With the development of artificial intelligence, the artificial neural networks (ANN) are widely used in the control, decision‐making and prediction of complex discrete event manufacturing systems. Wafer fabrication is one of the most complicated and high competence manufacturing phases. The production scheduling and yield prediction are two critical issues in the operation of semiconductor wafer fabrication system (SWFS). This chapter proposed two fuzzy neural networks for the production rescheduling strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐based rescheduling decision model is implemented, which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to the current system disturbances. The experimental results demonstrate the effectiveness of proposed FNN‐based rescheduling decision mechanism approach over the alternatives (back‐propagation neural network and Multivariate regression). Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to improve prediction accuracy of die yield in which the impact factors of yield and critical electrical test parameters are considered simultaneously and are taken as independent variables. The comparison experiment verifies the proposed yield prediction method improves on three traditional yield prediction methods with respect to prediction accuracy.
Part of the book: Artificial Neural Networks