Haemodiafiltration (HDF) is a renal replacement modality that combines diffusion and enhanced convection in order to remove small- and middle-molecular-weight compounds, respectively. They are removed along solvent drag effect of ultrafiltration through increased transmembrane pressure (TMP), whereas the replacement solution is infused intravenously at equal amount minus the desired fluid volume removal for achieving dry weight. Limiting factors for high-volume on-line haemodiafiltration (HV oHDF) are blood flow and viscosity (haematocrit, protocrit), filter performance and technical features of HDF monitor. Most recent advanced technology of dynamic analysis of pressure pulses along the blood flow pathway in the dialyser has enabled optimal ultrafiltration flow performances. HV oHDF offers today the best compromise of cardioprotective option by reducing cardiovascular risk factors in end-stage kidney disease patients. Recent randomised controlled trials (RCTs), individual participant data meta-analyses and a number of observational studies have shown the evidence of survival advantage of HDF over conventional haemodialysis (HD). The convective volume has become the key quantifier for HV oHDF as the measure of dialysis dose. Its cut-off values for better survival have been recognised, but the research is still needed in the years to come to set the required optimal volumes tailored to individual patients’ needs.
Part of the book: Advances in Hemodiafiltration
The aim of this chapter is to define hemodiafiltration target efficiency, to clarify the concept of “optimal convective dose,” and to facilitate hemodiafiltration (HDF) implementation in clinical practice by addressing the need for the establishment of best clinical practices for HDF. The approach taken was to conduct a comprehensive summary of clinical evidence supporting HDF. Convective dose is the total ultrafiltered volume and is complementary to diffusive dose (urea Kt/V) as a dose‐dependent parameter. It can be quantified and adjusted to patient characteristics. Factors affecting convective dose are discussed: patient characteristics, prescription‐dependent factors, and technical and machine‐dependent factors. The key issue of HDF prescription and implementation of best practices is addressed as are intermediary and endpoint clinical outcomes. The main messages are as follows: (1) HDF is safe and effective provided that best clinical practices are followed and the right convective dose is delivered; (2) HDF is easy to perform with new technology; and (3) depending on the convection volume, HDF reduces all‐cause and cardiovascular mortality. Open challenges remain, namely, the implementation of best practices to (a) achieve optimal convection volume, (b) define patient subsets that would benefit more from HDF, and (c) evaluate new tools that fine‐tune HDF prescription according to individual patient needs.
Part of the book: Advances in Hemodiafiltration