fish consumption (sushi, sashimi, salmon, etc.) has been identified as a risk to human health. Oysters and mussels can cause food-borne illness. Consumer can contract food-borne salmonellosis due to consumption of raw oysters.
\nIt is generally known that the best method of controlling pathogens is to use a postharvest treatment. Some treatments, such as thermal treatment, ionizing radiation, and high hydrostatic pressure processing, reduce the number of pathogenic microorganisms (bacteria and viruses) while the long-term freezing most widely used method of food preservation is mainly effective in controlling parasites.
\nBrands et al. [64] reported that Salmonella was isolated from oysters from each coast of the United States, and 7.4% of all oysters tested contained Salmonella. Isolation tended to be bay specific. The vast majority (78/101) of Salmonella isolates from oysters were S. enterica serovar Newport, a major human pathogen, confirming the human health hazard of raw oyster consumption. Bakr et al. [65] showed that out of the 150 seafood samples examined, collected from 11 localities in Alexandria, Egypt, Salmonella was isolated from 10% of samples (shrimp, oyster, and mussel). In 1986, the Scientific Committee for Foods [24] recommended that fish and shellfish could be irradiated at doses up to 3 kGy. In the United States, FDA has approved the use of ionizing radiation for the control of V. parahaemolyticus and V. vulnificus and other food-borne pathogens in fresh or frozen molluscan shellfish. Irradiation of fresh and frozen molluscan shellfish may not exceed an absorbed dose of 5.5 kGy [53]. Also, FDA proposes radiation treatment for the control of food-borne bacteria in crustaceans with a dose of 6.0 kGy. The D10 values cited in the published literature for several Salmonella serotypes in grass prawns and shrimp homogenate ranged from 0.30 to 0.59 kGy. Thus, irradiation of crustaceans at a maximum absorbed dose of 6.0 kGy would be effective at controlling pertinent pathogens. The petitioner requested a maximum absorbed dose of 6.0 kGy to achieve a six-log reduction of L. monocytogenes. It can be expected that this dose should also eliminate majority of non-sporing pathogenic bacteria including Salmonella. Irradiation of fish and shellfish is intended, similarly like in the case of other foods to extend shelf life, reduce pathogen load, and inactivate parasites. Irradiation has been applied to fresh, frozen, as well as dried fish, fish products, and shellfish [18]. As for other foods, pathogenic bacteria are more resistant to irradiation in frozen state compared to chilled one. Most studies indicate that irradiation at doses recommended by the SCF (3 kGy) should yield two to five logs reduction of pathogenic, non-spore-forming bacteria for the majority of fish and fish products. Sommers and Rajkowski [66] determined the radiation D10 values for Salmonella inoculated onto seafood samples (scallops, lobster meat, blue crab, swordfish, octopus, and squid). The samples were frozen and irradiated in the frozen state (−20°C); D10 values for Salmonella ranged from 0.47 to 0.70 kGy. By contrast, the radiation D10 value for Salmonella suspended on frozen pork was 1.18 kGy. They concluded that radiation dose needed to inactivate these food-borne pathogens on frozen seafood is significantly lower than that for frozen meat or frozen vegetables. Salmonella spp. and other primary pathogens of concern can also be introduced after pasteurization. Some fishery products are cooked before they are packaged; therefore, they are at risk for recontamination between cooking and packaging (e.g., vacuum packaging, modified atmosphere packaging). Kamat and Thomas [67] evaluated the effect of fat content in fish on radiation sensitivity of L. monocytogenes, Bacillus cereus, S. typhimurium, and Yersinia enterocolitica. The radiation response of all those pathogens was examined in sardine with high fat and golden anchovy with low fat. The results clearly suggest that regardless of the level of lipid in fish, the application of a 3 kGy dose at refrigeration temperature would effectively decontaminate approximately 105 CFU g−1 of all the organisms tested, except spores of B. cereus. The authors concluded that the studies revealed a lack of influence of lipid levels in fish on radiation resistance of four food-borne bacterial pathogens.
\nJakabi et al. [68] studied the survival of S. enteritidis and S. infantis inoculated into oysters and sensory properties as the result of irradiation with doses in the dose range of 0.5–3.0 kGy. The number of those both Salmonella populations decreased after a 3.0 kGy dose by five to six logs. The authors also discovered that oysters irradiated with the highest dose were still alive and concluded that a dose of 3.0 kGy could be considered effective in inactivating Salmonella in oysters without changing their odor, flavor, or appearance.
\nThe SCF [24] recommended that shrimps could be irradiated at doses of 5 kGy which is considered to be an effective decontamination method. Ito et al. [69] reported that the dose of gamma irradiation necessary to reduce both S. typhimurium and L. monocytogenes in frozen shrimps at a level of below 10−4 per gram was about 3.5 kGy. Sinanoglou et al. [70] irradiated using a cobalt-60 gamma source frozen molluscs (squid, octopuses, and cuttlefish) and crustaceans (shrimp) with different doses. The authors noted the substantial decrease of mesophiles number in shrimp irradiated with the dose of 2.5 kGy, whereas after the dose of 4.7 kGy the presence of those bacteria in squid was not detected. Shrimp is considered separately from fish and shellfish given that certain pathogens (i.e., L. monocytogenes) require doses about 3 kGy for several log10 reduction. Sommers et al. [71] evaluated the effect of cryogenic freezing (−82°C, 3 min), and gamma irradiation on the survival of mixture of Salmonella spp. (S. schwarzengrund, S. bahrenfeld, S. weltevreden, and S. panama isolated from seafood, including shrimp), on raw frozen shrimp. D10 values for salmonellae irradiated in shrimp were about 0.56 kGy. The authors observed the decrease of Salmonella spp. number after cryogenic freezing and irradiation with a dose of 2.25 kGy by over five logs and that this effect persisted during 3 months storage at −20°C. The authors conclude that radiation treatment combined with cryogenic freezing offers big benefits in regard to frozen shrimp.
\nNerkar and Bandekar [72] studied radiation resistance of S. typhimurium and S. enteritidis inoculated at 1 × 108 cells/ml in shrimp homogenate and they determined that the D10 value was in the range from 0.30 to 0.40 kGy. Finally, they concluded that a dose of 4.0 kGy could be used to completely eliminate Salmonella in frozen prepackaged shrimp.
\nLuo et al. [73] studied radioresistance of non-spore-forming and spore-forming pathogenic microorganisms inoculated into shelf-stable foods, semi-dried pork, and fish which have been vacuum-packaged. The water activity (aw) of semi-dried food products ranged between 0.930 and 0.940 for pork, and 0.852 and 0.895 for fish. The authors observed that S. enteritidis was eliminated at a dose of 2.5 kGy in semi-dried fish, and the minimum irradiation dose required to inactivate this pathogen in pork was 5 kGy.
The skin of frogs and their internal organs are often contaminated with Salmonella spp. and other pathogens, such as E. coli and S. aureus. Although frog’s legs are cooked before consumption, there is a risk for cross-contamination.
\nThe highest radiation dose for frog’s legs suggested by the Scientific Committee for Foods is 5 kGy [18]. The most important hazard arises from contamination with Salmonella and other fecal pathogens occurring in frog’s legs at the time of deep-freezing. E. coli and S. aureus have been also found in frog’s legs. Tambunan’s [74] studies showed that irradiating frog legs artificially contaminated with Salmonella up to 106/g before freezing a dose of 3 kGy and above resulted in no detection of the bacteria. If irradiation was carried out after freezing, a dose of 4 kGy and above has to be used. The latter procedure appears to be more feasible commercially than the former one. It was concluded that a combination of chlorination, freezing, and irradiation with a dose ranging from 3 to 6 kGy should provide sufficient conditions for the elimination of Salmonella in the product.
Ionizing radiation in industry can be used to reduce the level of Salmonella spp. in both raw and cooked meats, poultry, and seafood. This intervention technology can be regarded as a Critical Control Point in the HACCP plan. Irradiation treatment, applied as the final processing step, seems to be of particular importance in the case of packed food products, including ready-to-eat food. In the USA, FDA [75] proposes radiation treatment with the maximum dose of 4.5 kGy for a variety of raw meats and meat products for the improvement of microbial safety and for shelf-life extension.
\nThe data from literature prove that the D-values for L. monocytogenes are similar to those reported for Salmonella spp. irradiated under similar conditions. Thus, Salmonella spp. in meats, poultry, and fish and shellfish including ready-to-eat foods may be controlled by the same dose required for L. monocytogenes.
\nIt should be noted, however, that dose range used for radicidation (2.5–10 kGy) is not sufficient to sterilize foods. Thus, all additional control measures (e.g., an unbroken cold chain, appropriate handling of raw meat, and procedures for cleaning disinfection and waste disposal, etc.) should maintain or even increase the beneficial effects of radiation treatment.
\nReferring to irradiation facilities, electron beams are much more useful for packs of relatively thin cooked, sliced meats, and other ready-to-eat products while gamma radiation is more suited for treating whole carcasses [76].
With increasing demands of worshiping, the world’s holy places are congesting at an alarming rate. Many reasons are attributed to this crowding, some of which are given below:
Growing human and worshipers’ population;
Increased purchasing power, high standard of living, and ease of travel caused sprawl at holy places;
Increase in spiritual life style and thoughts with diversion from main stream of life because of increase in unemployment and dissatisfaction rates;
Increase in awareness and beliefs about various faiths and religions.
The growing pressures on holy places are leading to degradation of land and water bodies besides causing noise due to unwanted physical agents (heat, fluid, electricity, light, sound and fire) at these places [1]. The sprawl and congestion at Holy places is narrowing the access to the human resource base, especially for rural poor, who are directly dependent on these places of worships for their day to day existence. In addition, it has resulted in a serious local shortage of material resources, which is affecting the global economy and people in all walks of life.
‘Noise’ is defined as a sensation of unwanted intensity of a wave, is a perception of pollutant and a type of environmental stressor [2]. An environmental stressor of noise can have detrimental effects on various aspects of health. It is important to filter out unwanted intensity of wave from power systems (such as heat, fluid, electricity, light, sound, fire and sun) with use of acoustic filters for sensors and transducers after proper signal conditioning. This chapter contains basic introduction on monitoring and its protocol for the policy instrument on noise protection and security from power systems at holy places. Lot of noise and discomfort levels has been observed due to crowding and unwanted physical agents at holy places. The effects of unwanted physical agents from various power systems at holy places need to be thoroughly investigated.
The power systems are classified as per source signals of solar power, electric power, light power, sound power, heat power, fluid power and fire power [1]. The acoustic filters as per source of noise signals are defined [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The filters are differentiated as per source signal of unwanted frequencies from solar power, electric power, light power, sound power, heat power, fluid power and fire power. Some examples of acoustic filters for sensors and transducers with their energy balance for a human brain along with human comfort and health are exemplified [1, 2]. A slide rule for noise measurement is illustrated along with noise grades and flag colors under limiting conditions [1, 2]. Detail discussions on dynamics of holy places are also presented later in the chapter.
There are various aspects of studying power systems. Numerous studies are conducted on power systems from energy and economic point of view. Taner and Demirci [13] presented energy and economic analysis of the wind turbine plant’s draft for the Aksaray city. A 1 MW of the wind turbine plant was calculated for energy and economic analysis. Taner [14] conducted scenario analysis for a wind power plant in the Cappadocia region. The region was selected due to its high wind potential. This study determined that the construction of wind power plant can be suitable for the Cappadocia region by using the escalation method of inflation. Topal et al. [15] studied the significance of a trigeneration (TG) system. In this theoretical study, a trigeneration system converts a single fuel source into three useful energy products (i.e. power, heating and cooling), and focuses on the simulation with direct co-combustion of poultry wastes. Taner et al. [16] presented a case study of energy management in a sugar factory in Turkey. The study has analyzed energy consumption, the quantity of material production, and figure out a suitable energy efficiency measures for the sugar factory. Topal et al. [17] performed thermodynamic analysis on Çan Circulating Fluidized Bed Power Plant (CFBPP) co-fired with olive pits. Taner and Sivrioglu [18] conducted energy and exergy analysis of a model sugar factory in Turkey. The study determines the best energy and exergy efficiency with mass and energy balances as per design parameters for a sugar factory. Taner [19] studied the optimization processes of energy efficiency for a drying plant. The objective of study was to find the optimum energy and exergy efficiencies for the drying plant (production of bulgur). Taner [20] studied the performance of a proton exchange membrane (PEM) fuel cell with variation of its pressure and voltage parameters. The objective of the study was to improve the performance, efficiency and development of modeling and simulations of PEM fuel cells with aid of experimental optimization. Taner and Sivrioglu [21] developed a general model (sugar production processes) based on data provided by a real plant through an exergy analysis. The study explored the improvement of performance indicators of a turbine power plant through thermoeconomic analysis.
Some studies are also conducted on monitoring of pilgrims of holy places. Suryavanshi and Pandita [22] developed Wireless Sensor Network (WSN) based parameters for each pilgrim, who is equipped with a mobile unit which consists of micro-controller, GPS, GSM module, LCD, heartbeat sensor, temperature sensor, keypad and battery. Server unit initiate and transmit the query to mobile unit. On receiving the query by Mobile unit, it transmits its UID, latitude, longitude and a time stamp as a reply of received query to the server. Rajwade and Gawali [23] presented a real-time pilgrim tracking and health monitoring system, which was designed and implemented using Arduino in order to help the authority solve problem of pilgrim tracking and health monitoring system. A wearable unit was provided to each pilgrim for sensing the location and vital health parameters of that person. The authority in the control room was connected to the wearable unit using global system for mobile communication. The significance of this system is benefits to both pilgrims as well as to the authority.
Studies are also conducted on acoustic and other comfort parameters at religious places and mosques. Adnan et al. [24] presented a study to assess the acoustic quality level of three public mosques in Batu Pahat. They presented that good acoustic quality is necessary for appreciation in prayers. Karaman and Guzel [25] investigated the objective parameters of sound for the main prayer hall of the Bedirye Tiryaki Mencik Mosque in Manisa (Turkey). Prawirasasra and Mubarok [26] studied Syamsul Ulum Mosque (MSU) located at Telkom University, Indonesia for its actual acoustic condition and acoustical design. Main hall was considered as primary venue and is taken as analysis area. Measurements of the mosque covered only speech-related objective parameters; reverberation time (RT), Definition (D50), Sound Strength (G) and Noise Criteria (NC). Gul and Calıskan [27] discussed the design issues of a contemporary mosque, namely, Dogramacızade Ali Pasa Mosque in Ankara, Turkey. Architectural design parameters are evaluated supported with acoustical parameters with aid of computer simulation. Sezer and Kaymaz [28] studied users’ perception of indoor environmental conditions in historical mosques in Turkey. The study focused on thermal, visual and acoustical comfort. For this purpose, a user’s satisfaction survey was conducted to eight historical mosques’ users in Bursa.
Few relevant papers on wind energy conversion and their annoying effects are briefed here. The annoying effects of wind energy conversion were investigated by Pohl et al. [29]. The study combined the methodology of stress psychology with noise measurement with an integrated approach and residents of a wind farm in Lower Saxony were interviewed on two occasions (2012, 2014) and given the opportunity to use audio equipment to record annoying noise. In another study, Krug and Lewke [30] presented a general overview on electromagnetic interference (EMI) with respect to mega-watt wind turbines. Possibilities of measuring all types of electromagnetic interference were explained with emphasis on a GSM transmitter mounted on a mega-watt wind turbine. Karpat and Karpat [31] reviewed and discussed electromagnetic compatibility (EMC) for a wind turbine.
The need of the hour is to conserve these holy places and their habitants. This however requires long term planning and judicious management, developed on the basis of sound scientific knowledge on the status and dynamics of the different holy places and their habitants along with their interaction with the environment and their physical agents. Such information is few and far apart, resulting in a poor understanding of the noise systems at these places.
It is essential therefore to generate a global data base on the present condition of the different noise system parameters at these places. Developing such an information bank, is not easy task, for at following reasons: (i) the existing diversity in noise systems at these places, because of wide variations in climate, topography, land use patterns, noise types, life forms and human societies makes this task immense; and (ii) this diversity in noise systems and human societies, have resulted in very distinct resource use patterns that are area specific.
The data when generated could be used for local specific planning of holy sites, participatory management and appropriate conservation strategies.
Micro-planning also referred to as local or decentralized planning is probably necessary for efficient use, management and conservation of holy places [32]. The best source of such information would be the local communities who regularly use these holy places for their basic survival needs, though very little has been learnt from them. Local specific data is therefore scarce, and collecting them is not easy job.
One method of achieving this goal would be, to promote studies on monitoring noise system data parameters at these holy places. Involving the literate local communities, youth and non-governmental organizations, in the task of monitoring, could be one way of solving this problem. Local people with collaboration of experts monitoring their own local habitants as well as monitoring their data would be more effective.
Monitoring is a tool, that could be used for developing a data base for micro level planning;
Monitoring is a process of inventory repeated at regular intervals of time, which can be used for building ongoing or continuous data base of noise systems parameters at holy places and their habitants;
The first study on a given parameter may be used as the baseline data or information used for comparisons with the periodically monitored information;
Monitoring gives an in depth understanding of the status and dynamics of the noise data resources in the ecosystem;
It identifies the needs of the community;
It helps in evaluating people’s own actions;
It promotes better resource planning both at the individual level and at the community level;
It gives a continuous feedback during project implementation thus ensuring quality;
It helps in evaluating real-time data base of noise systems;
It provides an information base for future projects;
It furnishes information for decision makers;
Monitoring is therefore an essential aspect of noise systems resource planning and management.
As stated by Odum (1983), the term ecosystem means ‘systems of the environment’. Thus, the physical environment in a given area or unit, with all the living components there, together with the network of interactions among these people and with their physical environment constitutes an ecosystem [32].
The first part in noise systems monitoring study is to define a geographical area of the holy place where the study is to be conducted. Once the study area is selected, some important background information about this region needs to be collected in order to plan and conduct a scientific study on noise systems monitoring. This information is mainly on two aspects of the chosen study area, namely the socio-economic features and acoustic filters use patterns.
Given below is a list of background information that may be collected from the ecosystem of holy places and their habitants:
Historical and cultural information about the area (e.g. changes in soil quality, water quality and its availability, traditional spiritual practices etc.);
Information on social, economic, educational, demographic (local and transit population), health and development activities;
Maps of the land;
Soil conditions;
Facts on water resources, rainfall, solar and temperature pattern;
Data on all the households in the noise ecosystem;
Information on acoustic filters use pattern and their topography.
The theory of ‘Acoustic filters for sensors and transducers’ as proposed by the author is used in designing energy policy instrument for monitoring and evaluation of holy places and their habitants [1]. The noise data monitoring protocol has to be structured with a systematic approach. Depending upon interaction with local authorities of the holy places, a specific region specific monitoring protocol can be established on a case to case basis.
A monitoring protocol and its questionnaire can be used for survey of noise ecosystem at holy places. These questionnaires are related to the monitoring and assessment of noise that has to be abated. These noise monitoring surveys are conducted for variety of reasons. These can be: (i) evaluation of current noise levels at holy places; (ii) assess the noise exposure of habitants in their dwellings; (iii) identify sources of noise; (iv) establish a base line data for noise; (v) establish community response through measurement and verification of noise data; (vi) establish laws and legislation for setting up permissible noise levels; and (vii) develop and validate noise models for simulation.
In the monitoring survey, for each parameter the following are explained: (i) the aim of monitoring; (ii) importance of monitoring; (iii) sampling techniques; (iv) the procedure to be followed; and (v) recording and analysis of information. Points that can be considered while taking up a monitoring program: (i) visits to holy places should be structured and informed well in advance; (ii) appropriate modifications can be adopted for field methods depending on local conditions; (iii) developing a good relationship with the local people and organizations is necessary for field monitoring; and (iv) certain rules and precautions should be adopted during the field work depending upon faith and religion.
The first step in noise monitoring program is to collect scientifically sound information or data which can be used for further analysis and interpretation. This can be achieved by appropriate procedures to the noise parameter that is to be investigated. Sampling methods simplify the process of collecting scientifically accurate information. Such data can be used for further analysis to reveal reliable patterns and features of the parameters of the noise monitoring study.
This is the first step for a noise monitoring investigation. Utmost care should be taken while collecting the data. A description of data collection methods is briefed here. There are two distinct methods of data collection. Primary and Secondary; Primary data collection involves data that is directly collected during the process of investigation. Secondary data collection involves data that is collected from different sources (i.e. data that is already available).
Methods of primary data collection include: (i) tapping the local knowledge; and (ii) direct measurements. In tapping the local knowledge, the members of the local community are an excellent source of information. They can provide valuable information on the local data. Two methods may be employed to collect information from the local source: (i) formal interviews; and (ii) informal interviews and participant observation. In both the above methods the investigator directly contacts the local inhabitants from whom the information has to be collected. Formal interviews are conducted when: (i) the objectives of the study are clearly defined prior to the interview; and (ii) the contents of the interview are distinctly listed. A structured questionnaire is generally used for this purpose.
A questionnaire consists of a list of questions related to the noise monitoring investigation [33]. This is prepared by the investigator who collects the information in the space provided in the questionnaire.
Preparation of questionnaire requires a great deal of understanding and thought about the noise system and its affected ecosystem. Some general principles which may assist in drafting the questionnaire may consist of the following parameters:
The number of questions should be kept to the minimum;
The questions should be relevant to the objectives of the noise monitoring program;
The questions should be short and in simple words. They should be unambiguous and easily understood;
Questions should be arranged in a logical sequence such that, those pertaining to the background of the respondent (i.e. person who is being interviewed) should precede questions on the main information. The respondents could express their views toward the end of the questionnaire;
As much as possible, the questions should be framed in such a way so as to extract brief, clear answers like ‘yes’ or ‘no’;
It is desirable to pre-test the questionnaire (i.e. try it once in the field) in order to check its effectiveness and to eliminate any drawbacks.
Informal interviews and careful observation of the subject often gives better information, as this method, does not have the obvious limitations of the formal approach. Here, the subject without being self-conscious may offer better information. In informal interviews, the number of questions should be limited and relevant to the objective so that the interviewer is able to recall the information later. The interviewer should document the information and observations as soon as possible after the informal interview.
In the direct measurements, the investigator directly measures to find out the required information. Direct measurements can give better information on the various parameters that will be collected and analyzed. Sampling is an important tool which helps in better understanding the quality and quantity of an entire noise ecosystem of holy place and its habitants. When the study area is very large, an extensive study demands enormous amounts of money and human resources. A portion, or sub-set of the entire population referred to as a sample, is therefore chosen for a detailed assessment. Such a careful selection of sample is considered to be as good as examining the entire population. Sample size may be selected depending on: (i) degree of accuracy desired; (ii) time availability; (iii) available financial and other resources; and (iv) available manpower.
There are many sampling methods for different kinds of ecological studies. In this manual simple random sampling and stratified random sampling are described because they are widely used. These methods result in more reliable representative distribution of samples.
The simple random sampling is used for a homogeneous population. In this technique sample selection is done randomly so that each and every section of the population has the same chance of being included in the sample. This process results in less chance of bias. There are two methods: (a) Lottery method: This is followed to ensure the randomness. In order to use this method for selecting the samples, the names of all the items of the entire population are individually written on paper slips. The slips are folded and scrambled. The numbers are selected using the lottery method. This process is difficult to implement when the population is large. In small population, as the paper slips are taken out, the number of paper slips reduces in the lottery box. Therefore the chances of each paper slip being picked up increases. (b) Random table: To avoid the problems involved in the lottery method the table of random numbers is used. The random table has been tested for its randomness which is well established. Usually the random table gives the figures in four digits. In random sampling the sample size should be large.
Stratified sampling is done if the population is heterogeneous or is made of distinct groups. The population is first classified or divided into the different groups. For example, if a human population study is done in a village the population can be divided into sub groups based on the type of acoustic filters in different households. Each of these groups is distinct and forms a division. The households in a noise ecosystem can be classified according to their socio-economic status (and type of acoustic filter being one of the determining criteria). The stratified random sampling method is considered as the most satisfactory and efficient method as it gives more representative samples. It should be noted however that, great care should be taken while dividing the population into different groups.
Data collection is followed by presentation, analysis and interpretation. After the data collection, it is necessary to be aware of methods of organizing data and performing basic statistical calculations even before one begins the study. Organization involves classifying and tabulating the data collected which is then analyzed and presented in an orderly form.
Methods of secondary data collection involve the information which is already available from different sources and should be collected prior to the field investigation and measurements. These can be: (i) recorded information, which are published data from governmental and non-governmental agencies, scientific institutions and historical records; and (ii) group discussions with the local community, which involve informal group discussions with members of the local community can yield valuable information. This helps in identifying some of the salient features of the ecosystem or community to be studied, which in turn helps in deciding on the noise system parameters that are important in that ecosystem. This also helps in building good rapport with the local community which is essential to collect good information. Discussions can also be held with a few key informants. Maps are essential tools in the monitoring exercise. They give quantitative information on a geographical or spatial scale. Maps are simple, effective and can therefore be easily understood. One can visualize vast spatial information at a glance. Maps tell us exactly where the selected study area is, and in addition, gives details on the physical features of the holy place. This saves considerable amount of time in the field. Remote sensing is restricted to methods which use electromagnetic energy, to collect information on the different geographical features on the earth’s surface. Based on the physical and chemical properties (tone, texture, shape and location), the different objects on the surface of earth, reflect, re-radiate or emit varying amounts of electromagnetic energy in different wave lengths. The measurements of the reflected, re-radiated or emitted electromagnetic radiation, forms the basis for understanding the characteristic features on the earth. These typical responses are used to distinguish the objects from one another.
Interpretation is making conclusions based on the analyzed data. This is the most important part of the investigation. The data is interpreted based on the trends, patterns, principles of noise ecosystem and its concepts. The information thus analyzed and interpreted requires to be communicated to different groups of the community and various stakeholders like, decision makers and planners, researchers, students and general population. Report making is one method of communicating the findings to these target groups. The language and method used in preparing the report should vary depending on the group for whom it is aimed.
Interpretation helps to take decisions and plan developmental work. The whole task of investigation fails if the conclusions drawn are not correct. A wrong or incomplete interpretation may mislead the decision making process. While interpretation of data, other associated and related factors should be considered.
In interpretation of data, following points should be considered:
Bias or preconception must be avoided while interpreting data. Conscious or unconscious bias on the part of the investigator leads to false interpretations;
While making comparisons there should be consistency in defining the noise monitoring parameters under study;
General conclusions should not be made based on inadequate data. Conclusions driven based on micro-level data of noise ecosystem should not be generalized or extrapolated at the micro-level;
While interpreting the data, other relevant variables should be considered. This is applicable specially to noise ecosystems as the interactions between the different factors are too many;
Smaller differences should not be neglected as these may lead to important conclusions;
Devising of any hypothesis should be supported with sufficient data.
Report making can be done in different ways. Three forms of report are: (i) a scientific reporting for researchers, students, teachers and other stakeholders who are involved in similar investigations; (ii) reporting for planners and decision makers and other governance officials; and (iii) reporting for literate local communities.
Scientific reporting gives a detailed account of the investigation and includes the methodology, data and a complete view of holy places and their dynamics. It should also analyze the findings and give possible reasons for them. Such report helps in comparative analysis of various noise ecosystems. A detailed account of the material and methods used for investigation should be provided. It is important to clearly describe the procedures followed in the investigation. Any noise ecosystem study should have a description of the holy site. A description of the holy site should include its historical, social and cultural background, weather, soil conditions, demographic factors and acoustic filters use pattern. Tables, diagrams, graphs and photographs should be used to support the description. This is for easy understanding and interpretation of the results of the investigation. The holy site description is followed by description of results, discussions, future planning, summary and references.
Reporting for planners and decision makers and other governance officials do not have much interest in detailed and technical scientific reports. This group is normally interested in the planning. Time may also be constraint for this group, therefore a report targeted for this group should be brief and clear and may contain brief and easy to understand sections of site description, status of noise ecosystem, conclusions and future planning. Future planning section is of major importance to the target group. The proposed plan for holy place and its noise ecosystem must be explained from the ecological, economic, social and cultural points of view with adequate figures to support it. Both the benefits and drawbacks of the plan should be discussed.
Reporting for the literate local community should be simple, brief and clear. Too many technical details should be avoided. The report should revolve around the community’s interest. In the introductory part the importance and objectives of the study with reference to the community should be highlighted. Data which is relevant to the welfare of the community should be presented as simple as possible. Important conclusions drawn from the study should be emphasized. The proposed plan and the projected benefits as well as the possible drawbacks associated with it in terms of ecological, economic, social, and cultural considerations should be explained with brief discussions. The role of community members in the proposed plan should be mentioned. Any new technological information to be presented should be simplified with clarity. It is a good idea to provide the brief know how of the technology, with name of the provider and contact person.
The displacement for any charged particle is defined by change of its position. A displacement has length and direction. The physical quantities that have features like displacements are called vectors. Vectors have both magnitude and direction and combine as per rules of addition. The physical quantities that are defined by number and unit and that only have magnitude are called scalars. The behavior of gases over wide range of temperatures is predicted through kinetic theory model by average kinetic energy of translation.
In collisions with the source of an energy such as due to firing in air at the kinetic velocity of a bullet of a gun, the rotational and vibrational modes of motion are excited, which contribute to the internal energy of the air for propagation of sound waves. The total energy consists of kinetic energy of translation and kinetic energy of vibration of atoms in a molecule and potential energy of vibration of the atoms in a molecule. The magnetic energy also contributes to the total energy, however the available energy depends only on the temperature and has distribution of equal parts to each of the independent ways in which the molecules are able to absorb energy. The theorem (mention here, with no proof) is called equipartition of energy was deduced by James Clerk Maxwell. Each such independent way of absorbing energy is termed as degree of freedom for a molecule of gas.
The acoustic filters are defined based on the model of kinetic theory of gases for filtering unwanted frequencies of oscillations from a power system. It is a network with selective transmission for currents from a power system of varying frequency. A new theory for noise protection and security from power systems is presented. An acoustic filter is used to filter unwanted frequencies of oscillations from a power system. It is a network with selective transmission for currents from a power system of varying frequency. The noise protection and security is a crucial operation for obtaining a desired output from a power system.
The unwanted frequencies generated from a power system are removed by using an operational amplifier with different combination of filter arrangements. The filters are differentiated as per source signal of unwanted frequencies from solar power, electric power, light power, sound power, heat power, fluid power and fire power. The acoustic filter is an electrical analog circuit of various combinations of RC feedback circuit with an operational amplifier [1, 2, 3, 4, 5, 6, 7].
An operational amplifier is an integrated circuit that consists of several bipolar transistors, resistors, diodes, and capacitors, interconnected so that amplification can be achieved over a wide range of frequencies. The open loop configuration of an operational amplifier has the highest possible gain when running wide open. In the closed loop configuration, it is easy to control the gain due to negative feedback. This feedback is obtained by connecting the output to the inverting input through a potentiometer. The negative feedback is useful for volume control of a highly versatile amplifier. The gain in closed loop configuration is directly proportional to the feedback loop resistance.
The action of filtering the frequency from a power system is based on the variation in the reactance of an inductance or a capacitance with the frequency. The band of frequencies that can be removed from a power system can be at the low frequency end of frequency spectrum, at the high frequency end, at both ends, or in the middle of the spectrum. The filters to perform each of these operations are known respectively as low-pass filters, high-pass filters, band-pass filters and band-stop filters. There are many configurations of design of filters. The filters are divided into passive and active configurations. The passive filters are less effective simple circuits constructed with resistors, capacitors, and inductors. The active filters are useful in providing an effective filtering action than passive filters. The active filters require a source of operating power.
The criteria for definitions of filters for noise filtering is based on areas of energy stored in a wave due to noise interference, speed of wave and difference of power between two intensities of wave [6]. The filtered noise signals are considered from systems of solar power, electric power, light power, sound power, heat power, fluid power and fire power. The acoustic filters as per sources of noise are defined [12].
This filter is used to filter noise due to power intensities difference between two solar power systems. Example: window curtain, window blind, wall and sunglasses.
This filter is used to filter noise due to power intensities difference between two heat power systems. Example: house, insulation, clothing and furnace.
This filter is used to filter noise due to power intensities difference between two lighting systems. Example: 3-D vision of any object, cell-phone, electric bulb, television, computer and LCD screen laptop.
This filter is used to filter noise due to power intensities difference between two electrical power systems. Example: AM/FM radio clock with ear phones, telephone instrument with ear phones, cell-phone with ear phones and CD audio player with ear phones.
This filter is used to filter noise due to power intensities difference between two fluid power systems. Example: electric fan, pump, motor vehicle, river stream and tap water.
This filter is used to filter noise due to power intensities difference between two fire power systems. Example: lighter, matchstick, gas stove, locomotive engine and thunder-bolt.
This filter is used to filter noise due to power intensities difference between two sound power systems. Example: your vocal chords, organ pipe, thunder-bolt and drum beats.
Your body has feedback systems that regulate the internal environment of your body. The feedback systems make use of storage depots and numerous feedback loops. The monitoring of plasma calcium is a good example of negative feedback. The bones constitute large storage depots for calcium, for the plasma to withdraw these storage supplies in times of need. Our body’s homeostatic regulatory systems are represented by feedback loops. The feedback is considered negative, when it is compensating or negates any change. The negative feedback is essential to stabilize a system. The gastrointestinal tract, the lungs, the kidneys, and skin of your body make exchange of materials and energy between the internal and the external environments. A steady state is achieved by regulatory mechanisms involving the balance between the inflow and outflow of the internal environment that stabilizes the composition of the internal environment. The tendency to regulate the internal environment so that it is maintained in a steady state is called homeostasis.
The keeping of face beard (facial hair) and wearing of a knitted head cloth (patka) and a turban (pag) on your body has a logical and a scientific significance. The daily self-making folds of hair knots and making round folds of turban over the head of your body with colorful cotton cloths has following historical, medical benefits: (i) it indicate, protects and concentrate the disciplinary physical and mental strength of a person; (ii) it gives hair tonic to the growth of hairs on your body due to solar energy; (iii) the whole system acts as an acoustic filter and provides immunity to your body; and (iv) the folded Patka with style, folded design of hair knots on top of your head is your identity in time domain, the face beard on your body is a measuring ration and a sign of man, the turban with style, color, design is your identity in space domain.
The energy generated by metabolism rate of your body varies considerably with the activity of your body. A unit to express the metabolic rate per unit of area of your body is termed as met (1 met = 58.2 W m−2), defined as the metabolic rate for your body while seated quite (called sedentary). The variable which affects the comfort of your body is the type and amount of clothing that you are wearing. The insulation of clothing is defined as a single equivalent uniform layer over your whole body. The insulation value for clothing of your body is expressed in terms of clo units (1 clo = 0.155 m2-C W−1). A heavy business suit with accessories has insulation value of 1 clo, whereas a pair of shorts has 0.05 clo.
Table 1 has summarized units of noise and their limiting conditions [8, 9, 10, 11, 12]. Table 1 has also notated grades and flag colors under limiting conditions.
Noise grades and flag colors under limiting conditions.
Reference value of G2 = ±U signifies the limiting condition with areas of noise interference approaching to zero.
Figure 1 has presented a double-sided hexagonal slide rule with seven edges for noise measurement representing seven sources of noise. Reference value used for I2 is −1 W m−2 on positive scale of noise and 1 W m−2 on negative scale of noise. Positive scale of noise has 10 positive units and one negative unit. Whereas, negative scale of noise has 1 positive unit and 10 negative units. Each unit of sol, sip and bel is divided into 11 parts, 1 part is 1/11th unit of noise. The base of logarithm used in noise measurement equations is 11.
A double sided hexagonal scales of noise with seven edges (S denotes sun).
The results of noise filtering using various noise measurement equations for an outdoor duct exposed to solar radiation are tabulated in Tables 2–5 [2].
Solar irradiation (W m−2) | Air temperature difference (ΔT) °C | Noise of sol oS (oncisol) |
---|---|---|
450 | 15.50 | 28 |
550 | 18.90 | 28.93 |
650 | 22.40 | 29.7 |
750 | 25.90 | 30.36 |
850 | 29.40 | 30.91 |
Temperature difference and noise of sol with solar irradiation (air velocity: 0.75 m s−1).
Air velocity (m s−1) | Fluid power (W m−2) | Air temperature difference (ΔT) °C | Noise of scattering oS (oncisip) |
---|---|---|---|
1.35 | 47.62 | 15.28 | 17.72 |
1.05 | 37.0 | 18.22 | 16.50 |
0.75 | 26.45 | 22.40 | 15.02 |
0.45 | 15.87 | 28.15 | 12.65 |
0.15 | 05.29 | 29.80 | 07.64 |
Temperature difference and noise of scattering with air velocity (S = 650 W m−2).
(ΔT) °C | Mass flow rate (Kg s−1) | Thermal power (W m−2) | Noise of therm oS (oncisol) | (ΔT) °C | Mass flow rate (Kg s−1) | Thermal power (W m−2) | Noise of therm oS (oncisol) |
---|---|---|---|---|---|---|---|
15.50 | 0.01376 | 71.09 | 19.5602 | 15.28 | 0.0231 | 117.65 | 21.868 |
18.90 | 0.01275 | 80.325 | 20.119 | 18.22 | 0.0171 | 103.85 | 21.296 |
22.40 | 0.0120 | 89.6 | 20.614 | 22.40 | 0.0120 | 89.6 | 20.614 |
25.90 | 0.0115 | 99.2833 | 21.043 | 28.15 | 8.1 × 10−3 | 76.0 | 19.866 |
29.40 | 0.0111 | 108.78 | 21.505 | 29.80 | 6.2 × 10−3 | 61.59 | 18.898 |
Mass flow rate and noise of therm with (ΔT) °C.
Air velocity (m s−1) | Fluid power (W m−2) | Noise of scattering oS (oncisip) | Sound pressure (N m−2) | Sound power intensity (W m−2) | Noise of elasticity oB (oncibel) |
---|---|---|---|---|---|
1.35 | 47.62 | 17.72 | 557.5 | 752.7 | 30.36 |
1.05 | 37.0 | 16.50 | 433.65 | 455.33 | 28.05 |
0.75 | 26.45 | 15.02 | 309.75 | 232.31 | 24.97 |
0.45 | 15.87 | 12.65 | 185.85 | 83.63 | 20.24 |
0.15 | 05.29 | 07.64 | 61.94 | 09.29 | 10.12 |
Noise of elasticity with air particle velocity (Impedance Z0 = 413 N s m−3 at 20°C).
Noise monitoring data of holy places and their habitants can be collected in real-time domain with aid of computerized monitor and control distributed systems at master location. The system is called Supervisory Control and Data Acquisition (SCADA). The control may be automatic, or initiated by operator commands. The data acquisition is accomplished firstly by the remote terminal units (RTU’s) scanning the field inputs connected to the programmable logic controller (PLC). This is usually done at the fast rate. The central host will scan the RTU’s usually at a slower rate. The data is processed to detect alarm conditions, and if an alarm is present, it will be displayed on special alarm lists. Data can be of three main types. Analogue data (i.e. real numbers) will be trended on data analytics software (i.e. placed in graphs). Digital data (on/off) may have alarms attached to one state or the other. Pulse data (e.g. counting revolutions of a meter or counter) is normally accumulated or counted.
A typical SCADA system includes remote sensors, controllers, or alarms located at facilities of holy places, as well as a central processing system situated in an appropriate location. SCADA systems integrate data acquisition systems with data transmission systems and graphical software in order to provide a centrally located monitor and control system for numerous process inputs and outputs. SCADA systems are designed to collect information, transfer it back to a central computer and display the information to the operators, thereby allowing the operator to monitor and control the entire noise system parameters from a central location in real time.
SCADA system is composed of the following:
Central Monitoring Station;
Remote Terminal Units (RTUs);
Field Instrumentation;
Communications Network
The Central Monitoring Station (CMS) refers to the location of the master or host computer. Several workstations may be configured on the CMS. It uses a Man Machine Interface (MMI) program to monitor various types of data needed for the operation. The Remote Station is installed at the remote points in the facilities being monitored and controlled by the central host computer. This can be a Remote Terminal Unit (RTU) or a Programmable Logic Controller. Field instrumentation refers to the sensors and actuators that are directly interfaced to the remote locations in the holy facilities. They generate the analog and digital signals that will be monitored by the Remote Station. Signals are also conditioned to make sure they are compatible with the inputs/outputs of the RTU or PLC at the Remote Station. The Communications Network is the medium for transferring information from one location to another. This can be via telephone line, radio or cable.
A power system is defined as a power station with network of light, sound, heat, fluid, electricity, fire and sun, and its consumers living within its natural ecosystem vicinity area. Irrespective of the type of station, energy as a rule, produced on a centralized basis, which means that individual power stations supply energy to a common power grid and therefore, are combined into integrated power systems which may cover large territory with a larger number of consumers. Consumers are called habitants of the ecosystem vicinity area in the holy place.
Management of habitants through use of acoustic filters at the holy places from the perspective of protection from unwanted physical agents of various power systems is a need of time and a crucial energy policy tool. Thus management becomes the function of getting things done effectively by others. It is not just ‘doing’ – but ‘doing well’. Management primarily is a function of managing people or habitants first and then comes the materials, equipment and systems. If habitants work properly, systems perform well automatically. Management is principally a task of planning, coordinating, motivating and controlling the efforts and interest of others to achieve a specific objective. The functions of management in general are: (i) planning; (ii) organizing; (iii) directing; (iv) coordinating; (v) controlling; and (vi) decision making.
Planning can be done for holy places and forecasting anticipated growth of habitants. Planning is an activity of anticipating the future and discovering alternative courses of action. It involves in-out-lining what, how, where, when and by whom a particular job has to be done. It is against random action. Planning is the rational and orderly thinking about ways and means of achieving certain goals. It involves thought and decision-pertaining to a future course of action. If there is no proper planning—rashness, short-sightedness, random-working or haphazard setup in the performance of work.
Proper organization of holy places is required so as to cater the mechanism for all the necessary things required for their proper monitoring and evaluation. Organizing involves: (i) determination of activities; (ii) determining staff and their requirements, developing and planning qualified people in various roles and responsibilities; (iii) allocation of work; (iv) determination of authority and duty; and (v) delegation of power. Organizations calls for the matching of roles and responsibilities with individuals in such a way personal contentment and social satisfaction of people, is addition to achieving their well-being.
Knowing well that management is the art of getting work done through the people, management plans, organizers and staff. Directing involves energizing the organizational mechanism, activating it or putting it into action to carry out the management plan. Human resources have emotions, aspirations, sentiments, capacities of their own, etc. Direction of human resources is through leadership, guidance, supervision, communication and counseling. Human aspect should not be overlooked. Workers should be made to carry out their roles and responsibilities willingly, wholeheartedly and with good team spirit.
Coordinating is a process of achieving team spirit and unity of action among human resources at all levels. Even there are people of different origins, different psychologies and interests, and different capacities are engaged in holy places, and if there is disharmony, and inefficiency, and if the workers are poorly selected or improperly placed at holy places, their performance is greatly weakened. Coordination is necessary to achieve and maintain harmony and a sound working balance. Coordination is the integration, synchronization or orderly pattern of group activities. Coordination should not be confused with cooperation. Cooperation implies collective efforts put in by a group voluntarily in any work. It has no time, quantity, or direction element in its observations. Both coordination and cooperation are essential for effective management. The disintegrating forces which adversely affect coordination are: (i) diverse and specialized activities; (ii) empire building tendencies; (iii) personal rivalries and jealousies; and (iv) conflict of interest.
Controlling is the process of measuring the results obtained and measuring the deviation or error between what is realized and what is expected from a system or device. If there is deviation, suitable corrections have to be effected so that, realized result is in full or close agreement with the targets or expected/desired results. Control—ensures both qualitative and quantitative performance of work. Proper control ensures accuracy. Control also brings to light, any lapses in the management, hindering the satisfactory progress of work. Controlling at holy places involves: (i) setting up of standards or yardsticks for habitants; (ii) assessment of actual performed work; (iii) determination of deviation; and (iv) corrective action.
Decision making, basically is the process or means of selecting one alternative out of two or more available alternatives. At holy places, decision making covers all functions of management. Good management performs its functions with wise, conscious, effective and appropriate decision making. Success of decision making is with good management, through their workers by sound judgements and quick logical divisions. Decision making can be done effectively through: (i) statement of problem; (ii) collecting or finding alternative solutions; (iii) through full study and management experiments; and (iv) final judicious choice. Aids for making decisions consist taking wise and judicious and practical decisions, which are highly critical, complicated and also requires deep imagination. The techniques which have been developed for decision making are: (i) operations research; (ii) linear programming; and (iii) break-even analysis. Computer systems at holy places can be used to solve problem of decision making. This is because it involves numerous data. Decisions with regard to future course of action are important concerning—inventory control, working conditions, cost price volumes, investments, etc.
(i) to study complex problems of holy places. These problems are beyond the capacity of single specialists. These committees are called investigating and advisory committees; (ii) for achieving control and coordination, so that unity of action results. The committees to work for this action are the standing committees, being permanent in structure and action; and (iii) to train the new staff, regarding the problems, policies of the holy places. Standing committees called education committees or dissemination committees are appointed for this purpose.
Changes in the structure and operation of holy places and their habitants are necessary for the reason that with modern times, the management of holy places should move with times. It can be changed in several ways, to keep it in turn with the managerial performance so that high quality output is realized. Any holy place should be flexible enough to get adjusted to get adapted to ever changing practices in operation, from time to time. The structure should be such that conflicts, misunderstandings and all forms of friction, inefficiencies, indiscipline and other negative factors of holy places are avoided and a serene informal atmosphere is created in it. One of the important and necessary results of the dynamics of holy places is to achieve from the top most level to the bottom most grades so that following shortcomings are totally avoided: (i) delay in decision making; (ii) frequent and serious errors in decision; (iii) bottlenecks; (iv) inadequate communication; (v) lack of clear-cut-objectives; and (vi) frequent and serious clashes among different groups and so on. The presence of any of the above or all the above indicates poor organization of holy place. If such anomalies and other negative traits occur, the changes are absolutely necessary. But what is called ‘earthquake approach’ to make unnecessary drastic changes-should be guarded against. Because of significant growth of holy places due to increase of consumerism, modern economy, quite far reaching alternations may become absolutely necessary. The main purpose of changes should be to minimize the disturbing effects. Long range plan is more productive than the earthquake approach. In this long-run plan changes are put into effect over a period of years.
The management system at holy places is conceived as a multitude of elements being integrated and disintegrated in a random fashion. Consequently, it is difficult to reveal regularity and to define the system structure at holy places. However, for the system to perform its main function, consistent with the objective for which it has been devised, it is immaterial what the specific complexes will be, i.e., which facilities of holy places will be integrated in them. This implies that there must exist such a system structure that is sufficiently stable and adequately defines the system on hand. Two holy places having the same objective will never be exactly identical and consequently will have distinct structures. The differences occur as a result of different traditions, individual features of personnel and managerial staff, regional differences, and many other intangibles. However, these too must be embodied into a common framework from which an objective description may evolve in the form of an abstract structure. The approach of representing the management system as a purposeful process can be used at holy places. The goal programming method in which purposefulness peculiar to management systems is represented as an ordered structure of a tree of goals. This isolation of goals into an independent structure corresponds to a stratified approach in system theory, i.e., the structure of the goal stratum is evaluated. The goal stratum represents the system but from one side. The structure of goals is of static nature and gives only an indication of what is to be achieved, saying nothing of how this can be done. The functional structure is the one to answer this question, i.e., structuring in the functional stratum gives a clue to solve problems of evaluation and improvement of system performance. And, last but not the least, one should not overlook the physical structure of the system at holy place, which describes the relation between the physical objects or elements of the management system.
To summarize the discussions, a generalized discussion of modeling of management system at holy places is briefed here. The generalized modeling of holy places can be pursued with the use of entropy maximization principle [34]. The holy places are like a transportation terminal or hub, in which devotees are arrived by different modules: (i) maritime; (ii) railroad; and (iii) highway. There are also: (iv) storage depots of materials; and (v) environmental interconnections. This structure of five modules reflects the actual structure of the holy places. The interactions with these different components of holy places are called events. Events in turn may be viewed as elements of the functional structure of the holy place system. On the one hand, they are induced by other elements, and on the other, they generate new elements themselves. In a module, each event is associated with a set of integer-valuable variables which have physical meaning owing to the simulating nature of the model. At the same time, these variables constitute a mechanism of interaction of modules. A variable being written in a module implies an event for this module. Variables being read out in a module mean that the events which are established for this module by another module are recorded. This pattern of simulation modeling requires that the events to be modeled occur at definite time instants and be respectively synchronized. This is achieved by imposing control on the time of modeling. In this model each module is connected with a timer, operating as a synchronizing clock. Modules operate step-wise. At each step of module operation all the events established for it by other modules are evaluated and the event for which time is right is recorded. As the processing of events goes by, the timer changes the current time.
All the modules of holy place system describe the processes of arrival and departures of the transportation facilities, operation of servicing of habitants. The module of storage of materials deals with the processes of accumulation and storage of goods with all transportation facilities. Accordingly, it records the events associated with the arrival and departure of habitants. The module responsible for the impacts of the environment models the probabilistic and independent pattern of arrival and departure of vehicles (of habitants and materials). Operating interactively with the model implemented on a computer, the analyst can adjust the values of the key variables so as to achieve a satisfactory performance of the entire holy place. The maximum entropy principle is realized in that the distribution of arrival of vehicles is reduced to a random process, and the rates of service processes and the vehicular units are averaged. The degree of generalization may be established by the analyst depending on the interpretation of the events and noise systems being modeled. Of course management systems at holy places are not thermodynamic and their structures are stable away from a thermodynamic equilibrium. Borrowing from the non-equilibrium terminology, these systems may be categorized as dissipative structures.
The chapter has introduced the energy policy instrument for noise protection and security by monitoring and evaluation of holy places and their habitants. A theory for noise protection and security with use of acoustic filters is presented. The acoustic filters for filtering noise from power systems are defined. The power systems are classified as per source signals of solar power, electric power, light power, sound power, heat power, fluid power and fire power. Some advanced level configurations of acoustic filters for different power systems are described. Sensors and transducers for a human brain are illustrated. The example of turban as an acoustic filter is illustrated. Table 1 has presented the noise units under limiting conditions along with noise grades and flag colors. Figure 1 has illustrated sketch of a slide rule for noise measurement. A brief overview of integration of noise systems parameters with command and control center is also presented. Discussions on dynamics and modeling of holy places from management perspective are also presented.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10693",title:"Open Data",subtitle:null,isOpenForSubmission:!0,hash:"9fcbb8e096da084fb29d8f16aaecb061",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10693.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"831",title:"Transportation Engineering",slug:"vehicle-engineering-transportation-engineering",parent:{title:"Vehicle Engineering",slug:"vehicle-engineering"},numberOfBooks:4,numberOfAuthorsAndEditors:87,numberOfWosCitations:40,numberOfCrossrefCitations:32,numberOfDimensionsCitations:65,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"vehicle-engineering-transportation-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8840",title:"Intelligent and Efficient Transport Systems",subtitle:"Design, Modelling, Control and Simulation",isOpenForSubmission:!1,hash:"74ab35ec9e85ba37428df986d3a280ff",slug:"intelligent-and-efficient-transport-systems-design-modelling-control-and-simulation",bookSignature:"Truong Quang Dinh",coverURL:"https://cdn.intechopen.com/books/images_new/8840.jpg",editedByType:"Edited by",editors:[{id:"181747",title:"Dr.",name:"Truong Quang",middleName:null,surname:"Dinh",slug:"truong-quang-dinh",fullName:"Truong Quang Dinh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7408",title:"Transportation Systems Analysis and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"1a950b01c0e05eda01c6d2364c7af3aa",slug:"transportation-systems-analysis-and-assessment",bookSignature:"Stefano De Luca, Roberta Di Pace and Boban Djordjevic",coverURL:"https://cdn.intechopen.com/books/images_new/7408.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"845",title:"Intelligent Transportation Systems",subtitle:null,isOpenForSubmission:!1,hash:"f6fe626b6726413e8c6fc9652c0fb870",slug:"intelligent-transportation-systems",bookSignature:"Ahmed Abdel-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/845.jpg",editedByType:"Edited by",editors:[{id:"77687",title:"Dr.",name:"Ahmed",middleName:null,surname:"Abdel-Rahim",slug:"ahmed-abdel-rahim",fullName:"Ahmed Abdel-Rahim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"32777",doi:"10.5772/27546",title:'Applying Vehicular Networks for Reduced Vehicle Fuel Consumption and CO2 Emissions"',slug:"applying-vehicular-networks-for-reduced-vehicle-fuel-consumption-and-co2-emissions-",totalDownloads:2213,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"intelligent-transportation-systems",title:"Intelligent Transportation Systems",fullTitle:"Intelligent Transportation Systems"},signatures:"Maazen Alsabaan, Kshirasagar Naik, Tarek Khalifa and Amiya Nayak",authors:[{id:"70561",title:"Mr.",name:"Maazen",middleName:null,surname:"Alsabaan",slug:"maazen-alsabaan",fullName:"Maazen Alsabaan"},{id:"76166",title:"Prof.",name:"Kshirasagar",middleName:null,surname:"Naik",slug:"kshirasagar-naik",fullName:"Kshirasagar Naik"},{id:"76167",title:"MSc",name:"Tarek",middleName:null,surname:"Khalifa",slug:"tarek-khalifa",fullName:"Tarek Khalifa"},{id:"76168",title:"Prof.",name:"Amiya",middleName:null,surname:"Nayak",slug:"amiya-nayak",fullName:"Amiya Nayak"}]},{id:"32780",doi:"10.5772/26013",title:"Modelling, Simulation Methods for Intelligent Transportation Systems",slug:"modelling-simulation-methods-for-intelligent-transportation-systems",totalDownloads:4749,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"intelligent-transportation-systems",title:"Intelligent Transportation Systems",fullTitle:"Intelligent Transportation Systems"},signatures:"George Papageorgiou and Athanasios Maimaris",authors:[{id:"65268",title:"Dr.",name:"George",middleName:null,surname:"Papageorgiou",slug:"george-papageorgiou",fullName:"George Papageorgiou"},{id:"120176",title:"Mr.",name:"Athanasios",middleName:null,surname:"Maimaris",slug:"athanasios-maimaris",fullName:"Athanasios Maimaris"}]},{id:"32778",doi:"10.5772/27683",title:"An Investigation of Measurement for Travel Time Variability",slug:"an-investigation-of-measurement-for-travel-time-variability",totalDownloads:1769,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"intelligent-transportation-systems",title:"Intelligent Transportation Systems",fullTitle:"Intelligent Transportation Systems"},signatures:"Steven Chien and Xiaobo Liu",authors:[{id:"70788",title:"Dr",name:"Xiaobo",middleName:null,surname:"Liu",slug:"xiaobo-liu",fullName:"Xiaobo Liu"},{id:"70789",title:"Prof.",name:"Steven",middleName:null,surname:"Chien",slug:"steven-chien",fullName:"Steven Chien"}]}],mostDownloadedChaptersLast30Days:[{id:"53369",title:"The Effects of Urban Public Transit Investment on Traffic Congestion and Air Quality",slug:"the-effects-of-urban-public-transit-investment-on-traffic-congestion-and-air-quality",totalDownloads:1375,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Justin Beaudoin and C.-Y. Cynthia Lin Lawell",authors:[{id:"28419",title:"Prof.",name:"C.-Y. Cynthia",middleName:null,surname:"Lin Lawell",slug:"c.-y.-cynthia-lin-lawell",fullName:"C.-Y. Cynthia Lin Lawell"},{id:"194702",title:"Prof.",name:"Justin",middleName:null,surname:"Beaudoin",slug:"justin-beaudoin",fullName:"Justin Beaudoin"}]},{id:"53623",title:"Traffic Congestion Pricing: Methodologies and Equity Implications",slug:"traffic-congestion-pricing-methodologies-and-equity-implications",totalDownloads:1466,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Ammar AbuLibdeh",authors:[{id:"188094",title:"Dr.",name:"Ammar",middleName:null,surname:"AbuLibdeh",slug:"ammar-abulibdeh",fullName:"Ammar AbuLibdeh"}]},{id:"52739",title:"Financial Aspects of Urban Transport",slug:"financial-aspects-of-urban-transport",totalDownloads:1179,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Mihaela Grubišić Šeba",authors:[{id:"189854",title:"Dr.",name:"Mihaela",middleName:null,surname:"Grubišić Šeba",slug:"mihaela-grubisic-seba",fullName:"Mihaela Grubišić Šeba"}]},{id:"51738",title:"Design of Energy Management System of a PEMFC–Battery– Supercapacitor Hybrid Tramway",slug:"design-of-energy-management-system-of-a-pemfc-battery-supercapacitor-hybrid-tramway",totalDownloads:1531,totalCrossrefCites:2,totalDimensionsCites:1,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Qi Li and Weirong Chen",authors:[{id:"22185",title:"Prof.",name:"Weirong",middleName:null,surname:"Chen",slug:"weirong-chen",fullName:"Weirong Chen"},{id:"181845",title:"Prof.",name:"Qi",middleName:null,surname:"Li",slug:"qi-li",fullName:"Qi Li"}]},{id:"67636",title:"Integrated Life Cycle Economic and Environmental Impact Assessment for Transportation Infrastructure: A Review",slug:"integrated-life-cycle-economic-and-environmental-impact-assessment-for-transportation-infrastructure",totalDownloads:366,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"transportation-systems-analysis-and-assessment",title:"Transportation Systems Analysis and Assessment",fullTitle:"Transportation Systems Analysis and Assessment"},signatures:"Jiawen Liu, Hui Li, Yu Wang and Nailing Ge",authors:[{id:"266609",title:"Prof.",name:"Hui",middleName:null,surname:"Li",slug:"hui-li",fullName:"Hui Li"},{id:"282361",title:"Ms.",name:"Jiawen",middleName:null,surname:"Liu",slug:"jiawen-liu",fullName:"Jiawen Liu"},{id:"282363",title:"MSc.",name:"Yu",middleName:null,surname:"Wang",slug:"yu-wang",fullName:"Yu Wang"},{id:"282364",title:"Ms.",name:"Nailing",middleName:null,surname:"Ge",slug:"nailing-ge",fullName:"Nailing Ge"}]},{id:"52783",title:"Bus Rapid Transit Systems Road Safety: A Case Study of Mexico City",slug:"bus-rapid-transit-systems-road-safety-a-case-study-of-mexico-city",totalDownloads:1415,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Jaime Santos-Reyes, Vladimir Ávalos-Bravo and Diego Padilla-Pérez",authors:[{id:"188978",title:"Dr.",name:"Jaime",middleName:null,surname:"Santos-Reyes",slug:"jaime-santos-reyes",fullName:"Jaime Santos-Reyes"},{id:"194713",title:"Dr.",name:"Vladimir",middleName:null,surname:"Avalos-Bravo",slug:"vladimir-avalos-bravo",fullName:"Vladimir Avalos-Bravo"},{id:"194714",title:"Dr.",name:"Diego",middleName:null,surname:"Padilla-Perez",slug:"diego-padilla-perez",fullName:"Diego Padilla-Perez"}]},{id:"52468",title:"Characterisation of Airborne Particulate Matter in Different European Subway Systems",slug:"characterisation-of-airborne-particulate-matter-in-different-european-subway-systems",totalDownloads:1257,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Vânia Martins, María Cruz Minguillón, Teresa Moreno, Luís Mendes,\nKonstantinos Eleftheriadis, Célia A. Alves, Eladio de Miguel and\nXavier Querol",authors:[{id:"188087",title:"Dr.",name:"Teresa",middleName:null,surname:"Moreno",slug:"teresa-moreno",fullName:"Teresa Moreno"}]},{id:"52666",title:"Wireless Communication Systems for Urban Transport",slug:"wireless-communication-systems-for-urban-transport",totalDownloads:1605,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Juan Moreno García-Loygorri, José Manuel Riera and Carlos\nRodríguez",authors:[{id:"188647",title:"Dr.",name:"Juan",middleName:null,surname:"Moreno Garcia-Loygorri",slug:"juan-moreno-garcia-loygorri",fullName:"Juan Moreno Garcia-Loygorri"},{id:"189667",title:"Dr.",name:"Jose",middleName:null,surname:"Riera",slug:"jose-riera",fullName:"Jose Riera"},{id:"194701",title:"Dr.",name:"Carlos",middleName:null,surname:"Rodriguez",slug:"carlos-rodriguez",fullName:"Carlos Rodriguez"}]},{id:"53725",title:"The Rise of Ride Sharing in Urban Transport: Threat or Opportunity?",slug:"the-rise-of-ride-sharing-in-urban-transport-threat-or-opportunity-",totalDownloads:2679,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"urban-transport-systems",title:"Urban Transport Systems",fullTitle:"Urban Transport Systems"},signatures:"Tamer Çetin",authors:[{id:"188649",title:"Dr.",name:"Tamer",middleName:null,surname:"Cetin",slug:"tamer-cetin",fullName:"Tamer Cetin"}]},{id:"67660",title:"A Multitiered Holistic Approach to Traffic Safety: Educating Children, Novice Teen Drivers and Parents, and Crash Investigators to Reduce Roadway Crashes - An Eight-Year Introspective Project",slug:"a-multitiered-holistic-approach-to-traffic-safety-educating-children-novice-teen-drivers-and-parents",totalDownloads:365,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"transportation-systems-analysis-and-assessment",title:"Transportation Systems Analysis and Assessment",fullTitle:"Transportation Systems Analysis and Assessment"},signatures:"Claudia M. Knezek, Susan Polirstok, Roxie James, Anthony Pittman and Gary Poedubicky",authors:[{id:"271635",title:"Dr.",name:"Claudia",middleName:null,surname:"Knezek",slug:"claudia-knezek",fullName:"Claudia Knezek"},{id:"271636",title:"Prof.",name:"Susan",middleName:null,surname:"Polirstok",slug:"susan-polirstok",fullName:"Susan Polirstok"},{id:"271637",title:"Prof.",name:"Roxie",middleName:null,surname:"James",slug:"roxie-james",fullName:"Roxie James"},{id:"271638",title:"BSc.",name:"Gary",middleName:null,surname:"Poedubicky",slug:"gary-poedubicky",fullName:"Gary Poedubicky"},{id:"282338",title:"Dr.",name:"Anthony",middleName:null,surname:"Pittman",slug:"anthony-pittman",fullName:"Anthony Pittman"}]}],onlineFirstChaptersFilter:{topicSlug:"vehicle-engineering-transportation-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/184885/alberto-lazaarowski",hash:"",query:{},params:{id:"184885",slug:"alberto-lazaarowski"},fullPath:"/profiles/184885/alberto-lazaarowski",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()