Neurosurgery can be considered a radical method to treat some illnesses and can seriously damage the nervous system. To avoid deleterious effects, such injuries must be detected during their initial development by means of intraoperative neurophysiological techniques (including intraoperative neurophysiological monitoring (IONM) and functional mapping).
Part of the book: Neurooncology
The two main problems in the daily clinical practice of EEG are i) its under-use dedicated mainly to epilepsy and ii) subjectivity in de visu analysis. However, both problems can be overcome by using numerical tools in clinical practice that broaden the scope and introduce real objectivity to bioelectrical measurements. We have developed a method for quantitative EEG (qEEG) for daily use based on the homeostatic foundation of EEG. This method is robust, easy, and not time consuming and is arranged in two branches: the analysis of the spectral composition in each channel and synchronization. Notably, channels are arranged in differential mode. Since 2016, we have used this method for more than 4100 EEGs from scalp recordings in outpatients, epilepsy evaluation, and evaluation and monitoring in the intensive care unit (ICU). We have been able to identify numerical properties that are not visually evident in several pathologies, including COVID-19 in patients suffering encephalopathy, and have performed diagnosis in ICU patients and differentiation between epileptic and non-epileptic spells or minimum cognitive states. The use of numerical variables across successive recordings in the same patient has proven to be of great utility. We propose that qEEG use should be expanded globally for daily clinical practice.
Part of the book: Electroencephalography