Bending strength of laminated-graded structure self-lubricating ceramic composites [17].
\r\n\tA number of advanced combustion technologies have been introduced to improve performance, fuel economy and emissions levels. Research in combustion technology has highlighted the importance of new fuels in reducing the petroleum dependence and achieving high efficiency with low pollutant formation.
\r\n\tThe purpose of this book is to collect interesting and original studies on combustion methods, advanced combustion strategies and new fuels able to achieve efficiency improvements and environment compliance.
\r\n\tContributions in which experimental, theoretical and computation approaches are applied to explore how fuel properties and composition affect advanced combustion systems and how advanced combustion technology can maximize engine efficiency and be environment-friendly are invited and appreciated.
Ceramic materials are promising candidates for wear-resistance components owing to their excellent properties such as high strength and resistance to corrosion and oxidation stability at high temperature. Nevertheless, both the high coefficient of friction of this kind of material under dry sliding and the brittleness of ceramic-matrix itself limit its practical application in tribological areas. Generally, incorporating solid lubricants (SLs) in ceramic matrixes solves the friction problems, which can reach a positive effect. Moreover, compound lubricants can exhibit excellent self-lubricating abilities in a wide range of temperatures because the lubricants can promote the formation of well-covered lubricating films on the surfaces of ceramics that can work effectively under different temperature [1-3]. Unfortunately, subsequent studies have shown that these composites are homogenous in terms of mechanical and tribological properties. Thus, the strength of ceramics and the lubrication of SLs cannot be fully utilized. Because the continuity of ceramic phases is destroyed by the layered structural SL phase, the mechanical property of this type of material is reduced [4,5]. In these situations, it is necessary to develop a high-strength and high-toughness self-lubricating ceramic composites.
Lamination is one of the new strategies being used to enhance the mechanical properties of ceramics. The ideas of laminated composites inspired from natural biomaterials, such as shells and teeth, are made of layered architectures combining materials with different properties. During the past decade, there are large amounts of layered ceramic composites that have been fabricated and studied [6-8]. These kinds of materials have non-catastrophic fracture behavior and damage tolerance, which exhibit much higher fracture toughness and work of fracture in them than in monolithic ceramics. Moreover, the unique configurations of the layered material allow design flexibility. Therefore, the combination of the laminated design of ceramic materials and self-lubricating ceramic composites with excellent lubricating property is a promising way to achieve the integration of mechanical and tribological properties [9-12].
For laminated self-lubricating ceramic composites, interfacial residual stress between the adjacent layers may have an important effect on their mechanical properties. Any modification or change of the interfacial structure and composition will be a determining factor in the strength of the interfacial bond and will eventually affect the toughness, strength, and fracture behavior of laminated composites [13]. Therefore, a reasonable residual stress between the adjacent layers is essential to improve the mechanical properties. Previous studies have shown that the graded design of the materials is an effective method to eliminate the interface stress of dissimilar material system [14-16]. This design concept of functionally graded materials (FGMs) was first raised by Japanese scientists in 1987 as reported in reference [14]. That is, components with different properties or structures disperse by a gradient change along with one direction instead of a homogeneous manner. Thus, the composite can exhibit different properties that are mutually exclusive at the same time, and the gradient change can eliminate the interface between components. This new-style and non-uniform composite realized the integration of structure and function, making it to have a wider prospect of application in extreme conditions.
Based on the above background, the authors prepared high-performance structural/lubricating-functional integration ceramic composites using the design of graded laminated structure [4,17,18]. This design is conductive to the combination of mechanical and tribological properties while retaining all the advantages of these materials. The aim of this chapter is to illustrate the design, fabrication, and properties of alumina and zirconia self-lubricating composites with laminated-graded structure and to provide guidance for the optimum design of these materials.
Figure 1 illustrates the schematic and the design concept of laminated composites. The thickness of the A layer and B layer are d1 and d2, respectively, where the A layer is the Al2O3 or ZrO2-Al2O3 and the B layer is Al2O3-ZrO2 or ZrO2. Commercially available Al2O3, ZrO2, Y2O3, CuO, and TiO2 were used in this study. The material was manufactured using the following steps [17-20]: (1) ball-milling of powder, (2) sequential stacking of layers in steel mold, and (3) hot-pressing in graphite mold. Hot-pressing was performed at 1350-1400 °C and 25 MPa using graphite die in an argon atmosphere for 100-120 minutes. Monolithic Al2O3 and ZrO2 with sintering aids were also sintered at same condition as comparisons. The microstructures of the composites were observed using scanning electron microscopy (JSM-5600LV). The sintered specimens were sliced into test bars for bending strength and work of fracture.
Schematic of laminated composite structure.
An example of the microstructure of the ZrO2(3Y)-Al2O3/ZrO2(3Y)-laminated composites is shown in Figure 2, where the dark layer is the ZrO2(3Y)-Al2O3 layer and the light layer is the ZrO2(3Y) layer. The multilayer structure with a relatively straight interface can be observed without clear delamination. It can also be seen from Figure 2 that the ZrO2(3Y)-Al2O3 layer and ZrO2(3Y) layer have the same thickness of approximately 160 μm.
SEM photograph of profile of laminated composites.
The geometric parameters of the layered structure are the key factors for the optimal design of laminated composites. These parameters mainly include the layer numbers and thickness ratio of the two layers. The mechanical properties of Al2O3/Al2O3-10wt.%ZrO2(3Y)-laminated composites with different layer numbers are shown in Figure 3 [19,20]. As shown in Figure 3, a relatively large number of layers are likely to improve the mechanical properties of the materials. When the number of layers is 41, the bending strength and work of fracture of materials reach the maximum value. The relationship between the mechanical properties and layer thickness ratio is displayed in Figure 4 [19,20]. One can see that the layer thickness ratio also has an enormous effect on the mechanical properties of laminated composites. The bending strength and work of fracture of all of the laminated materials are higher than that of the monolithic materials and decrease with the increase of the layer thickness ratio. When the layer thickness ratio is 1:1 and the thickness of each layer is 80 μm, the bending strength and work of fracture of the Al2O3/Al2O3-ZrO2(3Y) laminated composites could reach to 740 MPa and 3892 J m–2, respectively [19,20].
Effect of the layer numbers on the bending strength and work of fracture.
Effect of the thickness ratio on the bending strength and work of fracture.
Relationship between mechanical properties of Al2O3/Al2O3-ZrO2(3Y)-laminated composites and content of ZrO2(3Y) in the Al2O3-ZrO2(3Y) layers.
In addition, the compositions of the two layers also have significant effects on the mechanical properties of the laminate composites. The bending strength and work of fracture of Al2O3/Al2O3-ZrO2(3Y)-laminated composites with different content of ZrO2(3Y) in Al2O3-ZrO2(3Y) layers are shown in Figure 5 [19,20]. As can be seen from the figure, with the increase of the content of ZrO2(3Y), first, the bending strength and work of fracture of the material increase and then they decrease gradually. When the mass content of ZrO2(3Y) is 10%, both bending strength and work of fracture reach the optimal value. This is mainly because the variation of content of ZrO2(3Y) in Al2O3-ZrO2(3Y) layers causes significant changes in the residual stresses between adjacent layers and the contribution of phase transformation toughening to the crack propagation energy of the materials, thus realizing the optimization of the materials [19,20]. The same design principles used for designing Al2O3/Al2O3-ZrO2(3Y)-laminated composites apply to designing ZrO2(3Y)-Al2O3/ZrO2(3Y) material. When the mass content of Al2O3 in ZrO2(3Y)-Al2O3 layers is 15 %, the bending strength and work of fracture of the ZrO2(3Y)-Al2O3/ZrO2(3Y)-laminated composite reach to 968 MPa and 3751 J m–2, respectively (Fig. 6a and b).
Mechanical properties of ZrO2(3Y)-Al2O3/ZrO2(3Y)-laminated composites and monolithic ceramic.
From the results above, it can be concluded that the layered structure design is a good strategy to enhance the mechanical properties of monolithic ceramics, which can efficiently improve the bending strength and work of fracture. Nevertheless, the friction and wear rate of these materials under dry sliding conditions are still high. To overcome this problem, the laminated-graded structure self-lubricating ceramic composites were designed. Figure 7 shows the schematic of self-lubricating ceramic composites with laminated-graded structure, where d1=d2, the A layer is the Al2O3 or ZrO2-Al2O3, and the B layer is Al2O3-ZrO2 or ZrO2. The center area is composed of laminated composites that are similar to that of in the section 2, which provides high strength for the whole material. The content of SLs is graded, increased from center to two sides, and finally reaches a fixed value on the surface to ensure the excellent lubricating function of the materials. In this study, each couple of ZrO2(3Y)-Al2O3 and ZrO2(3Y) or Al2O3 and Al2O3-ZrO2 has the same SL content. The SL content of each couple f(x) is determined by the following equation [18]:
Where x is the number of the couple, m is the total number of the couples in the gradient area, p is the gradient exponent, and f(s) is the content of SLs in surface layers. Commercially available Al2O3, ZrO2, Y2O3, CuO, TiO2, and SLs (graphite+CaF2+BaSO4 and graphite+CaF2 in two kinds of laminated-graded structure self-lubricating ceramic composites, respectively) were used. Experimental details for preparation and characterization are described in these references [17, 18].
Schematic of the laminated-graded structure self-lubricating composites.
For comparison, the mechanical and tribological properties of traditional self-lubricating ceramic composites were first conducted. Figure 8 shows the microstructure of two kinds of traditional self-lubricating ceramic composites. It can be seen that there are lots of tiny pores in the sintered samples. There is no doubt that these defects will greatly degenerate the mechanical properties of the materials. The mechanical properties of two kinds of traditional self-lubricating ceramic composites (Al2O3-graphite and Al2O3-LaF3 composites) are given in Figure 9. It can be seen clearly that the bending strength and work of fracture decrease rapidly with the increase of the content of SLs. For the Al2O3-LaF3 composites, when the volume content of lubricants increase to 40%, the bending strength and work of fracture reduced to as low as 67 MPa and 44 J m–2, which were 6.3 and 2.9 times lower than those of monolithic Al2O3 ceramic. Therefore, the traditional self-lubricating ceramic composites exhibit poor mechanical properties mainly because of the lots of SLs that destroyed the continuity of ceramic matrix. The ceramic composites may exhibit good lubricating properties when proper amounts of lubricants were added [1,4]. Nevertheless, this kind of ceramics possesses poor anti-destructive and reliability, which is the key obstacle to its practical application. Therefore, as mentioned earlier, improving high-strength and high-toughness ceramic-matrix self-lubricating materials for practical applications is significant.
SEM micrographs of fracture surface of traditional Al2O3-graphite (a) and Al2O3-LaF3 (b) self-lubricating ceramic composites.
Mechanical properties of Al2O3-graphite (a) and Al2O3-LaF3 (b) self-lubricating composites.
Compared to the traditional self-lubricating ceramic composites, laminated-graded structure self-lubricating ceramic composites exhibit excellent mechanical properties. Table 1 describes the bending strength of Al2O3-laminated-graded structure self-lubricating ceramic composites and of some monolithic self-lubricating ceramic composites. It can be seen from Table 1 that the bending strength of laminated-graded structure self-lubricating ceramic composites are much higher than any one of monolithic materials. The bending strength reached 348 MPa, which is approximately five times higher than that of the traditional monolithic Al2O3/SL and Al2O3-ZrO2(3Y)/SL ceramics, and which basically approached the properties of general monolithic Al2O3 and Al2O3-ZrO2(3Y) ceramics [17].
Additionally, the gradient exponent p has a remarkable influence on the mechanical properties of laminated-graded structure self-lubricating composites [18]. As shown in Figure 10, the bending strength of the ZrO2(3Y)-Al2O3/ZrO2(3Y)/SL FGM increased, with the increase of p up to 2.0, and then decreased rapidly when p exceeds 2.0. This phenomenon is caused by the residual stress between the adjacent layers in gradient area. The variation of p causes the change of content of SLs in gradient layers, and then the residual stress that is generated from the thermal mismatch because of the difference in thermal expansion coefficients between the adjacent graded layers (as shown in Figure 11) is influenced. This shows that a reasonable residual stress is essential to adjust the mechanical properties of these materials.
Materials | Bending strength (Mpa) |
Al2O3/Al2O3-10wt.%ZrO2(3Y)/SL FGMs | 348 |
Al2O3/SL | 68 |
ZrO2(3Y)-Al2O3/SL | 69 |
Bending strength of laminated-graded structure self-lubricating ceramic composites [17].
The bending strength of ZrO2(3Y)-Al2O3/ZrO2(3Y)/SL FGMs varies with the gradient exponent.
Variation of the difference value of coefficients of thermal expansion between the adjacent layers with the gradient exponent p [18].
The laminated-graded structure ceramics not only showed excellent mechanical properties, it also maintained good tribological performance. As shown in Figure 12, in the temperature range of 25–800 °C, the friction coefficient of Al2O3 and ZrO2(3Y) laminated-graded structure composite was less than 0.55, which was approximately half of that of monolithic Al2O3 and ZrO2 ceramics. The decrease of friction coefficients were achieved by the presence of graphite, CaF2, and BaSO4, which have excellent lubricating property under different temperatures. Graphite has a good lubricating property at room temperature to 300 °C, and CaF2 at 250 °C to 1000 °C. In addition, BaSO4 also possesses excellent self-lubricating performance over a broad temperature range. During the sliding process, these SLs form the self-lubricating film that is helpful to reduce direct contact between the ceramics and further improved the tribological properties of the materials [17,18].
The friction coefficients of two kinds of laminated-graded self-lubricating composites at room temperature to 800 °C.
In conclusion, laminated-graded structure self-lubricating ceramic composites realize the integration of mechanical and tribological properties. Their excellent mechanical and tribological properties indicate that the laminated-graded structure self-lubricating ceramic composites have numerous high-technology applications and promising prospect as structural materials.
The authors acknowledge the financial support from the Foundation for National Innovation of Chinese Academy of Sciences (CXJJ-15M059), the Gansu Province Science Foundation for Youths (1107RJYA043) and the Youth Innovation Promotion Association CAS (2013272).
Butadiene-1,3 (BD) is diolefin containing two conjugated double bonds. In oxidation, BD exhibits properties inherent to all olefins, but higher reactivity was compared to but-1-ene and but-2-ene. Both BD and C4-olefins can be a feedstock for producing valuable chemicals by gas-phase oxidation [1, 2]. The oxidation on oxide catalysts in gas phase results in the formation of maleic anhydride together with crotonaldehyde and 2,5-dihydrofuran. Centy and Trifiro suggested a simple consecutive pathway for BD oxidation over V-P-oxide catalysts [3, 4], whereas Honicke et al. proposed multiple pathways from BD to crotonaldehyde, 2,5-dihydrofuran, 2-butene-1,4-dial, 2(5H)-furanone and furan, and finally to maleic anhydride over V2O5 catalysts [5]. Schroeder specified the oxidation pathway on V-Mo-oxide catalysts, including 3,4-epoxy-1-butene as a primary oxidation product [6]. Epoxidation of BD occurs over Ag catalysts [7, 8, 9, 10] used in industry for the production of ethylene oxide and intensively investigated in the oxidation of other olefins (e.g., [11, 12]). 3,4-Epoxy-1-butene is further converted into 2,3-dihydrofuran followed by hydrolysis to form 4-hydroxybutyraldehyde. The secondary transformations occur directly under epoxidation conditions on Ag catalysts promoted with B-P [13], Mo [14], and Mo-P-Sb [15] or by subsequent treatments of 3,4-epoxy-1-butene.
In the early 1980s, oxidation of n-butane has become the preferred method for manufacturing maleic anhydride [16, 17]. The invented synthesis of maleic anhydride from butane creates a competition for the gas-phase oxidation of BD since hydrogenation of maleic anhydride opens a possibility of producing various oxygenates, which produced from BD earlier. At the same time, the gas-phase oxidation of BD still suffers from formation of polymer resins, which leads to excessive consumption of raw materials and catalyst deactivation. This problem and large power consumption inherent to all gas-phase reactions are absent in the liquid-phase oxidation since the low temperature and application of appropriate solvents prevent the formation of the resins. The liquid-phase low-temperature oxidative reactions, in particular the oxidation of olefins, were intensively studied at the end of the last century [18, 19, 20, 21, 22, 23]. A renewed interest in this area is growing now [24, 25, 26, 27] and can be expected to be strengthened in the nearest future as a response to modern requirements of green chemistry to minimize power and materials consumption. In addition, the liquid-phase reactions are well applicable for the oxidation of various olefins and BD because of high reactivity of these hydrocarbons that allows the oxidation at low temperature. At the same time, BD becomes more affordable owing to permanent improvements in its manufacturing.
The title of this chapter concerns the application of green oxygen (air and hydrogen peroxide) in liquid-phase conditions. The liquid-phase oxidative reactions are an important part in chemistry of all olefins and, in particular, of the simplest representative of conjugated diolefins as they open many routes for the conversion of the hydrocarbons. We represent here an analysis of literature information concerning the oxidation of BD in liquids and references to the related reactions of olefins. In detail, we described the catalytic systems in the study of which we acquired our own experience.
Olefins readily interact with radical species. The most susceptible to radical attack is allyl position to produce allyl oxygenates [28, 29]. In the absence of an allylic carbon atom, one of the double bonds of BD is involved in the oxidation. Neat or dissolved in a nonpolar solvent, BD interacts with oxygen at moderate temperature according to radical chain mechanism to form oligomeric butadiene polyperoxide, C4H6O2 [30]. The reaction is accelerated by increasing the temperature or adding free radical initiators and inhibited by adding acids. From the NMR analysis, molecular structure of the polyperoxide formed at 50°C in the presence of 37 Torr of oxygen was composed of equal amounts of 1,4- and 1,2-butadiene units separated by peroxide units [31]. The structure of the polyperoxide (the ratio of 1,4- to 1,2-butadiene units) does not depend on the reaction temperature, whereas the content of bound oxygen in the polyperoxide varies with oxygen pressure. The ratio of peroxide to hydrocarbon units is below 1 at a low oxygen partial pressure. Thermal decomposition as well as hydrogenation of polyperoxide leads to the formation of 3-butene-1,2-diol and 2-butene-1,4-diol or corresponding saturated diols, preferably 1,4-derivatives (Scheme 1) [30, 32, 33, 34, 35].
Formation and reductive decomposition of the polyperoxide [30].
Decomposition of the polyperoxide forms not only 3-butene-1,2-diol and 2-butene-1,4-diol but also side products such as formaldehyde, acrolein (from 1,2-units), and resinous insoluble material (presumably resulting from the reaction of the 1,4-units with aldehydes) [31]. Therefore, the preferred formation of 1,4-oxygenates from the thermal decomposition of polyperoxide is not a strong support of predominance of 1,4-units in the polyperoxide structure.
The rate of decomposition of the polyperoxide increases with increasing temperature, addition of bases (amines) [36], or metal ions as radical initiators. Butadienyl polyperoxide is readily decomposed in the presence of metal ions of variable oxidation state. Therefore, the transition metal compounds participate as catalysts in the radical chain oxidation of BD with oxygen. The oxidation products are similar to those obtained under the decomposition of the polyperoxide. 3-Butene-1,2-diol and 2-butene-1,4-diol can be obtained with the selectivity sufficiently high for the chain radical process, especially if one considers the low stability of these products with respect to secondary oxidation. Thus, a mixture of 3-butene-1,2-diol and 2-butene-1,4-diol has been prepared by oxidative dihydroxylation of BD with oxygen in acetic acid solution of Pd(OAc)2. From a practical point of view, the most valuable 2-butene-1,4-diol has been formed with selectivity of 25% [37].
We tested Pd and Au catalysts in the radical chain oxidation of BD in polar media. Both soluble palladium acetate and insoluble supported metals caused the formation of the products, the most part of which appeared from decomposition of the intermediate butadienyl polyperoxide [32] (Scheme 2). The main products are 3-butene-1,2-diol and 2-butene-1,4-diol. 4-Hydroxybut-2-enal can be formed in the decomposition of polyperoxide and in oxidation of 2-butene-1,4-diol. Oxidative dehydration of 2-butene-1,4-diol produces furan. Both butanediols can be esterified to form corresponding diacetates, but only 2-butene-1,4-diol diacetate has been found in the reaction solution. Acrolein occurs from breaking C─C bond under decomposition of polyperoxide or, possibly, from secondary conversion of 3-butene-1,2-diol. C8 oxygenates originate from polyperoxide fragments containing less than 1:1 ratio of butadiene to oxygen units. In addition, there are impurities of C6 cyclic oxygenates occurring from cyclodimerization of BD (Diels-Alder reaction) followed by oxidation of 4-vinylcyclohexene. The amount of the products is given in Table 1.
GC-detected products of the radical chain oxidation of BD.
Catalyst (mg) | BD (mmol) | Solvent | T (°C) | Time (h) | Products (mmol) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 + 2 | 3 | 4 | 5 | 6 | Others1 | Peroxide2 | |||||
Pd(OAc)2 2.5 | 70 | HOAc/H2O 88/12 | 70 | 2 | 2.5 | 0.6 | 0.1 | <0.1 | 1.3 | 0.2 | 8.5 |
Pd(OAc)2 2.5 | 70 | HOAc/dioxane/H2O 19/75/6 | 80 | 2 | 4.6 | 3.1 | <0.1 | 0.4 | 7.8 | 0.1 | 9.4 |
0.5%Au/SiO2 120 | 70 | HOAc/dioxane/H2O 44/50/6 | 80 | 4 | 4.7 | 3.2 | <0.1 | 0.1 | 8.9 | 2.0 | 9.1 |
0.5%Au/SiO2 120 | 70 | HOAc/dioxane/H2O 44/50/6 | 80 | 6 | 8.5 | 5.3 | 0.4 | 1.3 | 10.7 | 7.1 | 7.0 |
5%Pd/C 3000 | 100 | DMA/H2O 94/6 | 90 | 3 | 10.3 | 0.4 | 0 | 4.8 | 2.2 | 0.73 | 0.8 |
5%Pd0.5%Te/C 3000 | 100 | DMA/H2O 94/6 | 90 | 3 | 0.5 | 0.1 | 0 | 0.1 | 0.1 | 0.84 | 0.2 |
GC detected products from oxidation of BD (70 mmol) by oxygen (O2/N2 = 10/90, 60 atm) in a solvent (100mL).
C8 diols and acetates, and C6 cyclic oxygenates.
Iodometric titration.
0.1mmol сrotonaldehyde and methyl vinyl ketone.
0.4 mmol сrotonaldehyde and methyl vinyl ketone.
In addition to the stable compounds, a large amount of peroxide compounds have been iodometrically detected in acetic acid and acetic acid/dioxane solutions (Table 1). Peroxide oxygen refers to butadienyl polyperoxide since the addition of Ph3P reducer to the solution results in disappearance of the peroxide and formation of 2-butene-1,4-diol together with minor amounts of furan and 3-butene-1,2-diol. The polyperoxide exhibited sufficient stability in several oxidation tests but almost completely decomposed with a large amount of Pd/C catalysts. As a result, enhanced formation of 2-butene-1,4-diol and 4-hydroxybut-2-enal is achieved in this case (fifth row inTable 1).
The addition of Te to Pd/C catalyst lowers the production of all oxidation products. Bottom row in Table 1 shows the inhibitory effect of Te on the chain radical oxidation reaction. At the same time, more noticeable becomes formation of the oxidation products non typical for the chain radical mechanism. These are crotonaldehyde and methyl vinyl ketone, which show the possibility of a nonradical heterolytic mechanism of oxidation on the PdTe/C catalyst.
Palladium catalysts are widely used in the liquid-phase heterolytic oxidation of olefins [38]. The most significant mechanisms for practice are acetoxylation of ethylene to vinyl acetate and Wacker oxidation of olefins converting ethylene to acetaldehyde and but-1-ene to methyl ethyl ketone. A mechanism of olefin oxygenation under the action of Pd(II) complexes established by Moiseev et al. and Henry et al. [39, 40] is now described in numerous publications (e.g., chapter by Reinhard Jira in book [24]). The mechanism includes the formation of Pd(II) complex with olefin and inner sphere transformations resulting in the reduction of Pd2+ to form carbonyl compound and Pd0 black. Assisted by Cu(II) chloride or other intermediate oxidant, reoxidation of Pd0 with oxygen closes the catalytic cycle, allowing the use of oxygen as a stoichiometric oxidant.
Analogous to light olefins, BD reacts under homogeneous conditions in an aqueous solution of PdCl2 catalyst and CuCl2 oxidant. The oxygenation is directed to one of the double bonds with the retention of the second double bond to produce crotonaldehyde [41, 42]. The oxidation conditions are identical to those applied for oxidation of ethylene to acetaldehyde and 1-butene to methyl ethyl ketone (Wacker-type oxidation), but the kinetics is different [43], in particular the order of reaction with respect to Cl− and H+ ions. Unlike the oxidation of ethylene and other olefins, the oxidation of BD is zero-order with respect to the hydrocarbon. The kinetic parameters of BD oxidation are determined by high reactivity of the conjugated π-bonds, in particular by a strong BD to Pd2+ bonding in the intermediate complex. Unlike propylene, the oxygenation of the BD double bond is directed at the terminal rather than inner carbon atom to form crotonaldehyde. This is probably due to the stabilizing effect of the second double bond. In the presence of Pd2+ ions and another strong oxidizing agents of P-Mo-V heteropolyacids, BD is converted to furan in the similar conditions [44]. It seems like crotonaldehyde was initially formed and then converted under oxidizing conditions to furan, as in a similar homogeneous system [45]. Oxygen is a final stoichiometric oxidant, but the strong intermediate oxidant (Cu2+ or heteropolyacid) is necessary for easy regeneration of the ionic palladium in the oxidation of BD and olefins, as well.
We have observed catalysis by PdCl2 when the radical chain oxidation of BD to diols, furan, and acrolein proceeds along with nonradical oxidation to form mainly crotonaldehyde together with small amounts of methyl vinyl ketone and furan (Scheme 3) (first row in Table 2). It is interesting that the system does not contain an oxidizing agent, except oxygen. There is no need of any intermediate oxidant since reoxidation of Pd0 to Pd2+ is provided by peroxide intermediates generated in a radical process. Telluric acid inhibits the radical process but does not operate as an oxidant for Pd0 to maintain the nonradical oxidation by Pd2+. As a result, the PdCl2 with H6TeO6 solution is inactive in oxidation of BD (second row in Table 2). By contrast, the heterogeneous 5%Pd2%Te/C catalyst is able to provide nonradical oxidation, with the radical chain oxidation being inhibited by Te. As a result of inhibiting action of Te, the large amount of the catalyst and low concentration of BD appear unfavorable for the development of the chain process. The oxidation on the 5%Pd2%Te/C catalyst in aqueous dimethylacetamide (DMA) has been observed to give crotonaldehyde and methyl vinyl ketone as main products (third row in Table 2). Interestingly, crotonaldehyde is a predominant product of heterolytic oxidation with PdCl2, but nearly equal amounts of crotonaldehyde and methyl vinyl ketone are produced on the 5%Pd2%Te/C catalyst in the same conditions.
Nonradical reaction of BD on PdTe/C catalyst in polar solvents.
Catalyst(mg) | BD (mmol) | Time (h) | Products (mmol) | ||||||
---|---|---|---|---|---|---|---|---|---|
Furan | Acrolein | Methyl vinyl ketone | Croton-aldehyde | 3-Butene-1,2-diol | 2-Butene-1,4-diol, 4-hydroxybut-2-enal | Others | |||
PdCl2 120 | 43 | 3 | 0.4 | 1.1 | 0.3 | 1.6 | 3.2 | 3.9 | 0.2 |
PdCl2 120, H6TeO6 800 | 43 | 3 | 0.2 | 0.5 | <0.1 | 0.4 | <0.1 | 0.5 | 0.1 |
5% Pd 2% Te/C 2000 | 22 | 6 | 0.1 | <0.1 | 0.8 | 0.6 | — | 0.2 | 0.3 |
GC detected products from oxidation of BD by oxygen (O2/N2 = 10/90, 60 atm) in DMA (30 mL, 3% H2O), T 90°C.
Besides DMA, other polar solvents can be used in this oxidation. The presence of proton additive is required in the solvent (Table 3). No reaction has been observed in anhydrous acetonitrile.
Solvent (g) | Catalyst (g) | Н2О (%) | H2SO4 (mmol/L) | Time (h) | Products (mmol) | ||
---|---|---|---|---|---|---|---|
Furan | Methyl vinyl ketone | Croton aldehyde1 | |||||
DMA | 1 | 17 | — | 4 | 0.2 | 1.4 | 1.2 |
Dioxane | 0.5 | — | 5 | 6 | 0.5 | 1.0 | 0.7 |
Acetonitrile | 1 | 17 | — | 5 | <0.1 | 1.0 | 0.8 |
Acetonitrile | 1 | 17 | 8 | 5 | 0.3 | 1.7 | 0.9 |
Acetonitrile | 0.5 | — | 2 | 4 | 0.8 | 2.0 | 1.2 |
Acetonitrile | 0.5 | — | — | 3 | 0 | 0 | 0 |
GC detected products from oxidation of BD (4.5 mmol) by oxygen (O2/N2 = 10/90, 40 atm) on 5% Pd 2%Te/C catalyst in a solvent (35 mL), T 100°C.
Crotonaldehyde can be partly subjected to further oxidation to crotonic acid.
According to XPS analysis, the 5%Pd2%Te/C catalyst contains both reduced Pd0 and ionic Pd2+, and two oxidation states of tellurium Te0 and Te4+ [46]. The Pd2+ to Pd0 ratio on the catalyst surface becomes larger with an increase in tellurium content that indicates an oxidizing influence of TeO2. It can be expected that the oxidation state of the surface is enhanced under the reaction conditions. Nevertheless, dissolution of Pd and Te during reaction does not exceed 1% of the content of both components in the solid catalyst, the solution exhibiting no catalytic activity. Therefore, activity of the catalyst refers to the active components on the surface of carrier and is associated with their reversible redox transformations. Based on the known mechanisms of homogeneous oxidation of olefin, one can propose two possibilities for oxidation of BD by oxygen on the PdTe species, both assuming a nonradical heterolytic interaction. Perhaps the mechanism is in general similar to that postulated for the oxidation of BD and olefins in the presence of Pd2+ complexes, oxygen, and intermediate oxidant (Scheme 4, Route 1). It involves surface Pd2+ ions and TeO2 oxidant providing regeneration of Pd2+.
Tentative routes for nonradical oxidation of BD on PdTe/C catalyst.
However, there is a difference in products composition. Crotonaldehyde and furan are produced in above-mentioned oxidations of BD with homogeneous Pd2+ catalysts [41, 42], whereas methyl vinyl ketone is the second product formed in our oxidation on the PdTe catalyst. To explain this difference, one can consider an oxidation of BD by hydrogen peroxide as an alternative or parallel reaction (Route 2 in Scheme 4). Hydrogen peroxide is generated from oxygen on Pd0 species. The high reactivity of olefins with respect to peroxide compounds is known [47]. It is known that hydrogen peroxide does not accumulate during reaction. But it is found in trace amounts in the reaction solution and can form a reactive peroxide compound of Te4+ on the surface of the catalyst. In both mechanisms proposed, Te serves as a carrier of molecular or peroxide oxygen, and the surface of Pd2+/Pd0 activates reagents due to the adsorption of O2 and BD. Thus, the PdTe/C catalyst opens the possibility of oxidation of BD by a nonradical heterolytic mechanism due to the combined effect of the two active components.
Wacker-type oxidation of olefins and analogous Pd-catalyzed nonradical oxidation of BD produce usually carbonyl compounds, but special additives are required for obtaining dioxygenates. Nevertheless, the oxidative 1,2-addition to olefins is known to occur under the action of Pd2+ complex and oxoanion strong oxidants, such as periodate [48] or nitrate anions, in acetic acid solution to form glycol derivatives [49, 50, 51]. Mechanism of the oxidation is based on a nonradical inner sphere interaction of olefin with oxidant in Pd2+ complex. Similar interaction is probably realized in oxidation of BD in the presence of palladium as the catalyst of nonradical heterolytic olefin oxidation and Sb, Bi, Te, or Se promoters. Heterogeneous catalysts containing these active components have shown unique catalytic properties in oxidation of BD selectively to 2-butene-1,4-diol diacetate (Scheme 5) [52, 53].
Oxidative 1,4-addition to BD.
XPS analysis of the Pd and PdTe catalysts indicates that Te-oxide is able to increase positive charge on Pd surface [46], thus being an oxidation promoter for palladium. The ionic state of surface palladium is responsible for heterolytic oxidation. Acetic acid is used as a solvent for this reaction. The mechanism of formation of 2-butene-1,4-diol diacetate is proposed by Takehira et al. for PdTe catalyst (Scheme 6) [54], and fundamentally identical one is proposed for the RhTe catalyst [55]. The details in intermediate structures explain the preferential formation of trans-2-butene-1,4-diol in the case of Pd-containing catalyst and cis-isomer in the case of Rh.
Mechanism of 1,4-oxidative addition to BD [54].
Exceptionally high selectivity of BD to 2-butene-1,4-diol diacetate conversion is explained by a concert interaction of BD with surface Pd and with acetate anions. Adsorbed on Pd, BD forms π-allyl-type intermediate that undergoes acetoxylation on the terminal carbon atom. Resulting monoacetoxyl reacts with the second acetate to give 2-butene-1,4-diol diacetates and 3-butene-1,2-diol diacetate in amounts proportional to the reactivity of carbon atoms 1 and 2 (Scheme 6). In fact, only 2-butene-1,4-diol diacetates are produced. Analogous mechanisms are realized in homogeneous oxidation of various dienes in the presence of Pd complexes and p-benzoquinone oxidizing agent, instead of Te. Oxidation of diene alcohols [56] and substituted conjugated diolefins [57] proceed effectively, but BD reacts with low yield and selectivity.
As noted earlier, Te-oxide is able to inhibit radical chain oxidation of BD, the selectivity of which is lower than the selectivity of the heterolytic process. Besides, Te operates as an inhibitor of radical polymerization of BD and oxidation products, thus preventing the formation of side high-boiling products. Acetic acid (possibly, other carboxylic acids) also contributes to the achievement of high selectivity in BD oxidation. Being not only solvent but also reagent (OAc− anions), it is involved in an intermediate interaction with olefin to form the surface Pd intermediate, and finally stabilizes the product as ester, preventing its secondary transformations. Based on the unique properties of the PdTe/C-HOAc catalytic systems, the industrial process for the production of 2-butene-1,4-diol diacetate has been developed by Mitsubishi Chemical. BD is oxidized to 2-butene-1,4-diol diacetate with selectivity of 98%. Possible further improvements of the process can be connected with the application of other platinum metals (Pt, Rh, and Ir) combined with various promotors.
If acetic acid is replaced by alcohol, 1,4-dialkoxylation of conjugated dienes was developed in Pd(OAc)2 solution. p-Benzoquinone was used as the oxidant and methanesulfonic acid as a promoter [58]. The oxidation is suggested to follow mechanism including the formation of the (π-allyl)palladium(benzoquinone) intermediate (Scheme 7).
1,4-Dialkoxylation of conjugated dienes [38].
In other case, dialkoxybutenes are prepared by reacting BD in the presence of carbon-supported Group VIII noble metals with Te or Se additives. Similar to diacetates, the formation of ethers in alcohol solvent increased the stability of dioxygenated products against secondary oxidation. However, the formation of 3,4-dimethoxy-1-butene and 1,4-dimethoxy-2-butene in comparable amounts is in contrast with Scheme 6 and indicates a radical mechanism of BD oxidation, when 2-butene-1,4-diol and 3-butene-1,2-diol are formed as primary products and then converted to ethers in the alcohol medium [59].
We have prepared PdTe/C catalysts by hydrolytic deposition of palladium under the reductive conditions, followed by treatment with H6TeO6. The procedure is similar to one often described for the synthesis of PdTe catalysts. No evidences for the occurrence of binary Pd–Te phases have been provided by XRD, and XPS analysis evidences Pd0, PdO, Te0, and TeO2 [60]. The absence of the Pd-Te phase and the partially oxidized state of the active metals have also been reported by Takehira [54] for Pd-Te-C catalysts. As assumed, Te is located in the outer layer of supported particles. The characteristics of the PdTe/C catalysts were detailed by HAADF-STEM analysis of the surface and line EDX analysis of composition of the supported particles [60]. The results represent an unusual distribution of components on the surface, where Te does not form an individual crystalline phase but is located on the surface of Pd particles in a highly dispersed state. These data explain properties of the PdTe catalysts. In particular, the ability of Te to inhibit the radical reactions is in part due to the coverage of the palladium surface, which normally tends to initiate radical chains.
The primary products in BD oxidation on PdTe/C catalyst in methanol and further conversion of them under the oxidation conditions are shown in Scheme 8, and the amounts are given in Table 4.
Products of BD oxidation on PdTe/C catalyst in methyl alcohol.
Catalyst, conditions | Products (mmol) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
5%Pd0.5%Te/C, 10 mmol BD, 100°C, 3 h | 0.54 | 1.16 | 0.35 | 1.58 | 0.17 | 1.48 | 0 | 0.73 |
5%Pd0.5%Te/C, H2SO4, 10 mmol BD, 100°C, 3 h | 0.45 | 2.02 | 0.08 | 0.12 | 1.42 | 2.30 | 0 | 1.81 |
5%Pd2.7Te/C, H2SO4, 10 mmol BD, 120°C, 2 h | 0.24 | 0.06 | 0 | 0.06 | 0.66 | 2.80 | 2.0 | 0 |
5%Pd2.7Te/C, H2SO4, 40 mmol BD, 120°C, 2 h | 0.23 | 0.06 | 0 | 0.07 | 0.78 | 6.70 | 3.90 | 0 |
Products of BD oxidation in solvent CH3OH (10% H2O) (30 mL), H2SO4 (0.1 mmol where indicated).
As well as in DMA, nonradical heterolytic oxidation of BD in alcohol medium leads to the formation of crotonaldehyde (1) and methyl vinyl ketone (4). Besides, 1,4-dimethoxy-2-butene (6) is produced analogously to 2-butene-1,4-diol diacetate in acetic acid. The primary products undergo further transformations depending on the reaction conditions. Sulfuric acid promotes oxidation, especially toward 1,4-oxidative addition (comparison of first and second rows in Table 4). An increase in Te content lowers the reaction rate but increases proportion of products formed through 1,4-addition (third row in Table 4). Composition of oxidation products obtained in the presence of the Pd0.5Te/C catalyst and H2SO4 is differed from the one in the radical chain oxidation (compare data given in Tables 1 and 4). 3,4-Dimethoxy-1-butene and acrolein that indicate nonradical oxidation do not appear. Peroxide compounds were also not detected in the solution after the reaction. The chain process does not develop due to the presence of Te and low concentration of BD used to eliminate the formation of the radical chains. Moreover, the radical products do not appear even at increased concentration of BD (fourth row in Table 4). Similarly to acetic acid, methyl alcohol in a mixture with sulfuric acid converts the oxidation products to methyl esters. However, oxidation in the alcohol medium is slower than in acetic acid, and further improvement of the selectivity of the formation of 1,4-addition products is required.
Two competitive methods for direct epoxidation of olefins are gas-phase oxidation with oxygen over silver catalyst and liquid-phase reactions with organic hydroperoxides or hydrogen peroxide in the presence of soluble or supported W, Mo, Ti complexes. The gas-phase epoxidation is typical for obtaining light epoxides, whereas epoxidation with peroxide compounds in liquid is applicable for a wide range of substrates containing double bonds. Both type reactions are based on interaction of olefin with electrophilic oxygen species. Under liquid-phase epoxidation, catalytically active metal complexes react with peroxides to attach the reactive oxygen as ligand which attack the double bond of olefin. Hydrogen peroxide is effective oxygen donor and has an advantage of low-temperature reaction giving environmentally benign water as a by-product [61, 62].
The liquid-phase epoxidation of BD with H2O2 is known to occur over titanium silicates in CH3OH [63] and in CH3CN solution of heteropoly compounds [64, 65]. The data for these reactions are given in Table 5.
Catalyst1 | H2O21 (mmol) | BD (bar) | Time (h) | Epoxide (mmol) | Sel.BD (%) | H2O2 efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
TS-1(6 mg)2 | 0.5 | 1.5 | 1 | 0.25 | n.d. | 52 | [63] |
TBA4[γ-SiW10O34(H2O)2] (3 μmol)3 | 0.3 | 2.5 | 9 | 0.30 | 99 | 99 | [64] |
TBA-PW11(10 μmol)4 | 0.9 | 1 | 5.5 | 0.51 | 88 | 88 | [65] |
EMIm-PW11(10 μmol)4 | 0.9 | 1 | 5 | 0.65 | 91 | 90 | [65] |
EMIm-PW11(2.3 μmol)5 | 1.0 | 1 | 5 | 0.20 | 97 | 100 | [65] |
Epoxidation of BD with H2O2 in solvents.
Catalyst, H2O2 and epoxide produced were normalized to 2 mL of the reaction mixture.
CH3OH solvent, room temperature.
CH3CN solvent, room temperature.
CH3CN solvent, 60 °C.
CH3CN solvent, 50 °C.
Both catalysts are activators of hydrogen peroxide, capable of forming peroxide complexes. Thoroughly investigated for various olefins, the mechanism of epoxidation is realized for the conversion of BD to 3,4-epoxy-1-butene. Coordinated on metal ion, the electrophilic oxygen interacts with one of the equivalent double bonds of BD leaving intact the second C═C bond. Oxygen transfer from peroxide ligand to double bond of olefin has been proved using isotopic reagents [64]. The addition of oxygen to the second bond of BD is more difficult; therefore, the formation of a diepoxide is not detected in reactions with hydrogen peroxide.
Lacunary polyoxotungstates are effective catalysts for epoxidation of olefins with H2O2 [66]. Besides olefins, [HPW11O39]6−and [γ-SiW10O34(H2O)2]4− anions catalyze epoxidation of BD with diluted aqueous H2O2 in acetonitrile solution. Epoxidation of BD has been shown to proceed with high selectivity for 3,4-epoxy-1-butene. Appearance of small admixtures of furan, 3-butene-1,2-diol, and 2-butene-1,4-oxygenates is associated with isomerization and hydrolysis of 3,4-epoxy-1-butene. The unproductive radical decomposition of H2O2 is minimal or absent when the reaction is carried out at a low temperature and at a low concentration of hydrogen peroxide. This is favorable for maintaining high selectivity for 3,4-epoxy-1-butene, because the secondary oxidation of 3,4-epoxy-1-butene by radical intermediates is prevented. As a result, only negligible amount of acrolein appears in the product. Moreover, small additives of EMImBr have been found to inhibit radical decomposition of H2O2, thus increasing the selectivity of BD to 3,4-epoxy-1-butene conversion and efficiency of H2O2 consumption. As a result, the efficiency of H2O2 consumption for producing 3,4-epoxy-1-butene is extremely high, it approaches to 100% under favorable conditions. Both Si- and P-centered heteropolytungstates exhibit equally effective catalysis.
Under reaction conditions, the catalytically active anions are generated from starting lacunary polyoxotungstate anion. It has been shown by NMR that [HPW11O39]6− anion is a precursor of tungsten-depleted anions [PW4] and [PW2], which operate as the most effective activators of hydrogen peroxide and are responsible for epoxidation (Scheme 9) [65]. This is confirmed by the high reactivity of a specially synthesized anion {PO4[WO(O2)2]4}3− in epoxidation of olefins [67].
Transformations of heteropolytungstates in oxidation of BD to 3,4-epoxy-1-butene (EpB) [65].
Despite the limited use of 3,4-epoxy-1-butene itself, it is nevertheless a raw material for the synthesis of various C4-oxygenates such as 1,4-butanediol [68], 3-butene-1,2-diol and 2-butene-1,4-diol [69, 70, 71], and 2,5-dihydrofuran [72]. Therefore, low-temperature and selective epoxidation of BD can be considered as a principal stage of alternative synthesis of demanded and valuable chemicals.
Close nature of BD and light olefins is manifested in similar reaction properties, so that liquid-phase oxidation reactions of BD and olefins have similar mechanisms in many features. The oxidation of olefins and BD in liquid medium enables realization of several routes and obtaining a wide range of products, which are more diverse if compared with gas-phase oxidation. We have considered here the radical chain oxidative conversion of BD realized through the stable polyperoxide intermediate, the formation of which is, to a certain extent, inherent to many olefins. Palladium is able to catalyze homolytic (radical) and heterolytic (Wacker-type) oxidation of olefins. Very close to olefins, the properties of BD are manifested in reactions assisted by homogeneous and more often heterogeneous Pd-containing catalysts. (Note that the tendency to heterogenization of soluble catalysts is observed in liquid-phase reactions.) We observe an interesting phenomenon when the mechanism and products of the Pd-catalyzed oxidation are controlled by promoters. In dependence on other components, the catalytic action of Pd is switched from radical oxidation to nonradical oxygenation directed to one carbon atom or 1,4-position of BD when Pd is promoted with Te or related metals. The effect of Te as an oxidation promoter of palladium and a radical inhibitor allows PdTe catalysts to show substantial efficiency in the well-known industrial synthesis of 1,4-diacetoxybutene in acetic acid and also in other oxidations of BD such as formation of crotonaldehyde and methyl ethyl ketone in aqueous media. The reaction medium and concentration of reagents are also important factors to vary the mechanism of oxidation. Low concentration of BD in the reaction mixture reduces the development of the chain process and makes it possible to realize the oxidation by the heterolytic mechanism. Polar organics are conventional solvents for various oxidations, but acetic acid and methanol exhibit special properties creating conditions for preferable formation of esters of 1,4-butanediol. The identity in mechanisms is also observed in epoxidation of olefins and BD with hydrogen peroxide, where the same catalytically active Ti silicates and polyoxometalates are successfully used to attain highly selective conversion of hydrocarbon and H2O2. All this shows that liquid-phase oxidation have a great potential in converting the BD into valuable oxygenates. To develop this area, extremely productive can be appeal to analogy in chemistry of BD and olefins. A large body of information relating to the oxidation of olefins can be productively applied to understand the mechanisms in oxidation of BD and to develop a strategy for synthesis of purposed oxidation products.
This work was conducted within the framework of budget project No 0303-2016-0006 for Boreskov Institute of Catalysis.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"10736",title:"Neurotoxicity",subtitle:null,isOpenForSubmission:!0,hash:"f3ae592c3bd56dca45f9ce7d02e06714",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:null,isOpenForSubmission:!0,hash:"8ef09a9da770b582c0c64114a19b29c0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!0,hash:"70c3ce4256324b3c58db970d446ddac4",slug:null,bookSignature:"Dr. Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:null,editors:[{id:"255360",title:"Dr.",name:"Usama",surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10883",title:"Pain Management",subtitle:null,isOpenForSubmission:!0,hash:"82abad01d1cffb27e341ffd507117824",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10883.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!0,hash:"d73ec720cb7577731662ac9d02879729",slug:null,bookSignature:"Prof. Pınar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"981",title:"Molecular Biology",slug:"biomedicine-molecular-biology",parent:{title:"Biomedicine",slug:"biomedicine"},numberOfBooks:4,numberOfAuthorsAndEditors:86,numberOfWosCitations:37,numberOfCrossrefCitations:26,numberOfDimensionsCitations:59,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biomedicine-molecular-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8400",title:"Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"222a58353415f02de25a212213bddc00",slug:"molecular-medicine",bookSignature:"Sinem Nalbantoglu and Hakima Amri",coverURL:"https://cdn.intechopen.com/books/images_new/8400.jpg",editedByType:"Edited by",editors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6205",title:"Polypeptide",subtitle:"New Insight into Drug Discovery and Development",isOpenForSubmission:!1,hash:"35f89bf9a197198efc0d44d0ff56d800",slug:"polypeptide-new-insight-into-drug-discovery-and-development",bookSignature:"Usman Sumo Friend Tambunan",coverURL:"https://cdn.intechopen.com/books/images_new/6205.jpg",editedByType:"Edited by",editors:[{id:"70235",title:"Prof.",name:"Usman Sumo Friend",middleName:null,surname:"Tambunan",slug:"usman-sumo-friend-tambunan",fullName:"Usman Sumo Friend Tambunan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1899",title:"Biomedicine",subtitle:null,isOpenForSubmission:!1,hash:"4b1bc3c9f0a151f8c9ffda110c2053d6",slug:"biomedicine",bookSignature:"Chao Lin",coverURL:"https://cdn.intechopen.com/books/images_new/1899.jpg",editedByType:"Edited by",editors:[{id:"109875",title:"Dr.",name:"Chao",middleName:null,surname:"Lin",slug:"chao-lin",fullName:"Chao Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"33119",doi:"10.5772/38349",title:"Additive Manufacturing Solutions for Improved Medical Implants",slug:"additive-manufacturing-solutions-for-improved-implants",totalDownloads:7517,totalCrossrefCites:7,totalDimensionsCites:21,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Vojislav Petrovic, Juan Vicente Haro, Jose Ramón Blasco and Luis Portolés",authors:[{id:"116774",title:"Dr.",name:"Vojislav",middleName:null,surname:"Petrovic",slug:"vojislav-petrovic",fullName:"Vojislav Petrovic"},{id:"116777",title:"MSc.",name:"Juan",middleName:"Vicente",surname:"Haro González",slug:"juan-haro-gonzalez",fullName:"Juan Haro González"},{id:"116778",title:"BSc.",name:"José Ramón",middleName:null,surname:"Blasco Puchades",slug:"jose-ramon-blasco-puchades",fullName:"José Ramón Blasco Puchades"},{id:"116779",title:"BSc.",name:"Luís",middleName:null,surname:"Portolés Griñán",slug:"luis-portoles-grinan",fullName:"Luís Portolés Griñán"}]},{id:"33113",doi:"10.5772/33951",title:"Encapsulation and Surface Engineering of Pancreatic Islets: Advances and Challenges",slug:"encapsulation-and-surface-engineering-of-pancreatic-islets-advances-and-challenges-",totalDownloads:3020,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Veronika Kozlovskaya, Oleksandra Zavgorodnya and Eugenia Kharlampieva",authors:[{id:"97932",title:"Prof.",name:"Eugenia",middleName:null,surname:"Kharlampieva",slug:"eugenia-kharlampieva",fullName:"Eugenia Kharlampieva"},{id:"101333",title:"Dr.",name:"Veronika",middleName:null,surname:"Kozlovskaya",slug:"veronika-kozlovskaya",fullName:"Veronika Kozlovskaya"},{id:"135852",title:"MSc.",name:"Oleksandra",middleName:null,surname:"Zavgorodnya",slug:"oleksandra-zavgorodnya",fullName:"Oleksandra Zavgorodnya"}]},{id:"68486",doi:"10.5772/intechopen.88563",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1557,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]}],mostDownloadedChaptersLast30Days:[{id:"68486",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1567,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"74620",title:"Molecular Mechanisms of Distinct Diseases",slug:"molecular-mechanisms-of-distinct-diseases",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Adnan Batman, İrem Yalim Camci, Elif Kadioglu, Kezban Uçar Çifçi, Berçem Yeman Kıyak, Servet Tunoglu, Ezgi Nurdan Yenilmez Tunoglu and Yusuf Tutar",authors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"},{id:"342753",title:"Dr.",name:"Servet",middleName:null,surname:"Tunoglu",slug:"servet-tunoglu",fullName:"Servet Tunoglu"},{id:"342756",title:"Dr.",name:"Adnan",middleName:null,surname:"Batman",slug:"adnan-batman",fullName:"Adnan Batman"},{id:"343421",title:null,name:"Berçem",middleName:null,surname:"Yeman Kıyak",slug:"bercem-yeman-kiyak",fullName:"Berçem Yeman Kıyak"},{id:"344587",title:null,name:"İrem Yalım",middleName:null,surname:"Camcı",slug:"irem-yalim-camci",fullName:"İrem Yalım Camcı"},{id:"344588",title:"Ph.D. Student",name:"Elif",middleName:null,surname:"Kadıoglu",slug:"elif-kadioglu",fullName:"Elif Kadıoglu"},{id:"344589",title:null,name:"Kezban",middleName:null,surname:"Uçar Çiftçi",slug:"kezban-ucar-ciftci",fullName:"Kezban Uçar Çiftçi"}]},{id:"67272",title:"Introductory Chapter: Insight into the OMICS Technologies and Molecular Medicine",slug:"introductory-chapter-insight-into-the-omics-technologies-and-molecular-medicine",totalDownloads:481,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu and Abdullah Karadag",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"72595",title:"Integrating Evolutionary Genetics to Medical Genomics: Evolutionary Approaches to Investigate Disease-Causing Variants",slug:"integrating-evolutionary-genetics-to-medical-genomics-evolutionary-approaches-to-investigate-disease",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Ugur Sezerman, Tugce Bozkurt and Fatma Sadife Isleyen",authors:[{id:"283538",title:"Prof.",name:"Osman Ugur",middleName:null,surname:"Sezerman",slug:"osman-ugur-sezerman",fullName:"Osman Ugur Sezerman"},{id:"318900",title:"Ph.D. Student",name:"Fatma Sadife",middleName:null,surname:"Isleyen",slug:"fatma-sadife-isleyen",fullName:"Fatma Sadife Isleyen"},{id:"319214",title:"M.Sc.",name:"Tugce",middleName:null,surname:"Bozkurt",slug:"tugce-bozkurt",fullName:"Tugce Bozkurt"}]},{id:"33120",title:"Crossings on Public Perception of Biomedicine: Spain and the European Indicators",slug:"crossings-on-public-perception-of-biomedicine-spain-and-the-european-indicators-",totalDownloads:1359,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Eulalia Pérez Sedeño and María José Miranda Suárez",authors:[{id:"112999",title:"Dr.",name:"Eulalia",middleName:null,surname:"Perez Sedeno",slug:"eulalia-perez-sedeno",fullName:"Eulalia Perez Sedeno"},{id:"117289",title:"MSc.",name:"María José",middleName:null,surname:"Miranda Suárez",slug:"maria-jose-miranda-suarez",fullName:"María José Miranda Suárez"}]},{id:"64435",title:"Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease",slug:"precision-medicine-role-of-biomarkers-in-early-prediction-and-diagnosis-of-alzheimer-s-disease",totalDownloads:1246,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Liming Shen, Sijian Xia, Huajie Zhang, Fang Yao, Xukun Liu, Yuxi Zhao, Ming Ying, Javed Iqbal and Qiong Liu",authors:[{id:"263601",title:"Associate Prof.",name:"Liming",middleName:null,surname:"Shen",slug:"liming-shen",fullName:"Liming Shen"},{id:"273558",title:"Ms.",name:"Sijian",middleName:null,surname:"Xia",slug:"sijian-xia",fullName:"Sijian Xia"},{id:"273562",title:"Ms.",name:"Huajie",middleName:null,surname:"Zhang",slug:"huajie-zhang",fullName:"Huajie Zhang"},{id:"273563",title:"Ms.",name:"Fang",middleName:null,surname:"Yao",slug:"fang-yao",fullName:"Fang Yao"},{id:"273564",title:"Ms.",name:"Xukun",middleName:null,surname:"Liu",slug:"xukun-liu",fullName:"Xukun Liu"},{id:"273565",title:"Ms.",name:"Yuxi",middleName:null,surname:"Zhao",slug:"yuxi-zhao",fullName:"Yuxi Zhao"},{id:"273566",title:"Dr.",name:"Ming",middleName:null,surname:"Ying",slug:"ming-ying",fullName:"Ming Ying"},{id:"273567",title:"Dr.",name:"Javed",middleName:null,surname:"Iqbal",slug:"javed-iqbal",fullName:"Javed Iqbal"},{id:"273569",title:"Prof.",name:"Qiong",middleName:null,surname:"Liu",slug:"qiong-liu",fullName:"Qiong Liu"}]},{id:"71705",title:"Landscape Genetics: From Classic Molecular Markers to Genomics",slug:"landscape-genetics-from-classic-molecular-markers-to-genomics",totalDownloads:226,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Enéas Ricardo Konzen and Maria Imaculada Zucchi",authors:[{id:"196963",title:"Dr.",name:"Enéas Ricardo",middleName:null,surname:"Konzen",slug:"eneas-ricardo-konzen",fullName:"Enéas Ricardo Konzen"},{id:"305359",title:"Prof.",name:"Maria Imaculada",middleName:null,surname:"Zucchi",slug:"maria-imaculada-zucchi",fullName:"Maria Imaculada Zucchi"}]},{id:"33113",title:"Encapsulation and Surface Engineering of Pancreatic Islets: Advances and Challenges",slug:"encapsulation-and-surface-engineering-of-pancreatic-islets-advances-and-challenges-",totalDownloads:3024,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Veronika Kozlovskaya, Oleksandra Zavgorodnya and Eugenia Kharlampieva",authors:[{id:"97932",title:"Prof.",name:"Eugenia",middleName:null,surname:"Kharlampieva",slug:"eugenia-kharlampieva",fullName:"Eugenia Kharlampieva"},{id:"101333",title:"Dr.",name:"Veronika",middleName:null,surname:"Kozlovskaya",slug:"veronika-kozlovskaya",fullName:"Veronika Kozlovskaya"},{id:"135852",title:"MSc.",name:"Oleksandra",middleName:null,surname:"Zavgorodnya",slug:"oleksandra-zavgorodnya",fullName:"Oleksandra Zavgorodnya"}]},{id:"61938",title:"Calcitonin-Related Polypeptide Alpha Gene Polymorphisms and Related Diseases",slug:"calcitonin-related-polypeptide-alpha-gene-polymorphisms-and-related-diseases",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"polypeptide-new-insight-into-drug-discovery-and-development",title:"Polypeptide",fullTitle:"Polypeptide - New Insight into Drug Discovery and Development"},signatures:"Nevra Alkanli, Arzu Ay and Suleyman Serdar Alkanli",authors:[{id:"234410",title:"Dr.",name:"Nevra",middleName:null,surname:"Alkanli",slug:"nevra-alkanli",fullName:"Nevra Alkanli"},{id:"235954",title:"Dr.",name:"Arzu",middleName:null,surname:"Ay",slug:"arzu-ay",fullName:"Arzu Ay"},{id:"235955",title:"Mr.",name:"Suleyman Serdar",middleName:null,surname:"Alkanli",slug:"suleyman-serdar-alkanli",fullName:"Suleyman Serdar Alkanli"}]},{id:"72817",title:"Clinical Validation of a Whole Exome Sequencing Pipeline",slug:"clinical-validation-of-a-whole-exome-sequencing-pipeline",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Debra O. Prosser, Indu Raja, Kelly Kolkiewicz, Antonio Milano and Donald Roy Love",authors:[{id:"319362",title:"Dr.",name:"Donald Roy",middleName:null,surname:"Love",slug:"donald-roy-love",fullName:"Donald Roy Love"},{id:"319363",title:"Mrs.",name:"Debra O.",middleName:null,surname:"Prosser",slug:"debra-o.-prosser",fullName:"Debra O. Prosser"}]}],onlineFirstChaptersFilter:{topicSlug:"biomedicine-molecular-biology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/181436/temitope-raphael-ayodele",hash:"",query:{},params:{id:"181436",slug:"temitope-raphael-ayodele"},fullPath:"/profiles/181436/temitope-raphael-ayodele",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()