Some examples of products related to biological, biotechnology-derived, and biopharmaceutical products.
-Preparation and fabrications of nanolayers with different methods.\n
-Description of recent achievements related to very important III-V heterostructures.\n
-Descriptions of mechanical, thermal, optoelectronic, photocatalytic, and tribological properties of nanolayered structures.\n
Some environmentally friendly applications are also treated in this book.\nThe presented book provides a description of specific and original results obtained by authors. We hope that the volume will be of interest for a wide range of readers working in the field of material science.",isbn:"978-953-51-3144-1",printIsbn:"978-953-51-3143-4",pdfIsbn:"978-953-51-4829-6",doi:"10.5772/65465",price:119,priceEur:129,priceUsd:155,slug:"nanoscaled-films-and-layers",numberOfPages:298,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"f43ea8f3894ee0c3e44b2351bf3447d5",bookSignature:"Laszlo Nanai",publishedDate:"May 24th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5789.jpg",numberOfDownloads:18918,numberOfWosCitations:13,numberOfCrossrefCitations:14,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:30,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:57,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 26th 2016",dateEndSecondStepPublish:"October 17th 2016",dateEndThirdStepPublish:"January 13th 2017",dateEndFourthStepPublish:"April 13th 2017",dateEndFifthStepPublish:"June 12th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"61978",title:"Prof.",name:"Laszlo",middleName:null,surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai",profilePictureURL:"https://mts.intechopen.com/storage/users/61978/images/system/61978.png",biography:"Prof. Nanai was born on April 19, 1948, in Csopak (Hungary). He studied physics (MSc) at Saint Petersburg State University (RU), and his PhD degree and habilitation in the field of quantum electronics were obtained at Lebedev Physical Institute, Moscow (RU), and Szeged University (H). \r\n\r\nHe is a specialist in the fields of solid-state physics, laser-matter interaction fabrication and characterization of nanostructures. He has written over 170 scientific publications including about 10 books and chapters in books and conference proceedings.",institutionString:"University of Szeged",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Szeged",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"54288",title:"Formation of Nanolayer on Surface of EPD Coatings Based on Poly-Ether-Ether-Ketone",doi:"10.5772/67570",slug:"formation-of-nanolayer-on-surface-of-epd-coatings-based-on-poly-ether-ether-ketone",totalDownloads:1407,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Poly-ether-ether-ketone (PEEK) is a high performance polymer with many intrinsic properties. When it is used in the form of coating, an improvement of some of its functional properties was achieved by forming a surface nanolayer. In this chapter, it will be described how it was possible to obtain this result. Firstly, three kinds of PEEK composite coatings were deposited by electrophoretic deposition, adding alumina particles, polytetrafluoroethylene (PTFE) and lignin to PEEK. Then, the composite coatings were thermal treated in a furnace. Therefore, surface nanostructure and chemical composition of these PEEK composite coatings were modified with respect to bulk coatings, due to interaction between PEEK chain and secondary phase, emphasised by the thermal treatment conditions. Experimental evidence of the formation of surface nanolayer was provided by SEM, TEM, GIXRD, ATR-FTIR and XPS characterisations. Functional characterisations demonstrated that wear resistance—in the presence of alumina particles—hydrophobicity—in the presence of PTFE—and corrosion resistance—in the presence of Lignin—were increased with respect to pure PEEK.",signatures:"Maria Federica De Riccardis",downloadPdfUrl:"/chapter/pdf-download/54288",previewPdfUrl:"/chapter/pdf-preview/54288",authors:[{id:"77857",title:"Dr.",name:"M. Federica",surname:"De Riccardis",slug:"m.-federica-de-riccardis",fullName:"M. Federica De Riccardis"}],corrections:null},{id:"54678",title:"Electroless Deposition of Nanolayered Metallic Coatings",doi:"10.5772/intechopen.68220",slug:"electroless-deposition-of-nanolayered-metallic-coatings",totalDownloads:3394,totalCrossrefCites:5,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Electroless metallic coating is referred as the deposition of a substrate material by the process of chemical or autocatalytic reduction of aqueous metal ions deposited to a substrate material without any external supply of power. Electroless nickel alloys are generally considered synonymous to the word “electroless coating” as ~90% of productions in industries are of this alloy coating. Rest of the electroless metallic coatings includes gold, copper, palladium, cobalt, silver, etc. These electroless metallic coatings (other than electroless nickel coatings) are also one of the vibrant areas in the field of materials properties and surface engineering research. From the year 2000 to till date, nearly 1000 SCI indexed research papers were published on this topic. However, no comprehensive studies about the recent progress on this topic were reported elsewhere so far. In this context, the present chapter aims to give a complete overview on various aspects of the rest of the electroless metallic nanocoatings/layer as a whole. More importance will be on the recent developments of the nanocharacteristics and future scopes.",signatures:"Jothi Sudagar, Rajendraprasad Tamilarasan, Udaykumar Sanjith, Raj\nRajendran and Ravi Kumar",downloadPdfUrl:"/chapter/pdf-download/54678",previewPdfUrl:"/chapter/pdf-preview/54678",authors:[{id:"202302",title:"Dr.",name:"Jothi",surname:"Sudagar",slug:"jothi-sudagar",fullName:"Jothi Sudagar"},{id:"203599",title:"Dr.",name:"Tamilarasan",surname:"Tr",slug:"tamilarasan-tr",fullName:"Tamilarasan Tr"},{id:"203600",title:"MSc.",name:"Sanjith",surname:"U",slug:"sanjith-u",fullName:"Sanjith U"},{id:"203601",title:"Prof.",name:"Rajendran",surname:"R",slug:"rajendran-r",fullName:"Rajendran R"},{id:"203602",title:"Prof.",name:"Ravi Kumar",surname:"Nv",slug:"ravi-kumar-nv",fullName:"Ravi Kumar Nv"}],corrections:null},{id:"54328",title:"Laser Prepared Thin Films for Optoelectronic Applications",doi:"10.5772/67659",slug:"laser-prepared-thin-films-for-optoelectronic-applications",totalDownloads:1474,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Laser techniques such as pulsed laser deposition, combinatorial pulsed laser deposition, and matrix-assisted pulsed laser evaporation were used to deposit thin films for optoelectronic applications. High-quality transparent conductor oxide films ITO, AZO, and IZO were deposited on polyethylene terephthalate by PLD, an important experimental parameter being the target-substrate distance. The TCO films present a high transparency (>95%) and a reduced electrical resistivity (5 × 10−4 Ωcm) characteristics very useful for their integration in the flexible electronics. InxZn1−xO films with a compositional library were obtained by CPLD. These films are featured by a high optical transmission (>95%), the lowest resistivity (8.6 × 10−4 Ωcm) being observed for an indium content of about 44–49 at.%. Organic heterostructures based on arylenevinylene oligomers (P78 and P13) or arylene polymers (AMC16 and AMC22) were obtained by MAPLE. In the case of ITO/P78/Alq3/Al heterostructures, a higher current value is obtained when the film thickness increases. Also, a photovoltaic effect was observed for heterostructures based on AMC16 or AMC22 deposited on ITO covered by a thin layer of PEDOT:PSS. Due to their optical and electrical properties, such organic heterostructures can be interesting for the organic photovoltaic cells (OPV) applications.",signatures:"Marcela Socol, Gabriel Socol, Nicoleta Preda, Anca Stanculescu and\nFlorin Stanculescu",downloadPdfUrl:"/chapter/pdf-download/54328",previewPdfUrl:"/chapter/pdf-preview/54328",authors:[{id:"21373",title:"Dr.",name:"Anca",surname:"Stanculescu",slug:"anca-stanculescu",fullName:"Anca Stanculescu"},{id:"21611",title:"Dr.",name:"Florin",surname:"Stanculescu",slug:"florin-stanculescu",fullName:"Florin Stanculescu"},{id:"178419",title:"Dr.",name:"Gabriel",surname:"Socol",slug:"gabriel-socol",fullName:"Gabriel Socol"},{id:"184343",title:"Dr.",name:"Nicoleta",surname:"Preda",slug:"nicoleta-preda",fullName:"Nicoleta Preda"},{id:"198589",title:"Dr.",name:"Marcela",surname:"Socol",slug:"marcela-socol",fullName:"Marcela Socol"}],corrections:null},{id:"54765",title:"Heteroepitaxy of III–V Zinc Blende Semiconductors on Nanopatterned Substrates",doi:"10.5772/67572",slug:"heteroepitaxy-of-iii-v-zinc-blende-semiconductors-on-nanopatterned-substrates",totalDownloads:1514,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"In the last decade, zinc blende structure III–V semiconductors have been increasingly utilized for the realization of high‐performance optoelectronic applications because of their tunable bandgaps, high carrier mobility and the absence of piezoelectric fields. However, the integration of III–V devices on the Si platform commonly used for CMOS electronic circuits still poses a challenge, due to the large densities of mismatch‐related defects in heteroepitaxial III–V layers grown on planar Si substrates. A promising method to obtain thin III–V layers of high crystalline quality is the growth on nanopatterned substrates. In this approach, defects can be effectively eliminated by elastic lattice relaxation in three dimensions or confined close to the substrate interface by using aspect‐ratio trapping masks. As a result, an etch pit density as low as 3.3 × 105 cm−2 and a flat surface of submicron GaAs layers have been accomplished by growth onto a SiO2 nanohole film patterned Si(001) substrate, where the threading defects are trapped at the SiO2 mask sidewalls. An open issue that remains to be resolved is to gain a better understanding of the interplay between mask shape, growth conditions and formation of coalescence defects during mask overgrowth in order to achieve thin device quality III–V layers.",signatures:"Thomas Riedl and Jörg K.N. Lindner",downloadPdfUrl:"/chapter/pdf-download/54765",previewPdfUrl:"/chapter/pdf-preview/54765",authors:[{id:"196852",title:"Dr.",name:"Thomas",surname:"Riedl",slug:"thomas-riedl",fullName:"Thomas Riedl"},{id:"197870",title:"Prof.",name:"Jörg K.N.",surname:"Lindner",slug:"jorg-k.n.-lindner",fullName:"Jörg K.N. Lindner"}],corrections:null},{id:"54687",title:"Surface Modification of III-V Compounds Substrates for Processing Technology",doi:"10.5772/67916",slug:"surface-modification-of-iii-v-compounds-substrates-for-processing-technology",totalDownloads:1935,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Semiconductor materials became a part of nowadays life due to useful applications caused by characteristic properties as variable conductivity and sensitivity to light or heat. Electrical properties of a semiconductor can be modified by doping or by the application of electric fields or light; and from this view, devices made from semiconductors can be used for amplification or energy conversion. The compound semiconductor materials from III-V class experienced a qualitative leap from promising potential to nowadays technologic environment. The III-V semiconductor compounds are the material bases for electronic and optoelectronic devices such as high-electron-mobility transistors (HEMT), bipolar heterostructure transistors, IR light-emitting diodes, heterostructure lasers, Gunn diodes, Schottky devices, photodetectors, and heterostructure solar cells for terrestrial and spatial operating conditions. Among III-V semiconductor compounds, gallium arsenide (GaAs) and gallium antimonide (GaSb) are of special interest as a substrate material due to the lattice parameter match to solid solutions (ternary and quaternary) whose band gaps cover a wide spectral range from 0.8 to 4.3 μm in the case of GaSb. The solid/solid interfaces could play a key part in the development of microelectronic device technology. In most of the cases, the initial surface of III-V compounds exposed to laboratory conditions is covered usually with native oxide layers. Various techniques for performing the surface cleaning process are used, e.g., controlled chemical etching, in situ ion sputtering, coupled with controlled annealing in vacuum and often these classic techniques are combined in order to prepare an eligible semiconductor surface to be exposed to a technological device chain. The evolution of surface native oxides in different cleaning procedures and the characteristics of as-prepared semiconductor surface were investigated by modern surface investigation techniques, i.e., X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) combined with electrical characterization. Surface preparation of semiconductors in particular for III-V compounds is a necessary requirement in device technology due to the existence of surface impurities and the presence of native oxides. The impurities can affect the adherence of ohmic and Schottky contacts and due to thermal decomposition of native oxides (e.g., GaSb) it also affect the interface metal/semiconductor. The practical experience reveals that the simple preparation of a surface is a nonrealistic expectation, i.e., surface preparation is a result of combined treatments, namely chemical etching and thermal treatment, ion beam sputtering and thermal reconstruction procedure.",signatures:"Rodica V. Ghita, Constantin Logofatu, Constantin-Catalin Negrila,\nLucian Trupina and Costel Cotirlan-Simioniuc",downloadPdfUrl:"/chapter/pdf-download/54687",previewPdfUrl:"/chapter/pdf-preview/54687",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"197743",title:"Dr.",name:"Lucian",surname:"Trupina",slug:"lucian-trupina",fullName:"Lucian Trupina"},{id:"198134",title:"Dr.",name:"Constantin",surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"198135",title:"Dr.",name:"Constantin-Catalin",surname:"Negrila",slug:"constantin-catalin-negrila",fullName:"Constantin-Catalin Negrila"},{id:"198140",title:"Dr.",name:"Costel",surname:"Cotirlan-Simioniuc",slug:"costel-cotirlan-simioniuc",fullName:"Costel Cotirlan-Simioniuc"}],corrections:null},{id:"54581",title:"Nanoscaled Fluorescent Films and Layers for Detection of Environmental Pollutants",doi:"10.5772/67869",slug:"nanoscaled-fluorescent-films-and-layers-for-detection-of-environmental-pollutants",totalDownloads:1778,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Hazardous gas and ion pollutants are the most serious environmental problems around the world. It is of great importance to develop devices for easy detection of these hazardous substances. Fluorescence technology with high resolution and operational simplicity has attracted a lot of attention in recent years. Organic fluorescent dyes absorb/emit lights within a broad wavelength range, which is suitable for various demands. Chromophores, such as perylene, cyanine dyes, spiropyran, and so on, are widely studied as fluorescent probes for gases and ions. The dyes could respond to external stimuli through structural changes of the conjugated chromophore itself or the attached functional groups, leading to detectable spectral changes. Organic dyes are incorporated into nanoscaled films and layers, which are portable and durable for effective sensing in complex environments. In this chapter, preparation and application of fluorescent films and layers (FFL) for gaseous/ionic detection are reviewed. We discuss the response mechanism of fluorescent dyes, the fabrication of nanoscaled FFL, and some examples of FFL for the detection of gas and ion pollutants.",signatures:"Meizhen Yin and Chendong Ji",downloadPdfUrl:"/chapter/pdf-download/54581",previewPdfUrl:"/chapter/pdf-preview/54581",authors:[{id:"197509",title:"Prof.",name:"Meizhen",surname:"Yin",slug:"meizhen-yin",fullName:"Meizhen Yin"},{id:"200372",title:"Mr.",name:"Chendong",surname:"Ji",slug:"chendong-ji",fullName:"Chendong Ji"}],corrections:null},{id:"54290",title:"Mechanical Nanoprocessing and Nanoviscoelasticity of Surface- Modified Polycarbonate",doi:"10.5772/67512",slug:"mechanical-nanoprocessing-and-nanoviscoelasticity-of-surface-modified-polycarbonate",totalDownloads:1252,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"To clarify their potential as atomic force microscope (AFM) memory media, the nanometer‐scale mechanical processing properties of untreated and fluorocarbon plasma‐treated polycarbonate samples were determined via the sliding of an AFM tip. The surface energy of the polycarbonate was reduced by the fluorocarbon plasma treatment, as well as the force necessary for processing. Nanometer‐scale precise processing of the polycarbonate was realized after the fluorocarbon plasma treatment, and the interval pitch in the formation of lines, spaces, and nanometer‐scale fine dots was minimized to 60 nm with these samples. The viscoelastic properties of the fluorinated polycarbonate were evaluated using an AFM in force modulation mode. The fluorocarbon plasma treatment reduced the friction force of the polycarbonate sample and improved its wear resistance, which caused the friction durability corresponding to the reliability of data reproduction to be markedly improved. These results show that high‐density recording can be realized by nanometer‐scale processing of fluorocarbon plasma‐treated polycarbonate samples.",signatures:"Shojiro Miyake and Mei Wang",downloadPdfUrl:"/chapter/pdf-download/54290",previewPdfUrl:"/chapter/pdf-preview/54290",authors:[{id:"22097",title:"Dr.",name:"Mei",surname:"Wang",slug:"mei-wang",fullName:"Mei Wang"}],corrections:null},{id:"54966",title:"Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends",doi:"10.5772/intechopen.68434",slug:"green-intelligent-nanomaterials-by-design-using-nanoparticulate-2d-materials-building-blocks-current",totalDownloads:1476,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Feasibility of designing and synthesizing ‘smart’ and ‘intelligent’ materials using nanostructured building blocks has been examined here based on the current status of the progress made in this context. The added advantages of using 2D layered/nonlayered materials along with phytosomal species derived from natural plants are highlighted with special reference to their better programmability along with minimum toxicity in biomedical applications. The current developments taking place in their upscaled productions are also included while assessing their upcoming industrial usages in diverse fields.",signatures:"Dinesh Kumar and Shamim Ahmad",downloadPdfUrl:"/chapter/pdf-download/54966",previewPdfUrl:"/chapter/pdf-preview/54966",authors:[{id:"196523",title:"Dr.",name:"Shamim",surname:"Ahmad",slug:"shamim-ahmad",fullName:"Shamim Ahmad"},{id:"205981",title:"Prof.",name:"Dinesh",surname:"Kumar",slug:"dinesh-kumar",fullName:"Dinesh Kumar"}],corrections:null},{id:"54751",title:"Molybdenum Disulfide-Based Photocatalysis:Bulk-to-Single Layer Structure and Related Photomechansim for Environmental Applications",doi:"10.5772/67825",slug:"molybdenum-disulfide-based-photocatalysis-bulk-to-single-layer-structure-and-related-photomechansim-",totalDownloads:1975,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Bulk-to-single layer molybdenum disulfide (MoS2) is widely used as a robust candidate for photodegradation of organic pollutants, hydrogen production, and CO2 reduction. This material features active edge sites and narrow band gap features, which are useful for generating reactive species in aqueous suspensions. However, the high-charge carrier recombination, photocorrosion, unstable sulfide state, and formation of Mo-S-O links during photocatalytic reactions limit its applicability. Thus, research has focused on improving the performance of MoS2 by tailoring its bulk-to-single layer structure and combining it with other semiconductor materials to improve the photocatalytic performance. Different strategies have been successfully applied to enhance the photocatalytic activity of MoS2, including tailoring of the surface morphology, formation of heterojunctions with other semiconductors, doping, and modification with excess sulfur or carbon nanostructures. This review describes the influence of starting precursors, sulfur sources, and synthetic methods to obtain heterostructured morphologies and study their impact on the photocatalytic efficiency. Finally, the relevance of crystal facets and defects in photocatalysis is outlined. Future applications of MoS2 with tailoring and tuning physicochemical properties are highlighted.",signatures:"Surya Veerendra Prabhakar Vattikuti and Chan Byon",downloadPdfUrl:"/chapter/pdf-download/54751",previewPdfUrl:"/chapter/pdf-preview/54751",authors:[{id:"196995",title:"Prof.",name:"S V Prabhakar",surname:"Vattikuti",slug:"s-v-prabhakar-vattikuti",fullName:"S V Prabhakar Vattikuti"},{id:"199682",title:"Prof.",name:"Chan",surname:"Byon",slug:"chan-byon",fullName:"Chan Byon"}],corrections:null},{id:"54449",title:"Advance in Tribology Study of Polyelectrolyte Multilayers",doi:"10.5772/67571",slug:"advance-in-tribology-study-of-polyelectrolyte-multilayers",totalDownloads:1372,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This review introduced the preparation and structural characterization of polyelectrolyte multilayers in recent years and also summarized the tribology research progress of the polyelectrolyte multilayers, including tribological properties, surface adhesion characteristics, and wear resistance properties. Statistics analysis indicated that nanoparticles‐doped polyelectrolyte multilayers present better friction and wear performance than pristine polyelectrolyte multilayers. Furthermore, the in situ growth method resulted in improved structural order of nanoparticles composite molecular deposition film. In situ nanoparticles not only reduced the molecular deposition film surface adhesion force and friction force but also significantly improved the life of wear resistance. That was due to the nanoparticles that possessed a good load‐carrying capacity and reduced the mobility of the polymer‐chain segments, which can undergo reversible shear deformation. Based on this, further research direction of in situ nanoparticles molecular deposition film was proposed.",signatures:"Yanbao Guo and Deguo Wang",downloadPdfUrl:"/chapter/pdf-download/54449",previewPdfUrl:"/chapter/pdf-preview/54449",authors:[{id:"196649",title:"Dr.",name:"Yanbao",surname:"Guo",slug:"yanbao-guo",fullName:"Yanbao Guo"},{id:"197584",title:"Prof.",name:"Deguo",surname:"Wang",slug:"deguo-wang",fullName:"Deguo Wang"}],corrections:null},{id:"54123",title:"Thermal Radiative Wavelength Selectivity of Nanostructured Layered Media",doi:"10.5772/67395",slug:"thermal-radiative-wavelength-selectivity-of-nanostructured-layered-media",totalDownloads:1343,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Thermal radiative transport yields unique thermal characteristics of microscopic thin films—wavelength selectivity. This chapter focuses on a methodology about adjusting the wavelength selectivity of thin films embedded with nanoparticles in the far‐field and near‐field regimes. For nanostructured layered media doped with nanoparticles, Maxwell‐Garnett‐Mie theory is applied to determine the effective dielectric function for the calculation of radiative thermal transport. The thermal radiative wavelength selectivity can be affected by volume fraction and/or the size of the embedded nanoparticles in thin films. To characterize wavelength selectivity and optical property of nanostructured materials, both real and imaginary parts of effective refractive index need to be analyzed. It has been shown that the nanoparticles made of polar or metallic materials have different influence on thermal radiative wavelength selectivity of microscopic thin films.",signatures:"Yi Zheng",downloadPdfUrl:"/chapter/pdf-download/54123",previewPdfUrl:"/chapter/pdf-preview/54123",authors:[{id:"197058",title:"Prof.",name:"Yi",surname:"Zheng",slug:"yi-zheng",fullName:"Yi Zheng"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7194",title:"Methods for Film Synthesis and Coating Procedures",subtitle:null,isOpenForSubmission:!1,hash:"0278e5a9a9d429a23692d1ce9bae2c2c",slug:"methods-for-film-synthesis-and-coating-procedures",bookSignature:"László Nánai, Aneeya Samantara, László Fábián and Satyajit Ratha",coverURL:"https://cdn.intechopen.com/books/images_new/7194.jpg",editedByType:"Edited by",editors:[{id:"61978",title:"Prof.",name:"Laszlo",surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3558",title:"Advances in Graphene Science",subtitle:null,isOpenForSubmission:!1,hash:"f3a2158260a79c0fc8a4298864aa7dcd",slug:"advances-in-graphene-science",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3558.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67321",slug:"corrigendum-to-clinical-approach-in-the-diagnosis-of-acute-appendicitis",title:"Corrigendum to: Clinical Approach in the Diagnosis of Acute Appendicitis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67321.pdf",downloadPdfUrl:"/chapter/pdf-download/67321",previewPdfUrl:"/chapter/pdf-preview/67321",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67321",risUrl:"/chapter/ris/67321",chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]}},chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:{name:"National University of Colombia",institutionURL:null,country:{name:"Colombia"}}}]},book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9192",leadTitle:null,title:"Chemistry of Boron and its Compounds",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book deals with boranes and borazine compounds. These inorganic compounds play a vital role in chemistry. They possess unique properties which enables them to be used widely. This book welcomes contributions regarding different methods for synthesizing boranes and borazines and its derivatives, different characterization techniques that are being used to deduce the molecular structures and properties of the title compounds. Then, applications of the title compound in energy, industries, catalysis, pharmaceuticals. These topics aim to help the readers to understand how boranes and borazines are bring used and also give novel ideas on using the title compounds for new applications. Contributions regarding reactivity of boranes and borazines with other chemical compounds are also welcome Overall, this book aims to provide a wide spectrum of knowledge on boranes and borazine compounds for the readers.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"8e225c60b306bf875fb6f682808e9b73",bookSignature:"Prof. Shengqiang Ma",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9192.jpg",keywords:"Boranes, Borazines, Synthesis, Characterization, Molecular Structure, Applications of Boranes, Applications of Borazines, Industries, Energy, Reactivity ,Chemical Compounds, Byproducts",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 2nd 2019",dateEndSecondStepPublish:"September 23rd 2019",dateEndThirdStepPublish:"November 22nd 2019",dateEndFourthStepPublish:"February 10th 2020",dateEndFifthStepPublish:"April 10th 2020",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248458",title:"Prof.",name:"Shengqiang",middleName:null,surname:"Ma",slug:"shengqiang-ma",fullName:"Shengqiang Ma",profilePictureURL:"https://mts.intechopen.com/storage/users/248458/images/system/248458.PNG",biography:"Dr. Shengqiang Ma is an Associate Professor of Xi'an Jiaotong University, China. His research interests focus on Solid-state phase transformation of alloys, Corrosion and control of alloys, Environmental induced embrittlement, Microstructure and properties of alloys, Surface film and interface control and Corrosion wear of materials.",institutionString:"Xi'an Jiaotong University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Xi'an Jiaotong University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41162",title:"Microbial Quality Concerns for Biopharmaceuticals",doi:"10.5772/52114",slug:"microbial-quality-concerns-for-biopharmaceuticals",body:'Finding an appropriate definition or a clear classification for biologically occurring pharmaceutical products is a complicated task because of overlapping borders and consequent misconceptions in this area. Indeed, numerous definitions and classifications for this category of products have been proposed so far, and different points of view for this concept can be found in research literature, business, industry, and even the general public [1, 2].
To obtain a better view of biopharmaceutical concept, first, it is necessary to know the present definitions for the main constituents of the word, that is, pharmaceutical product and biological product.
According to the WHO, a finished pharmaceutical product (FPP) is “A finished dosage form of a pharmaceutical product, which has undergone all stages of manufacture, including packaging in its final container and labeling." [3]
An active pharmaceutical ingredient can be defined as “A substance used in a finished pharmaceutical product (FPP), intended to furnish pharmacological activity or to otherwise have direct effect in the diagnosis, cure, mitigation, treatment or prevention of disease, or to have direct effect in restoring, correcting or modifying physiological functions in human beings." [3] Hence, in brief, it can be said that any material, regardless of its origin or structure, with treatment, diagnosis, or prevention applications and passing regulatory requirements, is a pharmaceutical product.
On the other hand, the FDA definition for biological products is as follows: “Biological products or biologics are medical products made from a variety of natural sources (human, animal or microorganism). Like drugs, some biologics are intended to treat diseases and medical conditions or to prevent or diagnose diseases.” [4] Consequently, any product of biological origin with treatment, diagnosis, or prevention applications is a biological product.
A biotechnology-derived product is another concept that should be taken into consideration. It is defined by Walsh as “any pharmaceutical product used for a therapeutic or in vivo diagnostic purpose, which is produced in full or in part by either traditional or modern biotechnological means.” [5]
On comparing the definitions for a biotechnology-derived product and a biological product, both of which should be of biological origin, it is obvious that the key element in the former definition is the application of biotechnological means for production.
In practice, the regulatory requirements needed for a biotechnology-derived product and a biological product are methodologically different from the pharmaceutical product due to their biological essence. For example, the determination of adventitious agents such as viruses, transmitting spongiform encephalopathy (TSE), and mycoplasma are included in most of the related guidelines and pharmacopeias for a biotechnology-derived product and a biological product.
Finally, a biopharmaceutical is defined by Walsh as “A protein or nucleic acid based pharmaceutical substance used for therapeutic or in vivo diagnostic purposes, which is produced by means other than direct extraction from a native (non-engineered) biological source.” This definition that will be used in the present chapter for biopharmaceuticals includes all pharmaceutical products produced by modern biotechnology techniques as well as nucleic acid (DNA or RNA) based pharmaceutical products for gene therapy. Hence, the overlapping area between biotechnology-derived products and biopharmaceuticals is the application of modern biotechnological means in their production. However, the differentiating area can be the application of traditional biotechnological means for the production of biotechnology-derived products. In addition, nucleic acid-based pharmaceutical products that are categorized as biopharmaceuticals are not biotechnology-derived products [6]. Figure 1 illustrates these overlapping and differentiating areas. Moreover, some examples of products in these categories are shown in Table1.
Blood and blood products | Therapeutic proteins from natural sources | Recombinant proteins | Recombinant proteins |
Human cells and tissues | Antibiotics fully or partially from microorganisms | Monoclonal antibody produced by hybridoma technology | Nucleic acid-based pharmaceutical products for gene therapy |
Some examples of products related to biological, biotechnology-derived, and biopharmaceutical products.
The schematic representation for biotechnology-derived products and biopharmaceutical categories and the overlapping areas between them.
The main category of biopharmaceuticals is manufactured via recombinant DNA technology. Indeed, recombinant DNA technologies are enabling techniques that manipulate and engineer different gene fragments and which have been introduced less than 50 years ago by the revolutionary invention of Polymerase Chain Reaction (PCR) by Kary Mullis [7].
DNA and RNA extraction from different cell types, cutting DNA fragments using restriction endonucleases, joining DNA fragments by DNA ligases, PCR to amplify gene fragments, cloning of the gene fragments into different vectors, introduction of recombinant constructs into proper hosts, protein expression, extraction, and purification are some of the most widely used means in recombinant protein production.
Figure 2 schematically represents the summarized process of production of a recombinant protein. As can be seen from the chart, first, the gene of interest should be isolated and amplified from the original cell. According to the type of the cell, it can be done through direct total DNA extraction followed by a PCR using proper primers to obtain the gene in prokaryotes. On the other hand, in eukaryotes, due to the existence of introns and some modifications that occur in the transcribed mRNA, the process is considerably complicated. Introns are non-coding sequences which are removed after transcription versus coding sequences that are called
Schematic representation of recombinant protein production process
Based on their sizes, the obtained genes can now be introduced into a proper vector for maintenance, replication, or expression purposes. Plasmids, cosmids, and bacteriophages are the most important cloning vectors that are classified according to the size of the DNA fragment that can be inserted into them. Ultimately, the new recombinant construct should be introduced into an expression system for production. Different classes of expression systems with their certain merits and disadvantages are available and range from cell systems such as bacterial, animal, fungal, and yeast cells to transgenic systems such as transgenic plants and animals [7, 8].
Each specific antibody is secreted by a specific B cell and could recognize a specific region on the antigen that is called
In general, for the successful fusion of hybridomas, the cells are grown in HAT selection medium. The selection medium is called
Normal cells can synthesize the required nucleotides in two pathways: (1) the main one or de novo biosynthetic pathway, and (2) the alternative one or the salvage pathway (when the main pathway is blocked).
Aminopterin (a folic acid analog that inhibits dihydrofolate reductase) blocks the activation of tetrahydrofolate, which is required for the synthesis of nucleotides via the de novo synthetic pathway, and, therefore, the main pathway is blocked. Thus, in aminopterin-treated cells (HGPRT+ and TK+), the synthesis of nucleotides shifts to the salvage pathway only if hypoxanthine and thymidine are supplied in the medium. HGPRT and TK, the two enzymes, are required for the salvage pathway, and they catalyze the synthesis of purine and thymidylate from hypoxanthine and thymidine substrates, respectively.
Since unfused myeloma cells lack HGPRT or TK, they cannot use the salvage pathway. Thus, the unfused myeloma cells get killed in the HAT medium, as both biosynthetic pathways are blocked. Normal unfused B cells die in the HAT medium, as they are not immortalized and cannot grow for a long time. Nevertheless, the fusion of normal B cells with the HGPRT-or TK-myeloma cells allows the hybridoma cells to grow in HAT medium, as the B cells provide the necessary enzymes for growth of the hybridoma cells.
Hence, the HAT selection medium offers an ideal environment for the isolation of fused myeloma and B cells (hybridoma cells) from unfused myeloma cells and unfused B cells, as this medium allows only the hybridoma cells to survive in the culture.
The production of monoclonal antibodies could be accomplished by ascites (ascitic fluid) production (in vivo) or by cell culture (in vitro) methods. In the in vivo method, hybridoma cells are injected intraperitoneally into mice. The peritoneum serves as a growth chamber for the injected cells. These cells could secrete a high-titered solution of desired antibodies as they grow in the cavity. Finally, the produced antibodies are extracted from the ascitic fluid accumulated in the peritoneal cavity [6]. The antibody concentrations typically range between 1 and 15 mg/ml. The in vivo method offers a very high concentration of monoclonal antibody that often does not need more concentration procedures. Nevertheless, monoclonal antibodies produced by this technique may be contaminated by considerable levels of mouse proteins and other contaminants that might require more complicated, subsequent downstream purifications. The other disadvantage of the ascites production is related to animal welfare issues, as these could cause distress in mice.
Currently, more than 90% of monoclonal antibodies are produced by in vitro techniques [12] that use large-scale manufacturing plants containing several 10,000-L or larger culture bioreactors [13]. The in vitro method of monoclonal antibody production decreases the use of mice and also avoids the need for experienced personnel for animal handling. Regardless of the privileges and importance of the in vitro methods of antibody production, there are some situations in which this method is not applicable; for instance:
Hybridoma cells do not adapt well to in vitro conditions.
Downstream purification methods cause protein denaturation or decreased antibody activity.
The cell line cannot maintain the production of monoclonal antibodies.
When hybridoma cells are contaminated with infectious agents (such as yeasts or fungi), the cells must often be passed through mice. Since removal of the organisms cannot be accomplished by current antimicrobial drugs, thus the in vivo method may save a valuable hybridoma.
When in vitro methods result in monoclonal antibodies that are glycosylated at positions different from those harvested from mouse ascites, they affect antigen-binding capacity as well as biological functions [12].
Taken together, the cell culture technique is a method of choice for large-scale monoclonal antibody production due to the simplicity of the cell culture and financial considerations without ethical concerns that are related to animal use.
The diagram of the monoclonal antibody production via classical hybridoma technology
In 1986, about 10 years after the conception of monoclonal antibody technology, Orthoclone OKT3 was approved by the FDA for use in patients with acute rejection of a transplanted kidney [14]. Unfortunately, early clinical applications of murine monoclonal antibodies were disappointing. This was due to the fact that monoclonal antibodies produced via the classical method are of murine origin and are, therefore, immunogenic to human subjects. In general, patients receiving an antibody exhibit HAMA responses (human anti-mouse antibodies) within two weeks. Multiple infusions of murine monoclonal antibodies significantly enhance the HAMA reactions [6]. In addition, the immune system eliminates the murine monoclonal antibody molecule. Thus, murine monoclonal antibodies demonstrate short serum half lives after administration to humans. Furthermore, the other main difficulty related to murine monoclonal antibodies is the poor recognition of the Fc region by human effector systems of complement and Fc receptors.
Thus, new strategies that are used for producing humanized mouse antibodies that are less immunogenic have been discovered. The first strategy includes the production of functional specific recombinant IgG molecules consisting of mouse variable regions and human constant regions; these are known as chimeric antibodies. Taken together, in the chimeric antibody, 8 out of 12 domains are of human origin (constant regions of the heavy and light chains) (CH and CL) [15]. Chimeric antibodies exhibit reduced HAMA responses compared with mouse antibodies, but the affinity and the selectivity are the same. Furthermore, since the Fc region contains human sequences, the activation of Fc-mediated immune effector functions is allowed.
To further minimize the antigenicity of murine antibodies, humanized antibodies were developed. For their generation, hyper-variable complementarity-determining regions (CDRs) of the specific murine antibody are transferred to a fully human framework. In comparison with the mouse antibodies, humanized antibodies suggest a lower occurrence of HAMA responses.
Further efforts have been invested in the development of technologies that generate fully human monoclonal antibodies. One of the approaches entails the development of transgenic mice, in which a repertoire of human immunoglobulin germline gene segments is inserted into the mouse genome. After the immunization of these mice, they produce fully human antibodies, which can subsequently be separated with the classical hybridoma technology [15].
Figure 4 illustrates the schematic structures of mouse, chimeric, humanized, and human antibodies.
The structure of mouse (shown in red color), chimeric, humanized (shown in black color), and human antibodies. Chimeric antibodies comprise mouse variable regions and human constant regions. Humanized antibodies consist of murine hyper-variable complementarity-determining regions (CDRs) that are grafted to fully human framework.
Mass production of recombinant products can be achieved in a process that is divided into two main sections called
Mass production of a recombinant product.
The first step, the upstream processing step, is the mass production of a recombinant protein via the fermentation process. The original recombinant system that is used for the expression of the recombinant protein (i.e. in the form of a recombinant plasmid maintained in a suitable host cell) forms the cell deposit in a cell banking system. There are two levels of cell deposits in the cell banking system: The first line is called
The second line that is referred to as the
On the other hand,
The second stage entails (1) several chromatographic steps that complete the purification of the product; (2) the potency test; (3) the addition of suitable excipients; (4) sterilization; (5) filling of the product in its final form (liquid or solid) into the final container before sealing; and labeling [6].
In line with conventional pharmaceutical products, the main sources of biological contamination in biopharmaceuticals can be related to raw materials and the production environment. Indeed, the biological contaminant content of any pharmaceutical product is a representative of their starting materials and the production environment flora.
Animal origin materials, such as cell culture media, sera, and supplements that are extensively used in biopharmaceutical production, are of high contamination risk. These materials can be considered the main source for the contamination of biopharmaceuticals with adventitious agents such as TSEs, viruses, and mycoplasmas. Therefore, they should be supplied from reliable resources, and special attention should be paid to their quality control procedure. It should be ensured that all raw materials, especially those of high risk, gain quality specifications for current good manufacturing practice.
Standard methods for sterilization of cell culture media, sera, and supplements should be established according to the properties of the materials. Due to the heat-labile nature of the majority of materials used in biopharmaceutical production, autoclaving is usually replaced with alternative strategies such as filter-sterilization or less frequently high-temperature, short-time treatment strategies. In spite of the routine filter-sterilization procedure that uses 0.22 μm, it is usually performed with 0.1-μm membrane filters due to the risk of contamination with adventitious agents.
Furthermore, high-temperature, short-time treatment strategies are sometimes employed for the elimination of biological contaminants from small solutes such as vitamins and amino acids [16].
Another important raw material that is used in the production of any pharmaceutical product, including biopharmaceuticals, is water, which can be considered an important source for contamination, with water-borne bacteria such as Pseudomonas spp., Alcaligenes spp., Flavobacterium spp., Chromobacter spp., and Serratia spp. Water for pharmaceutical purposes is discussed in detail in the USP [17]. Due to the fact that the intended administration of biopharmaceuticals in the majority of cases is via injection, Water for Injection (WFI) which is sterile and apyrogen is routinely used in this area.
Pharmaceutical products’ contamination may occur from the transformation of microorganisms from the production environment to the product. The production environment includes air, surfaces, instruments, equipments, and personnel.
The main groups of microorganisms that are isolated from air are the spore-forming bacteria (Bacillus spp. and Clostridium spp., the non-sporing bacteria Staphylococcus spp., Streptococcus spp., and Corynebacterium spp.), the molds (Penicillium spp., Cladosporium spp., Aspergillus spp., and Mucor spp.), and the yeast (Rhodotorula spp.). These contaminants may be air borne or can be initiated from process equipment or personnel [16]. Consequently, environmental monitoring programs in a production environment are essential actions. Furthermore, the critical operations in biopharmaceutical production should be performed in controlled environments or clean rooms. A clean room is a place with high control of the entrance of particles via the establishment of some air filters called
According to the
A | 3500 | <1 |
B | 3500 | 10 |
C | 350000 | 100 |
D | 3500000 | 200 |
Clean room grades according to the number of viable microorganisms and the number of particulates
Critical operations such as inoculum preparation and aseptic filling are generally performed in the highest air grade (A); however, less critical operations can be performed in lower grades or even non-classified air.
In addition to the establishment of suitable filters in the clean rooms, special attention should be paid to the position, type, and texture of surfaces, floors, and fixtures. They should be made from smooth and chemically stable materials. In addition, a distinct transfer lock area should exist before entry to the clean room for sanitization of materials and personnel or garment changing. Furthermore, all doors should be interlocking [6].
Similar to other pharmaceuticals, biological contamination of biopharmaceuticals may perhaps cause product spoilage. It may result in product metabolization by microorganisms, and, therefore, lead to a decrease in biopharmaceutical potency. The product spoilage may also provide a potential health hazard to patients and lead to outbreaks of infections that may cause additional complications. In addition, microbial-derived agents secreted in products such as endotoxins can be hazardous to a patient\'s health.
Bacteria and fungi can be considered important contamination sources for all kinds ofpharmaceutical products, including biopharmaceuticals; hence, the control of them is of critical importance. The control of both bacteria and fungi is considered to be worthy of mandatory tests for nearly all kinds of pharmaceuticals in pharmacopoeias. All the related tests and procedures are covered in detail in the major pharmacopoeias such as USP and EP [17, 18].
Since almost all the biopharmaceuticals are administered intravenously, general sterility testing must be carried out for these products. Basically, sterility testing can be defined as "a test that evaluates whether a sterilized pharmaceutical product is free of contaminating microorganisms." The European Pharmacopoeia (2002) proposes two media for sterility testing:
(1) fluid mercaptoacetate medium (also known as
Two main methods are used for sterility tests: (1) direct inoculation of the test samples in the media mentioned earlier; or (2) filtration of the test material through a sterile membrane filter with a pore size of 0.45 μm; then, the filter containing any microorganism present in the fluids is divided aseptically, and portions are transferred to the media.
The eradication of bacteria and fungi from the products is generally carried out via inactivation and sterile filtration.
Since most of the biopharmaceuticals are administered intravenously, finished-product biopharmaceuticals must be sterile and free from pyrogenic substances. The endotoxin limit for the intravenous administration of pharmaceutical and biological products is 5 endotoxin units (EU)/kg of body weight/hour by all pharmacopoeias [19]. Hence, the detection and removal of pyrogenic substances, especially endotoxins (lipopolysaccharides in the cell wall of gram-negative bacteria), are necessary to ensure safety of biopharmaceutical products. Currently available methods for endotoxin detection include the U.S. Pharmacopeia rabbit test and the Limulus amebocyte lysate (LAL) test [7].
The rabbit pyrogen test entails measurements of the rise in body temperature of rabbits after an intravenous injection of a test substance. The presence of pyrogens of all kinds can be tested using this method. However, this method suffers from a number of disadvantages and limitations: (1) Endotoxin tolerance occurs after repeated use of rabbits; (2) variations in the response depending on sex, age, and species; (3) differences between the responses of rabbits and humans to various pyrogen types; and (4) the rabbit pyrogen test is inadequate for sera, radiopharmaceuticals, chemotherapeutics, analgesics, cytokines, immunosuppressive agents, and others [20].
Accordingly, the use of the rabbit pyrogen test has been reduced. Nowadays, the most widely used endotoxin detection systems are based on the highly sensitive LAL test. It is based on the coagulation cascade of the blood of a horseshoe crab, Limulus polyphemus, which is induced by lipopolysaccharide. The currently known methods for lipopolysaccharide detection entail (1) gel-clot assay, (2) turbidimetric LAL technique, and (3) the chromogenic LAL technique.
The gel-clot assay is a limit test that provides simple positive or negative results. The LAL reagent is introduced to a sample, and the test material is considered endotoxin positive if a gel is formed via a clotting reaction.
The turbidimetric and the chromogenic LAL techniques are quantitative tests. The former is based on the fact that turbidity increases as a result of the precipitation of the clottable protein that is related to endotoxin concentration in the sample. The optical density is read by a spectrophotometer at either a fixed time (for the end-point method) or progressively (for the kinetic assay) as turbidity develops.
The chromogenic LAL technique makes use of a synthetic substrate which contains an amino acid sequence similar to that of the clottable protein, coagulogen, in order to detect endotoxin. The enzyme cleaves a yellow-colored substance from the chromogenic substrate, and the color intensity produced is proportional to the amount of endotoxin present in the sample.
Endotoxins are temperature and pH stable, and, therefore, their removal is one of the most challenging issues. Numerous techniques are used to reduce endotoxin contamination of biopharmaceuticals, including ion-exchange chromatography, sucrose gradient centrifugation, gel filtration chromatography [19], affinity adsorption [21], charged membrane/depth filtration, and ultrafiltration [22].
Owing to the risks of transmission of adventitious agents to patients, the different cell levels should be studied for the absence of these agents. Among the adventitious agents, special attention should be paid to viruses that are capable of contaminating the original species. Generally, the virological safety of biopharmaceuticals includes several levels of control at various manufacturing stages, including 1 - rigorous screening of cell banks (both master cell bank and working cell bank) for viruses; 2 - screening of each cell culture harvest for adventitious agents; and 3 - a demonstration that the purification process can clear potential adventitious agents [15].
The detection of viruses in cell lines can be carried out via various techniques. The commonly used methods of detecting viral infections include
co-cultivation assays (specific in vitro tests),
in vivo assays,
antibody production in animals (MAPs, RAPs, or HAPs),
immunoassays for viral specific proteins,
Transmission Electron Microscopy (TEM),
Polymerase Chain Reaction (PCR).
For the co-cultivation assays (specific in vitro tests), the cells used for production, or culture supernatant, or the final product are incubated with the detector cells. The detector cell lines are susceptible to different viruses and are used to detect desired viruses via monitoring subsequent cytopathic effects, hemadsorption, morphological changes, or other signs of viral infection. The detector cells usually contain humans, primates, and cells from the same species.
The in vivo assay can be performed by the inoculation of cells or cell lysates into animals, including newborn and adult mice, guinea pigs, rabbits, or embryonated chicken eggs to detect viruses. The animals are consequently monitored for any abnormality.
Species-specific viruses potentially present in rodent cell lines can be examined using assays for antibody production in the animals. The MAP, RAP, and HAP (mouse, rat, and hamster antibody production assays, respectively) tests involve an injection of the test article into the animals. The inoculated animals are bled after four weeks, and the sera are tested for the presence of the antibodies against the specific viral antigens. For instance, Hantaan virus, Lactic Dehydrogenase virus, and Sendai virus have been screened using MAP.
An immunoassay for viral-specific proteins can be undertaken through production of the relevant antibodies after an injection of a virus of interest into animals. Currently commercially available immunoassays are able to detect various viruses.
Another method that is used for virus detection is TEM (Transmission Electron Microscopy). TEM is a quantitative assay that is based on the visualization and morphological identification of virus particles in samples [23].
Nevertheless, more sensitive methods, such as the PCR identification methods, can be employed for the detection of sequences of the viruses [16].
Since the biopharmaceuticals can be originated from mammalian cell lines with a high risk of endogenous retroviruses, on one hand, and these products may be infected with adventitious viruses through processing, on the other hand, virus inactivation and removal steps in the purification process are required [24]. These entail gamma irradiation, low pH treatment, or virus filtration.
Indeed, ensuring the absence of virus contamination in biopharmaceuticals is challenging. For instance, a limited number of commercial poultry vaccines were contaminated by avian leukosis virus even after routine quality assurance procedures. In addition, reovirus was found as a contaminant in urokinase. On the whole, sourcing and testing alone cannot guarantee the virological safety of biopharmaceuticals owing to some limitations: the limit of sensitivity for cell culture and PCR tests and also due to the fact that cell culture or in vivo tests are not able to detect all known kinds of potential contaminants [25]. Thus, practical methods are required for the virological safety of biopharmaceuticals, which involve the inclusion of risk assessment as well as management policies.
Mycoplasmas are the smallest free-living and self-replicating organisms in nature that are sized between 50 and 500nm. They lack a rigid cell wall and, consequently, are highly pleomorphic from round to filamentous. They are filterable and penicillin-resistant forms. Furthermore, their membrane contains sterol and due to this, mycoplasmas require the addition of serum or cholesterol to the growth medium. They grow on special media in aerobic or anaerobic conditions with optimum growth at 37°C and pH 7.0 and form with a “fried egg” morphology on agar media (Figure 6).
Mycoplasma contamination of cell culture systems for the production of mycoplasmas is a critical problem due to its effect on various parameters within the cell culture system. Mycoplasma contaminates cell cultures approximately without any sign, and it persists for a long time. Indeed, mycoplasma-positive cell cultures can be considered the major source of biopharmaceutical infection, and they should be discarded or effectively decontaminated. Taken together, mycoplasma-positive cell cultures pose a serious problem and should be effectively detected and eradicated [26].
Mycoplasma colonies with fried egg morphology on mycoplasma agar medium. Picture was taken at Mycoplasma Reference laboratory, Razi vaccine and serum research institute, Iran
Different methods are used in international pharmacopoeias and guidance for detecting mycoplasma in biological test samples, mainly categorizing them as direct assay by microbiological culture, indirect assay by indicator mammalian cell culture, and PCR.
Direct assay by microbiological culture: The principle of detection is based on the growth of mycoplasma on supporting agar and liquid media (broth). First, the test sample is introduced into a special broth culture, is incubated for an appropriate time, and, consequently, it is sub-passaged to plate agar. After the required incubation period, the presence of mycoplasma colonies is observed microscopically in the agar plates (Figure 6).
Indirect assay by indicator mammalian cell culture: The indirect method requires the co-cultivation of the test sample with an indicator cell line for two to three days. Typically, VERO cells with a large cytoplasm area around the nucleus were used. Consequently, the cells were stained using a DNA binding stain (such as Hoechst stain) that binds specifically to DNA and is observed via fluorescent microscopy. Due to the affinity of mycoplasmas for the mammalian cell membrane, mycoplasmas appear as granules surrounding the nucleus.
Mycoplasma PCR: In this method, detection is carried out using specific oligonucleotide primers for the amplification of mycoplasma DNA. This method is specially recommended for detecting contamination with the non-cultivable strains of
On the whole, it is advisable to use two different methods in the detection of mycoplasmas in order to allow for the differentiation between false-positive and false-negative results.
The importance of DNA contamination detection in biopharmaceuticals is related to the fact that the DNA from some sources such as hybridoma cell lines in monoclonal antibody production may act as active oncogenes. These kinds of DNA contaminants can be introduced and expressed in human cells and result in the initiation of cancer cells. According to guidelines, the acceptable level of residual DNA in recombinant products is 10 pg per therapeutic dose. DNA hybridization studies that use radiolabeled DNA probes with a specific nucleic acid sequence constitute one of the most widely used methods for the detection of DNA contaminants in the product to a nanogram (ng) range [6]. The important steps involved in DNA hybridization are shown in Figure 7.
The main steps of the DNA hybridization procedure
Cell cultures may be infected with other cell types due to the use of contaminated items or operator mistakes. Also fail of the sterilization process can be another reason. The detection of cross-contamination is very challenging due to the fact that macroscopic and microscopic properties of the original and contaminant cells are commonly the same. Cross-contamination in the production of biopharmaceuticals would prove to be disastrous and terrible.
Various tests for detecting cross-contaminations can be applied; however, a product-specific identity test will be the best choice [16].
Microbial quality control plays a prominent role in the manufacture of safe and effective biopharmaceuticals. The main sources of microbial contamination can be related to raw materials and the production environment. The main categories of raw materials that are involved in the manufacturing of biopharmaceuticals with a high risk of contamination are those of animal origin such as cell culture media, sera, and supplements. The production environment includes air, surfaces, instruments, equipments, and personnel. All these can be considered the main source for the contamination of biopharmaceuticals with adventitious agents such as viruses, bacteria, fungi, transmitting spongiform encephalopathy, and mycoplasma. The use of contaminated biopharmaceuticals causes product spoilage, which may lead to (i) metabolization of the therapeutic agents by microorganisms, thus bringing about a decrease in the potency of the therapeutic agent; (ii) a potential health hazard to patients as a result of either infectious diseases or microbial-derived agents such as endotoxins that are secreted into products.
Various methods are used for detecting and eliminating different biological contaminants that are used in the manufacturing of biopharmaceuticals. Generally, bacteria and fungi can be detected by standard sterility testing or macroscopic and microscopic characteristics, as well as biochemical tests. In addition, viruses can be detected via a number of methods such as co-cultivation assays (specific in vitro tests), in vivo assays, antibody production in animals (MAPs, RAPs, or HAPs), immunoassays for viral specific proteins, TEM, or PCR. The detection of endotoxin can be carried out using the pharmacopeial rabbit test or LAL test. The available approaches for the detection of mycoplasma include direct assay using special culture media, indirect assay by mammalian cells, and DNA staining, as well as PCR. Furthermore, DNA hybridization is a widely used approach for the detection of DNA contaminants in biopharmaceuticals. The best method for cross-contamination detection includes a product-specific identity test.
With regard to the collection of tests for biological quality control of biopharmaceuticals summarized in this chapter, it is obvious that various sets of methods are available in different guidelines and pharmacopeias which are complicated and problematic. The development and compilation of harmonized guidelines for biological quality control of biopharmaceuticals is a critical necessity that can facilitate the control of the safety of these ever-increasing products.
The shoreline is the physical interface or intertidal margin between land and sea and constitutes one of the 27 global “Geo-indicators” referred by the International Union of Geological Science [1] and International Geographic Data Committee (IGDC). Shoreline change is a dynamic natural process in the coastal areas induced by erosion/accretion that occurs over a range of temporal scales. The morphological evolution of the Hooghly estuary and its coastline is the result of two counteracting transport processes of sediment supply versus removal. When both the processes are balanced an equilibrium is reached. However, most often this balance is disturbed due to the influence of episodic and/or long-term natural forcing and anthropogenic interventions. As a consequence, the shoreline keeps changing its position [2, 3, 4, 5, 6] over a wide temporal scale, from geologic age to short-lived, extreme weather events such as storms and tsunamis. The long-term processes that shape the shoreline include sea-level rise (SLR), altered wind patterns [7], frequency and intensity of storms [7], offshore bathymetric changes [8], high energy swells [9] and supply of fluvial sediment input. In addition, anthropogenic activities
According to Williams [12], the study of shoreline variation and forecast plays an important role in coastal zone management and it becomes more crucial in the context of anticipated climate change and sea-level rise [13]. In this context, one of the key requirements for effective coastal zone management is the availability of accurate position of the shorelines for analysis of changes in the past and future trends. Traditional methods of shoreline delineation include terrestrial surveys using landmarks, aerial photos [14, 15], Global Positioning Systems (GPS), terrestrial Light Detection and Ranging (LiDAR) or 3D scanners. But they are time-consuming, labour intensive and costly. In contrast the remote sensing data form space platform is more convenient, easy to process and above all freely available in the public domain. Remote sensing data has been extensively used in shoreline change studies because of their synoptic and repetitive coverage, multispectral capabilities enabling contrast between land and water in the infrared portion, and cost-effectiveness [14, 16]. Advanced image processing techniques can be employed on satellite data for precise extraction of the shoreline. Some of the methods used by different researchers include threshold level slicing and image classification technique [17], density slicing of TM band 5 [18], canny edge detection using DN threshold ([19], mean shift segmentation [20], pixel-based segmentation using DN threshold [21], neural network [22], fuzzy logic [23, 24], texture analysis [25], machine learning [26] and incorporation of ancillary spatial data in the classification scheme [27, 28, 29]. Quantitative assessment of the spatio-temporal variation of shoreline at global scale has been carried out by several authors [30, 31, 32]. In this endeavor the twin technologies of Remote Sensing and Geographic Information System has been recognized as the most useful tools for quantifying the historic shoreline change [33, 34] To avoid the discrepancy which might be introduced due to fluctuation of water level Yu et al. [35] have used satellite images obtained at similar tidal heights. Chen and Chang [36] have done the tidal correction using high spatial resolution satellite images and real-time data of tidal level to reduce the impact of tidal level variability on the estimation of coastline change. In India also several studies have been carried out for shoreline change analysis using remote sensing data [37, 38, 39]. Most of the studies have used Digital Shoreline Analysis System [40], a software extension within the ArcGIS tool for measuring, quantifying, calculating and estimating of rate of change from multiple historic shoreline positions at different temporal scales [41, 42, 43, 44]. The change metrics of DSAS are Net Shoreline Movement (NSM), Shoreline Change Envelope (SCE), End Point Rate (EPR), Linear Regression Rate (LRR) and Weighted Linear Regression Rate (WLR) among others. LRR and WLR enable multiple historic shorelines to be used to determine the rate of change by fitting a least-square regression line to all shoreline points for particular transects.
In the present study, Landsat satellite data of 8 temporal intervals between 1973 and 2021 were used for land-water discrimination, generation of shorelines and long-term change rate along with change pattern along the Hooghly estuary. The instantaneous land-water boundary was used as coastline which is relatively simple and can easily be identified using image transformation. The main objectives of the study are i) medium- and long-term changes in the shoreline at high spatial resolution using DSAS ii) to identify the erosion/accretion pattern and iii) to examine the role of change drivers.
The findings of the study will be useful for the managers and engineers to make scientific and rational policies for land use planning, to develop effective coastal protection strategies, predicting capacity for future coastal change due to climate and other drivers and improving impact and vulnerability assessments that include natural human sub-system interactions.
The Hooghly estuary is located in the southernmost part of Indo-Gangetic plain, flanked between East Midnapur (in the West) and South 24 Parganas district (in the East), extending between 21o33′10′′N to 22o13′16′′N latitude and 87o45′00′′ to 88o18′22′′E longitude (Figure 1). The head Bay is a unique deltaic environment comprising a wide continental shelf, complex coastal geometry and high tidal range. Tide domination is indicated by exponentially tapering channels, with funnel-shaped mouths [45]. The region has formed, sculptured and modified due to continuous fluvial action of the Ganga and the Brahmaputra systems, intense tidal hydrodynamic behavior, climatic disturbances and anthropogenic activities [46]. The funnel-shaped estuary has a width of 6 km at its head and 25 km at the mouth, responsible for tidal asymmetry and flow variation leading to bank erosion [47]. The average depth of the water column is only 6 m [48]. The estuary receives 4 tributaries
Index map of the Hooghly estuary.
Geologically the basement of the Bengal basin is a part of the eastern edge of the Indian plate, which is being subducted beneath the China plate along the Sunda subduction zone and Naga-Lushai orogenic belt. The tectonic and depositional history of the Bengal basin has been controlled by several movements during Cretaceous-Tertiary periods. Due to the tectonic activity the Bengal basin has been tilted towards east resulting in successive changes in the course of the Ganga River towards east from the historical past. Due to this shifting, the deltaic region suffers from the paucity of fresh water discharge and sedimentation. Auto compaction of loosely attached sediments and gradual land subsidence is also another prominent geomorphic event occurring in this region [49, 50, 51, 52, 53, 54] which mostly remains unnoticed. Morphometrically the Hooghly estuary is the product of continuous fluvial sedimentation in a series of para-deltaic lobe progradation systems developed on the western shelf margin areas and eastern troughs of the Bengal basin caused by the eustatic, isostatic and tectonic forces. The coastline presents various landforms such as tidal/mud flats, sandy beaches (located near Digha, Duttapur, Shyampur, Dadanpatra, Baguranjalpai, Dariapur and Nij Kasba), salt marshes (near Khejuri and at the mouth of Rasulpur river near Nij Kasba) and mangrove marsh (south of Patibunia). A vast extension of the muddy beach is found in South 24 Parganas, especially to the east of Bakkhali. The most striking feature is the development of successive rows of dunes (both Palaeo and Neo dunes) with intervening clayey tidal flats in the south of East Midnapur district between the stretches of Subarnarekha and Hooghly estuary is due to punctuations in the regression of the sea during Holocene [55]. Banerjee and Sen [56] opined that the regression of sea along this coastal tract is around 6000-year BP which resulted in seaward shifting of shoreline and formation of Paleo-dunes. Accordingly, to Niyogi [57], six regular cycles of beach ridges alternating with a variable number of bars are visible in the area, which is indicative of the shifting of shorelines. According to Gaur and Vora [58], the shoreline position was 5–15 km inland from the present shoreline around 6000-year BP. The erosion and accretion patterns clearly show a continued geomorphic sculpturing of the Hooghly coast.
To capture the micro-level variability, alongshore is divided into 7 analysis zones (Figure 2) covering both the west and east bank. The zones in the west bank are delimited by the main inlets which are the freshwater sources, eventually draining into Bay of Bengal. The area delimitation of various zones, constituting transects and shoreline distances is given in Table 1. The west bank is divided into 3 zones whereas the east bank into 4 zones (Table 1). The total length of the coastline studied is 200 km of which 90 km on the western side and 110 km on the eastern side of the estuary. The studied coastline was divided into 1924 number of transects (Tn) separated by 100 m. The number of transects increases from west to east bank in the clockwise direction.
Different analysis zones.
Zone | No of transects (from-to) | Location | Distance (km) |
---|---|---|---|
Zone–1 | 187 (T25-T211) | Pichhabani outlet to Rashulpur river | 19.37 |
Zone–2 | 307 (T218-T524) | Rashulpur river to Haldi river outlet | 31.04 |
Zone–3 | 384 (T534-T917) | Haldi river to the confluence of Rupnarayan and Hooghly River | 39.52 |
Zone–4 | 256 (T919-T1174) | Confluence of Rupnarayan and Hooghly river to Kulpi | 26.23 |
Zone–5 | 280 (T1175-T1454) | Kulpi to Kakdwip | 27.75 |
Zone–6 | 120 (T1455-T1574) | Kakwip to Namkhana | 13.41 |
Zone–7 | 390 (T1575-T1967) | Namkhana to Henry Island | 43.10 |
Salient description of different analysis zones.
The historic shorelines were digitized from Army Map Series (NSS&H, Edition-1, AMS) in 1:250,000 scale surveyed during 1942–1943) number NF-45: 7 (north of study area) and 11 (south of the study area) were used for the coastline change analysis. Besides Survey of India topomaps of 73 N-16, 73O -13,14; 79B - 4; 79C-1,2,6 surveyed during 1967 were also used for generation of high-water level (HWL) coastlines.
Landsat satellite data of 1973 to 2021 have been used for decadal and long-term trend analyses. The data has been selected based on clear sky condition, high tide date and time as well as season. For discrimination of land-water boundary shortwave infrared bands 5 (1.55–1.75 μm) and 7 (2.08–2.35 μm) of Landsat - 4, 5, 7 and bands 6 (1.566–1.651 μm) and 7 (2.107–2.294 μm) of Landsat – 8 (OLI) were used. The details of the satellite data used in the study are given in Table 2.
Satellite/sensor | Path/Row | Date of overpass | Spatial resolution (m) | Overpass time (local time) | Time of high tide (local time) | Tide height (m) |
---|---|---|---|---|---|---|
MSS1 | 149/45 | 17.01.73 | 60 | NA | 09:40 | 4.05 |
MSS3 | 149/45 | 17.01.80 | 60 | 03:52 | 10:33 | 4.59 |
TM4 | 138/45 | 19.01.89 | 30 | 04:03 | 9:08 | 3.45 |
TM5 | 138/45 | 28.01.95 | 30 | 03:43 | 8:54 | 3.85 |
ETM + 7 | 138/45 | 06.03.00 | 30 | 04:23 | 11:15 | 4:73 |
TM5 | 138/45 | 07.01.05 | 30 | 04:17 | 8:14 | 3.81 |
ETM + 7 | 138/45 | 29.01.10 | 30 | 04:22 | 10:17 | 4.38 |
OLI 8 | 138/45 | 09.02.17 | 30 | 04:31 | 9:48 | 4.04 |
OLI 8 | 138/45 | 24.03.21 | 30 | 04:30 | 7:42 | 3.19 |
Details of the satellite data used.
The tide information is pertaining to the Diamond Harbor station.
For the of satellite data tide and current prediction programme
There are seven types of coastline indicators
Where, Rgreen = spectral reflectance of the green band, Rnir = spectral reflectance of near-infrared band and Rswir = spectral reflectance of the shortwave infrared band.
Before applying the water index on Landsat MSS data of 1973, the image was resampled to 30 m spatial resolution to make the resolution comparable with the rest of the datasets. A Boolean approach was used on the NDWI/MNDWI images to create two classes
Historical shoreline behavior was examined using Digital Shoreline Analysis System (DSAS, ver. 5.0), an extension tool of ArcGIS software (developed by the US Geological Survey) which calculates several change statistics
Where e = shoreline uncertainty value.
The errors or uncertainties that arise due to different data sources, time of data acquisition, and the type of shoreline indicator were quantified based on several studies [73, 75]. According to Fletcher et al. [75] and Romine and Fletcher [76] there are two types of uncertainty: positional (seasonal and tidal fluctuations) and measurement (digitizing, pixel and rectification error). The uncertainty for each dataset was worked out considering the data product with due weightage of the quality of each data. The total uncertainty is used to calculate the weight and further working in the DSAS. Different uncertainties are explained below.
Where Es is the seasonal error, Et = tidal error, Ed = digitizing error, Ep = pixel error, and Er = rectification error. The annualized uncertainty (Ua) was calculated using the square root of the sum of the squares of total positional uncertainty for each shoreline divided by the analysis period [75] as is given below.
Various uncertainties in the historical shoreline position between 1948 and 2021 is given in Table 3.
Uncertainty | Positional uncertainty | Measurement uncertainty | Total positional uncertainty | |||
---|---|---|---|---|---|---|
Es (m) | Et (m) | Ed (m) | Ep (m) | Er (m) | Ut (m) | |
Landsat images | 0 | ±2.12 | ±10 | 0 | ±5 | 11.37 |
SOI topo map | 0 | 0 | ±15 | 0 | ±15 | 21.21 |
Army topo map | 0 | 0 | ±15 | ±15 | ±30 | 33.54 |
Uncertainties associated with shorelines obtained from different sources.
The weight (w) is defined as a function of the variance in the uncertainty of the measurement (e). Weighted Linear Regression Rate (WLR) was computed using the total positional uncertainty values.
It consists of four main steps as is given below.
The date, time and height of tide were calculated using WXTide32 package. The height of tide is governed by the following harmonic equation given in the Manual of Harmonic Analysis and Prediction of Tides, special publication no. 98, US Department of commerce [77].
Where, h is the height of tide at any time t.
H0 = the mean height of water level above datum used for prediction.
Hn = the mean amplitude of any constituent An.
fn = the factor for reducing mean amplitude to year of prediction.
an = the hourly speed of constituent An.
t = the time, in hours, reckoned from beginning of year or prediction.
(V0 + u)n = the Greenwich equilibrium argument of constituent An when t = 0.
Kn’ = the modified epoch of constituent An.
N = the number or constituents used for the particular station.
In this equation except
Cluster analysis is a technique used to classify cases into groups that are relatively homogeneous within themselves and heterogeneous between each other, based on a defined set of variables [78, 79]. Hierarchical agglomerative clustering using the Ward linkage method was followed in the present study. In this method, clusters are merged to reduce the variability within the cluster. At every stage the average similarity of the cluster is measured. A case is selected to enter the cluster if the inclusion in the cluster produces the least increase in the error. The number of the cluster centres was determined from ‘Scree diagram’ in which ‘distance coefficients’ are plotted against the ‘stages’. The point at which there is a significant jump in the distance values was considered as the ‘elbow’ of the ‘Scree plot’. The numbers of clusters were decided as the number of cases minus the step of the elbow. Once the clustering is done, K-mean classification is performed for all the transects using the number of cluster centres from ‘Scree plot’. K-mean classification assign cluster membership and distance from the cluster centre to each case. Distance of the cluster centres are determined by using Euclidean distance as is given below:
Where
The 200 km stretch of the study region has varied beach types including wide sandy beaches to mudflat, the mixture of sand and mud, mangrove wetlands as well as open mixed jungle at the backdrop of sandy/muddy beaches. The considerable length of the shorelines has embankments (Table 4). The western bank consists mainly of sandy and muddy beaches whereas the east bank predominantly consists of a muddy and mangrove systems with intermittent gap areas where the beach is absent. Zone-wise brief description of the beach configuration is given below.
Statistics | 1973–1980 | 1980–1989 | 1989–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2017 | 2017–2021 |
---|---|---|---|---|---|---|---|---|
Mean | −14.32 | −15.43 | 1.69 | −43.00 | 39.79 | −7.64 | 42.06 | 70.67 |
sd | 200.03 | 86.59 | 77.90 | 110.99 | 122.09 | 100.35 | 135.17 | 162.57 |
Max | 1386.98 | 566.43 | 681.41 | 629.64 | 1141.27 | 908.46 | 1000.23 | 1057.30 |
Min | −404.98 | −527.71 | −293.49 | −1061.84 | −313.23 | −478.47 | −519.50 | −180.76 |
Mean shoreline change (m) over different time intervals.
The large difference in the shoreline position was observed within each time interval and among different intervals. The dynamics of the shoreline are mainly due to disequilibrium in the morphological state and northward tapering nature of the estuary coupled with plausible subsidence due to auto-compaction of the Holocene sediments. One commonality among all the time intervals is the large variation in the seaward end of both the banks (Figure 3). During 1995–2000 and 2005–2010, the overall variation in the shoreline position is minimum. In comparison to the east bank west bank has more variation except for 1973–1980. Considering all the temporal intervals between 1973 and 2021 average recession is maximum in 1995–2000 (− 43 m ± 110.99) especially due to erosion in the southern part of the east bank of the estuary. In contrast, there is an increasing trend in the seaward extension of the shoreline since 2010. Between 2017 and 2021 the average accretion is 70.67 m (± 162.57). The maximum accretion length was 1386 m at T1486 (south-west of Kalinagar) in 1973–1980 whereas maximum erosion was −1062 m at T1865 (west of Fraserganj) during 1995–2000 (Table 4).
Shoreline changes recorded at different transects over different temporal intervals.
The percentages of transects recorded aggradation or recession is given in Figure 4. From the figure, it is apparent that the proportion of aggradation and erosion does not match over the time intervals. The percentage of the transects exhibiting erosion was comparable during 2000–2005 (29%), 2010–2017 (30.20%) and 2017–2021 (27.81%). There was an abrupt increase in the erosion by 69.91% in 2010–2017. In general, there is a decreasing trend of erosion, especially after 2000 (Figure 4).
Percentage of transcets showing erosion at different time intervals.
Figure 5 depicts how each zone contributes to the total shoreline change. Between 1973 and 2021, zone 5 contributed maximum towards erosion. Other zones that contributed marginally to erosion include zone 7 and zone 6. Zone 6 showed consistent erosion in all the intervals except for 1973–1980. Very high annualized aggradation of 69.17 m and 29.93 m was recorded in zone 1 and 2 respectively over the entire period of 1973–2021.
Contribution of each zone towards erosion / accretion at different time intervals (Z represents the zones).
It is interesting to note that while comparing the coastline of 2021 with respect to 1948 (not used in the DSAS), there is a significant recession (∼900 m) in the zone 2 (between Talpati Khal and Kaldalmari) and in the zone 3 (near Horkhali) by about 600 m. In the east bank, most significant erosion is noticeable in zone 5, between Jadabnagar and Tilakmandal chak. The maximum landward retreat recorded was 2700 m near Uttar Chandannagar. On the other hand, accretion was observed in the south of zone 1 and 2 as well as in the north of zone 6. Quantitative analysis of the coastline change in this region has been carried out by Bandyopadhyay et al. [82], Raju et al. [83], Jana et al. [84], Rudra [85], Chakraborty [49] and Das et al. [86] along with their underlying mechanism. They have opined that beach erosion is attributed to various causes such as decrease of sediment supply from rivers, land subsidence, and interruption of longshore sediment transport by man-made structures. As the sea level rises, it causes waves to act on higher parts of the beach profile, resulting in enhanced erosion. If the sandy beaches disappear as a result sea-level rise, waves and storm surges, it will impact higher areas along the coastline [87].
Jana and Bhattacharya [88] used multi-resolution Landsat satellite imagery of 1972–2010 for shoreline change study along the 65 km long coastal stretch located between Rashulpur (Purba Medinipur) and Subarnarekha (Balasore) estuarine complex. The authors revealed that about 23 km of coastline recorded accretion, which was observed on several beaches such as at Talsari, Udaipur and Haripur, which were not affected by anthropogenic activities.
The shoreline change rates were computed by linear regression and end point rate method at a lateral spatial interval of 100 m along the coast. The rates of changes of shoreline at different transect points estimated by EPR and LRR methods are given in Figure 6. Large variation in net shoreline movement and change rates were observed in the study region among various analysis zones (Table 5). Considering long term change between 1973 and 2021 four of the zones
The rate of change of shoreline by WRR and EPR method.
Zones | SCE | NSM | EPR | WLR |
---|---|---|---|---|
Zone-1 | 740.83 ± 359.22 | 553.34 ± 298.84 | 11.48 ± 6.20 | 9.45 ± 6.22 |
Zone-2 | 391.0 ± 263.97 | 239.42 ± 307.19 | 4.97 ± 6.38 | 3.47 ± 4.89 |
Zone-3 | 170.61 ± 128.57 | −16.81 ± 137.25 | −0.35 ± 2.85 | 0.24 ± 3.28 |
Zone-4 | 81.31 ± 41.47 | 36.91 ± 54.96 | 0.77 ± 1.14 | 0.36 ± 0.93 |
Zone-5 | 249.19 ± 150.22 | −137.22 ± 206.24 | −2.85 ± 4.28 | −3.02 ± 3.54 |
Zone-6 | 668.09 ± 351.75 | −5.18 ± 456.16 | −0.11 ± 9.47 | −4.35 ± 5.36 |
Zone-7 | 303.21 ± 259.99 | −2.30 ± 210.13 | −0.05 ± 4.36 | −0.38 ± 4.47 |
Zone-wise average shoreline change envelope (SCE), net shoreline movement and change rate by EPR and WRR method.
Although, the net shoreline movement (NSM) values are less in zones 3, 6 and 7 but the shoreline change envelope records large variation which indicates that the inter-annual fluctuation is very high in these zones and morphodynamic processes are very active.
Based upon the rate of erosion/accretion by WRR method, the transects were grouped into 7 classes (Table 6). From the table, it is evident that most of the shoreline (more than 73.33% by WRR and 69.95% by EPR) exhibit erosion/accretion rate between −5 and + 5 m yr.−1. Low erosion rate (< 1.0 m/yr) was exhibited by 13.46% and 11.43% of the shoreline in WRR and EPR method respectively (not presented in the table). The proportion of very high erosion (<−10 m yr.−1) and aggradation (>20 m yr.−1) is limited to less than 2% of the shoreline. The spatial distribution of different change classes by WRR method is given in Figure 7a. It can be seen from the figure that in the west bank only one segment exhibits high erosion (−10 to −5 m yr.−1) whereas in the east bank at least 6 segments (east of Kharibaria) show high erosion. This area exhibits has a large difference between low and high tide lines. While comparing with the Army Series map of 1948, it was found that there is a significant landward movement of shoreline between 1948 and 1973. In the east bank, there is no area under high erosion in zone 4, however, in zone 5, 6, and 7 considerable area along the shoreline is under high to very high erosion state. There are 3 distinct stretches near Uttar Chandannagar, Ramganunagar, Madhusudanpur and Lakshimipur. Close observation with the Army toposheet of 1948 reveals that there is an extensive recession in this area. The Rangatala island which used to be an integral part of the east bank has almost reduced to half between Kulpi and Madhusudanpur. The southern half of zone 6 has a high to very high rate of erosion between Budhakhali and north or Namkhana. The zone 7 is punctuated by two major areas of high erosion i) in the west of Edward creek, dominated by mangrove swamp and open mixed jungle and ii) in the east of Henrys island. In contrast to erosion, high to very high aggradation (> 20 m yr.−1) is recorded between south of Gopalpur to Junput dominated by a wide sandy beach and inter-tidal difference. High aggradation is also observed in the south of the Rashulpur river confluence. In zone 2 high rates of accretion is observed in the north of Rashulpur river and east of Nij Kasba. In the east bank, there is no area of high accretion except in zone 7, near Lakshmipur dominated by mangrove swamps. This observation is in good agreement while comparing with the Army topo map of 1948.
Class | Range | WRR method | EPR method | ||
---|---|---|---|---|---|
No of transects | % of total transects | No of transects | % of total transects | ||
1 | < −10 | 37 | 1.92 | 28 | 1.45 |
2 | −5 to −10 | 187 | 9.71 | 204 | 10.60 |
3 | −5 to +5 | 1411 | 73.33 | 1346 | 69.95 |
4 | 5 to 10 | 166 | 8.62 | 121 | 6.28 |
5 | 10 to 15 | 77 | 4.00 | 130 | 6.75 |
6 | 15 to 20 | 29 | 1.50 | 71 | 3.69 |
7 | > 20 | 17 | 0.88 | 24 | 1.24 |
Different classes of erosion/accretion rates and their contribution to the shoreline.
Shoreline changes a) rate of erosion/accretion (m yr.−1) and b) change pattern.
To understand the temporal pattern of change direction, transects were grouped into two categories
Type | Description | Change direction | No of transects | % of total shoreline |
---|---|---|---|---|
CE | Consistent erosion | -ve | 36 | 1.87 |
ME | Mostly erosion | -ve | 706 | 36.69 |
RE | Recent erosion | -ve | 10 | 0.52 |
MA | Mostly accretion | +ve | 571 | 29.68 |
RA | Recent accretion | +ve | 87 | 4.52 |
ALT | Alternate | mixed | 8 | 0.42 |
TREA | Trend reversal (erosion to accretion) | +ve | 91 | 4.73 |
OTH | Others | mixed | 415 | 21.57 |
Temporal change pattern of shoreline behavior and their contribution.
Some of the transects that recorded both high erosion rate (more than 5 m yr.−1) and consistent erosion are located in the north of Sibkalinagar (T1372-T1374), south of Budhakhali near Ghiya Khal (T1520-T1533), south of Nadabhanga Khal (T1552-T1557) and north of Duaragra Gang in zone 6 (T1569-T1574).
Although, shoreline change analysis quantifies rates and directions of change, further analyses are needed to resolve distinct modes of coastal system behavior. Traditional shoreline changes analyses quantify the rate and direction of change by analyzing multi-date/historical data. However, there are some commonalities in terms of coastal system behavior. The Hierarchical agglomerative clustering was performed using the change matrix of all 8 temporal intervals to define the distinct coastal change behavior. Clustering was done using the Ward method which computes the sum of squared distance within the clusters and aggregates the clusters with the minimum increase in the overall sum of squares. The distance coefficients were plotted against the stage to generate a ‘Scree diagram’ (Figure 8). The number of clusters in the present study was 5 which was used for K-mean clustering. The cluster centres and the distances between cluster centres are given in Tables 8 and 9 respectively.
Scree diagram defining the optimum number of clusters using elbow rule.
Temporal intervals | Clusters | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1973–1980 | −44.37 | −52.95 | −64.31 | 926.40 | 193.82 |
1980–1989 | −6.50 | −64.44 | −51.74 | −76.24 | 226.13 |
1989–1995 | −.32 | 24.22 | 1.62 | −57.19 | 82.35 |
1995–2000 | −25.80 | −89.62 | −35.18 | −50.58 | −931.35 |
2000–2005 | 27.71 | 97.21 | −14.32 | −59.69 | 941.45 |
2005–2010 | −21.90 | 85.34 | 48.19 | −83.01 | −3.82 |
2010–2017 | 32.63 | −28.49 | 464.74 | −87.87 | 22.23 |
2017–2021 | 12.53 | 341.60 | 445.03 | −54.35 | 109.87 |
Various cluster centres.
Cluster | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | — | 369 | 619 | 991 | 1335 |
2 | 369 | — | 521 | 1087 | 1278 |
3 | 619 | 521 | — | 1249 | 1476 |
4 | 991 | 1087 | 1249 | — | 1572 |
5 | 1335 | 1278 | 1476 | 1572 | — |
6 | — | 369 | 619 | 991 | 1335 |
Distance between cluster centres.
The clusters captured a unique pattern of change at a temporal scale (Table 8). Among all the transects, 79.15% are represented by cluster 1 and only 0.94% by cluster 5. In clusters 1, 2 and 3 most of the transects show a balancing act of aggradation and erosion at different temporal intervals. The transects that recorded consistent erosion (Figure 7) were found in cluster 1 only. In cluster 4, erosion is dominant, while in cluster 5 accretion is dominant in most of the time span. The mean displacement of the shoreline in cluster 1 is −3.25 m and the maximum is 99.25 m in cluster 3, constituting only 4.80% of the total transects. All the clusters show aggradation in terms of their mean displacement values except cluster 1.
Beach profile morphology and coastline, change over a range of time and spatial scales. The short-term variability occurs over a period of days to a month as a result of i) episodic events (storms) ii) medium-term variability over several months (e.g., winter summer wave change) to several years (e.g., due to regional climate variability, engineering intervention and prevailing sedimentary processes) and iii) long term variability that occurs over a period of a decade to a century, associated mainly with climate change impact; and very long term millennial-scale evolution as a result of quaternary sea-level changes [89]. Broad-scale analysis of changes in shoreline position has the potential to highlight the role of regional forcing on large-scale coastal behavior, e.g., long-term tidal cycles [90] or sea level rise [4]. Shoreline change analysis is also useful to identify notable ‘hotspots’ of contrasting behavior [91, 92]. The Hooghly estuarine shoreline analyses studied here comprehend synthesis of historical shoreline change over 48 years supported by limited ground observations. The data has been analyzed at high spatial resolution (100 m, alongshore interval) along the entirety of a 200 km shoreline. In the area evidence for strong met-ocean forcing is ostensibly compelling. The phenomena of erosion and accretion are largely regulated by littoral current patterns and sediment influx from different rivers and the adjacent Bay of Bengal. The shoreline of this 200 km stretch has different configurations from the sandy beach to muddy swamp punctuated by anthropogenic footprints including brick kilns, aquaculture ponds, protective embankments and beach nourishment treatments. Beach nourishment projects and coastline protection structures can result in an artificial accretion of coastline in a short period [93]. Large variations exist in shoreline position within the same year and also among different years indicate the disequilibrium in the morphological state. There could be several external factors responsible for shoreline change including sea level rise, changes in the wave climatology and storm intensity as well as changes in the catchment characteristics due to deforestation and land degradation which results in higher sediment load in the terrestrial run-off. In contrast to surface runoff, engineering intervention through the construction of dams and barrages also makes the estuary sediment starved. In long-term perspective, temporal data of PSMSL (Diamond Harbor and Haldia) reveals that the sea level is rising at the rate of 2.41 and 3.02 mm yr.−1 respectively. The sea surface temperature induced El Niño-Southern Oscillation (ENSO) has a significant role in global atmospheric circulation influencing the temperature and precipitation. The irregular pattern of El Nino and La Nina triggers rainfall variability over the Indian sub-continent. In recent years strong La Nina and very strong El Nino have been witnessed in 2010–2011 and 2015–2015 respectively. The monsoon rainfall variability has a direct relation with terrestrial run-off and estuarine water level. Since 1951 there were 8 strong to very strong El Nino and 7 strong types of La Nina years. The storm surges are another strong forcing factor in a short temporal scale that can change the shoreline configuration. Although, the frequency of cyclonic storms is declining over the Bay of Bengal but the intensity is increasing. Extremely severe cyclonic storms of 2019 and 2020 are the best examples causing extensive damage to the coastline embankments. Karunarathna et al. [89] found single storms or storm clusters predominantly change the supra tidal and inter-tidal part of the beach profile and that beach erosion volumes are strongly correlated to the power of the storm. Once the astronomical tides coincide with storms, extreme sea level occurs resulting in large-scale inundation and damage to the coastal structures. Besides warming of sea surface relative, sea level change can also happen due to vertical land motion that can result from glacial isostatic adjustment, tectonic processes, coastal subsidence and uplift caused by anthropogenic factors. High-frequency and short temporal scale sea level variability due to seiches, meteotsunamis are frequently under-represented in sea level studies and yet contribute to the extreme sea levels which are of great research interest and importance to coastal dwellers [94]. In general, coastal landforms affected due to short-term perturbations
Most of the west bank of Hooghly estuary is prograding at the rate of 0.24 m yr.−1 in zone 3 to as high as 9.45 m yr.−1 in zone 1. Whereas recession is pre-dominant in the east bank, especially in zone 5, 6 and 7 accounting −0.38 to −4.35 m yr.−1. In general, aggradation dominates over erosion. Large variation in the shoreline change envelope in zone 3, 6 and 7 reveals an active morphodynamic process. The different suite of behaviors in recent intra-decadal scale suggests that forcing of coastal change can be interpreted as a form of the time-dependent complex response of the kind envisaged by Schumm and Lichty [97] whereby changes over shorter time scale, are inherently associated with tighter cause-effect linkages at smaller spatial scales, and broader trends emerge over longer time-scales. Additionally, the phenomena of erosion and accretion are largely regulated by littoral current patterns and sediment influx from different rivers and the adjacent Bay of Bengal. The west bank of the estuary having sandy inter-tidal plain is aggrading over longer time scale whereas several areas in the east bank of muddy beaches record the high rate of erosion. The temporal pattern of erosion/accretion has been captured using the direction of change in each time interval. Some portions of the shorelines especially north of Kakdwip and Namkhana recorded a consistent high rate of erosion (> −5 m yr.−1) over each interval. Although, only 1.87% of the area of the shoreline showed consistent erosion for all the time intervals but together with ‘mostly erosion’ type it constitutes 38.56% which is alarming. These areas need to be protected from anthropogenic intervention and to be stabilized by rejuvenating protective embankments or vegetative barrier. Contrasting modes of prograding stretch adjacent to retreating stretch can be found in close proximity, particularly in zone 1 and 2, which suggests that local influences may be particularly important. Both these transitions in behavior suggest localized net littoral fluxes of sand and gravel from the north of estuary to the south-west. These localized instances of coupled behavior have led to a distinct net change in regional shoreline planform over a longer time scale. Some of the stretches of the shoreline exhibit distinct change of cuspate foreland from rounded to sharp apex especially north of Jhikarkhali and Madhusudanpur, north of Kakdwip. Erosion at the north and progradation at the west and south-west, illustrates south-west transport of sediments over the studied time scale whereas diffusive behavior dominated decadal-scale shoreline change.
The inter-temporal analysis using spatial smoothing windows of 1000 m showed that there is no consistent association between convexities/concavities and the erosion/accretion. Some concave stretches of shoreline exhibit erosional signatures, whilst others are accretional. The convexity of the shoreline near Horkhali (in the west bank) increased over time but decreased near Madhusudanpur on the east coast, however near Kakdwip and Patibunia the convexity remained almost unchanged over the years. Some of the concave stretches of the shoreline showed seaward accretion in the west bank, e.g., at Nij Kasba. The eroding sediments move parallel to the coast by alongshore currents from north to south direction and are expected to deposit around the concave coast owing to the lower current velocity [93]. As a result, the coastline can advance to the ocean around these regions. Several studies claim that a concave-shaped coastline tends to exhibit accretion while a convex-shaped coastline tends to exhibit erosion [93]. However, in the present study, several concave stretches of the east coast exhibited landward retreat of coastline typically along the Rangafala channel near Lakshmipur, between Ghiya Khal and Duraragra Gang (north of Namkhana) and small patches in Patibunia island. Presumably, both diffusive and anti-diffusive (unstable) behavior is operational [98] which are likely to change as the shoreline planform adjusts in response to the consequent patterns of erosion and deposition.
With the anticipated increase in global mean temperature by about 0.5°C, the thermal expansion and melting of ice caps and glaciers are inevitable [13] but this effect may be masked by inlet dynamics and coastal engineering projects even over extended time periods. However, the implication is that sea level rise is a secondary but inexorable cause of beach erosion in such areas which may lead to high-energy swells to reach further up the beach and redistribute sand offshore. Apart from the external and natural forces there are alarming uncontrolled anthropogenic activities which have imposed excessive pressure on the coastal landuse and exacerbating beach erosion problems along the Hooghly estuary. This will have ominous implications for ever-increasing coastal population and associated livelihood [99]. There is a need for decoupling the long-term forces from the anthropogenic effects and projecting the future scenario of coastal changes for effect coastal planning and enforcement.
The study of historical evolution and sculpturing of the coastal areas of Hooghly estuary in terms of short and longer time scale has significant importance in evaluating the criticality in shoreline change. The findings of the present study revealed that geospatial techniques are very useful for analyzing and predicting shoreline dynamics. The short- and long-term changes have been estimated using the DSAS extension tool of ArcGIS. The tool enables the calculation of several change metrics and also the rate of changes from time-series shoreline positions and helps in determining the zones of erosion and accretion. The variation is higher in the west bank than east bank except for 1973–1980. Considering the entire study period average recession is maximum in 1995–2000 (−43 m ± 110.99) especially due to erosion in the southern part of the east bank of the estuary. Zone 5 contributed maximum towards erosion, however, in general, there is a decreasing trend of erosion, especially after 2000. While comparing with 1948-topomaps there is a significant recession (∼900 m) in zone 2 (between Talpati Khal and Kaldalmari) and in zone 3 (near Horkhali) by about 600 m. On the east bank, the most significant erosion is noticeable in zone 5, between Jadabnagar and Tilakmandal chak. The maximum landward retreat recorded was 2700 m near Uttar Chandannagar. The shoreline erosion is attributed to various causes such as decrease of sediment supply from rivers after construction of barrages in the upstream, land subsidence due to natural compaction or extraction of ground water, interruption of longshore sediment transport by man-made structures and dredging operation to maintain the navigation channel. In contrast, there is an increasing trend in the seaward extension of the shoreline since 2010. Between 2017 and 2021 the average accretion is 70.67 m (±162.57). Very high annualized aggradation of 69.17 m and 29.93 m was recorded in zone 1 and 2 respectively over the study period. The shoreline change rate computed using WLR method reveals that zone 1, 2, 3 and 4 show the positive change (aggradation) which varies between 0.24 m yr.−1 (zone 3) to as high as 9.45 m yr.−1 (zone 1). The very high recession was found in the east bank in zone 6 (− 4.35 m yr.−1), followed by zone 5 (−3.02 m yr.−1). More than 73% area of the shoreline exhibits erosion/accretion between −5 and 5 m yr.−1. The proportion of very high erosion (< −10 m yr.−1) and aggradation (> 20 m yr.−1) is limited to less than 2% of the shoreline. The temporal change pattern was examined using change direction in each time interval. About 1.87% of the shoreline shows consistent erosion in which at all the time-interval the direction of change was negative and an additional 36.69% constitutes of mostly eroded, characterized by erosion in at least 5 epochs. There is no area where consistent accretion was observed. In about 4.37% of the shoreline trend reversal from erosion to accretion has been observed. The change rate and pattern maps generated in the study will be helpful for policy makers to prepare a strategic coastal management plan and for future policy intervention. It is suggested that there should have a regular monitoring mechanism of this estuarine region to keep watch on the shoreline change and triggering factors and regulatory purpose.
The authors are thankful to the Chief General Manager, RRSCs (NRSC) for his keep interest and sustained support to carry out this study. Thanks, are also due to earthexplorer.usgs.gov for providing satellite data freely to the user community.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"56121318 FILLER ads"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"854",title:"Natural Environment",slug:"environmental-sciences-environmental-health-natural-environment",parent:{id:"129",title:"Environmental Health",slug:"environmental-sciences-environmental-health"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:138,numberOfWosCitations:228,numberOfCrossrefCitations:111,numberOfDimensionsCitations:316,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"854",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"489",title:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources",subtitle:null,isOpenForSubmission:!1,hash:"1a13e20c7a3cee312f8b31e8b312e6a5",slug:"the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources",bookSignature:"Mohamed K. Khallaf",coverURL:"https://cdn.intechopen.com/books/images_new/489.jpg",editedByType:"Edited by",editors:[{id:"26192",title:"Dr.",name:"Mohamed",middleName:"Kamal",surname:"Khallaf",slug:"mohamed-khallaf",fullName:"Mohamed Khallaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"519",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",subtitle:null,isOpenForSubmission:!1,hash:"351d58b744e7916d75693e24419f7d71",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",bookSignature:"Nicolas Mazzeo",coverURL:"https://cdn.intechopen.com/books/images_new/519.jpg",editedByType:"Edited by",editors:[{id:"10567",title:"Dr.",name:"Nicolas",middleName:"Antonio",surname:"Mazzeo",slug:"nicolas-mazzeo",fullName:"Nicolas Mazzeo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"18642",doi:"10.5772/17660",title:"The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution",slug:"the-effects-of-air-pollutants-on-vegetation-and-the-role-of-vegetation-in-reducing-atmospheric-pollu",totalDownloads:18721,totalCrossrefCites:9,totalDimensionsCites:69,abstract:null,book:{id:"489",slug:"the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources",title:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources",fullTitle:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources"},signatures:"Iuliana Florentina Gheorghe and Barbu Ion",authors:[{id:"29040",title:"Prof.",name:"Iuliana",middleName:"Florentina",surname:"Gheorghe",slug:"iuliana-gheorghe",fullName:"Iuliana Gheorghe"},{id:"40380",title:"Mr.",name:"Ion",middleName:null,surname:"Barbu",slug:"ion-barbu",fullName:"Ion Barbu"},{id:"127558",title:"Prof.",name:"Iuliana Florentina",middleName:null,surname:"Gheorghe",slug:"iuliana-florentina-gheorghe",fullName:"Iuliana Florentina Gheorghe"}]},{id:"16332",doi:"10.5772/18600",title:"Air Change Measurements Using Tracer Gases: Methods and Results. Significance of air change for indoor air quality",slug:"air-change-measurements-using-tracer-gases-methods-and-results-significance-of-air-change-for-indoor",totalDownloads:4297,totalCrossrefCites:18,totalDimensionsCites:47,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Detlef Laussmann and Dieter Helm",authors:[{id:"31977",title:"MSc",name:"Detlef",middleName:null,surname:"Laussmann",slug:"detlef-laussmann",fullName:"Detlef Laussmann"},{id:"33853",title:"Dr.",name:"Dieter",middleName:null,surname:"Helm",slug:"dieter-helm",fullName:"Dieter Helm"}]},{id:"18646",doi:"10.5772/17650",title:"Air Pollution Control in Municipal Solid Waste Incinerators",slug:"air-pollution-control-in-municipal-solid-waste-incinerators",totalDownloads:14028,totalCrossrefCites:5,totalDimensionsCites:34,abstract:null,book:{id:"489",slug:"the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources",title:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources",fullTitle:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources"},signatures:"Margarida J. Quina, João C.M. Bordado and Rosa M. Quinta-Ferreira",authors:[{id:"29023",title:"Prof.",name:"Margarida",middleName:null,surname:"Quina",slug:"margarida-quina",fullName:"Margarida Quina"},{id:"38775",title:"Prof.",name:"João",middleName:null,surname:"Bordado",slug:"joao-bordado",fullName:"João Bordado"},{id:"38776",title:"Prof.",name:"Rosa",middleName:null,surname:"Quinta-Ferreira",slug:"rosa-quinta-ferreira",fullName:"Rosa Quinta-Ferreira"},{id:"136027",title:"Dr.",name:"Rosa Quinta",middleName:null,surname:"Ferreira",slug:"rosa-quinta-ferreira",fullName:"Rosa Quinta Ferreira"}]},{id:"16338",doi:"10.5772/17059",title:"Wind Driven Ventilation for Enhanced Indoor Air Quality",slug:"wind-driven-ventilation-for-enhanced-indoor-air-quality",totalDownloads:6791,totalCrossrefCites:15,totalDimensionsCites:24,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Jason Lien and Noor Ahmed",authors:[{id:"6371",title:"Dr.",name:"Noor",middleName:null,surname:"Ahmed",slug:"noor-ahmed",fullName:"Noor Ahmed"},{id:"27131",title:"Dr.",name:"Jason",middleName:null,surname:"Lien",slug:"jason-lien",fullName:"Jason Lien"}]},{id:"16326",doi:"10.5772/16918",title:"Sensing a Historic Low-CO2 Future",slug:"sensing-a-historic-low-co2-future",totalDownloads:2714,totalCrossrefCites:8,totalDimensionsCites:14,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Colin Porteous",authors:[{id:"26678",title:"Prof.",name:"Colin",middleName:"Douglas Alexander",surname:"Porteous",slug:"colin-porteous",fullName:"Colin Porteous"}]}],mostDownloadedChaptersLast30Days:[{id:"18642",title:"The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution",slug:"the-effects-of-air-pollutants-on-vegetation-and-the-role-of-vegetation-in-reducing-atmospheric-pollu",totalDownloads:18727,totalCrossrefCites:9,totalDimensionsCites:68,abstract:null,book:{id:"489",slug:"the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources",title:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources",fullTitle:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources"},signatures:"Iuliana Florentina Gheorghe and Barbu Ion",authors:[{id:"29040",title:"Prof.",name:"Iuliana",middleName:"Florentina",surname:"Gheorghe",slug:"iuliana-gheorghe",fullName:"Iuliana Gheorghe"},{id:"40380",title:"Mr.",name:"Ion",middleName:null,surname:"Barbu",slug:"ion-barbu",fullName:"Ion Barbu"},{id:"127558",title:"Prof.",name:"Iuliana Florentina",middleName:null,surname:"Gheorghe",slug:"iuliana-florentina-gheorghe",fullName:"Iuliana Florentina Gheorghe"}]},{id:"16330",title:"Distributed Smart Sensing Systems for Indoor Monitoring of Respiratory Distress Triggering Factors",slug:"distributed-smart-sensing-systems-for-indoor-monitoring-of-respiratory-distress-triggering-factors",totalDownloads:3002,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Octavian Postolache, Jose Miguel Pereira, Pedro Silva Girão and Gabriela Postolache",authors:[{id:"8384",title:"Prof.",name:"Jose Miguel",middleName:null,surname:"Pereira",slug:"jose-miguel-pereira",fullName:"Jose Miguel Pereira"},{id:"26706",title:"Dr.",name:"Octavian",middleName:null,surname:"Postolache",slug:"octavian-postolache",fullName:"Octavian Postolache"},{id:"26867",title:"Prof.",name:"Pedro",middleName:"Manuel Brito Da",surname:"Silva Girão",slug:"pedro-silva-girao",fullName:"Pedro Silva Girão"},{id:"35319",title:"Prof.",name:"Gabriela",middleName:null,surname:"Postolache",slug:"gabriela-postolache",fullName:"Gabriela Postolache"},{id:"47638",title:"Prof.",name:"Octavian",middleName:null,surname:"Postolache",slug:"octavian-postolache",fullName:"Octavian Postolache"}]},{id:"16336",title:"Moisture and Estimation of Indoor Moisture Generation Rate",slug:"moisture-and-estimation-of-indoor-moisture-generation-rate",totalDownloads:3572,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Tao Lu, Xiaoshu Lu and Martti Viljanen",authors:[{id:"2657",title:"Dr.",name:"Xiaoshu",middleName:null,surname:"Lu",slug:"xiaoshu-lu",fullName:"Xiaoshu Lu"},{id:"23028",title:"M.Sc",name:"Tao",middleName:null,surname:"Lu",slug:"tao-lu",fullName:"Tao Lu"},{id:"33395",title:"Prof.",name:"Martti",middleName:null,surname:"Viljanen",slug:"martti-viljanen",fullName:"Martti Viljanen"}]},{id:"16322",title:"VOCs Removal Using the Synergy Technology Basing on Nonthermal Plasma Technology",slug:"vocs-removal-using-the-synergy-technology-basing-on-nonthermal-plasma-technology",totalDownloads:4096,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"519",slug:"chemistry-emission-control-radioactive-pollution-and-indoor-air-quality",title:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality",fullTitle:"Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality"},signatures:"Tao Zhu",authors:[{id:"24623",title:"Dr.",name:"Tao",middleName:null,surname:"Zhu",slug:"tao-zhu",fullName:"Tao Zhu"}]},{id:"18639",title:"Air Pollution in the Niger Delta Area: Scope, Challenges and Remedies",slug:"air-pollution-in-the-niger-delta-area-scope-challenges-and-remedies",totalDownloads:9791,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"489",slug:"the-impact-of-air-pollution-on-health-economy-environment-and-agricultural-sources",title:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources",fullTitle:"The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources"},signatures:"Godson Rowland Ana",authors:[{id:"26394",title:"Dr.",name:"Ana",middleName:"Rowland",surname:"Godson",slug:"ana-godson",fullName:"Ana Godson"}]}],onlineFirstChaptersFilter:{topicId:"854",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Prof.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:{name:"Henan Agricultural University",institutionURL:null,country:{name:"China"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:102,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/181427",hash:"",query:{},params:{id:"181427"},fullPath:"/profiles/181427",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()