Metal oxide nanofibers have attracted considerable research interest for processing both one-dimensional nanometer scale morphology and unique chemical and electrical properties. A variety of their practical applications in light-emitting diodes, liquid crystal displays, solar cells, and gas sensors have been demonstrated. Electrospinning provides a rapid and facile way to fabricate nanofibers with diameter several orders of magnitude smaller than that produced by conventional spinning methods. In this chapter, we discuss the fabrication of ultrathin metal oxide nanofibers by the electrospinning technique. Priority is given to zinc oxide nanofibers. Major parameters affecting the morphology and diameter of the nanofibers are investigated systematically. The effect of calcination condition on chemical composition and crystallization of the electrospun nanofibers is also addressed. In addition, we show the advantages and problems when applying electrospun nanofibers to solar cells.
Part of the book: Nanofiber Research