Green nanotechnology is defined as the technology applied for building clean technology by which one can reduce the potential risks of environment and also improve human health conditions. It is linked with the implementation of products of nanotechnology and its process of manufacturing. Green nanotechnology synthesizes new nanoproducts with improved properties in such a way that they can substitute some of the existing low‐quality products. The main motive of developing new nanoproducts is to enhance sustainability and also to make them more environment friendly. In particular, nanoscale materials (e.g., nanoparticles) can be defined as those having characteristic length scale lying within the nanometric range, that is, in the range between one and several hundreds of nanometers. Within this length scale, the properties of matter are sufficiently different from individual atoms/molecules or from bulk materials. The primary objective of this chapter is to provide comprehensive overview about metal nanoparticles (MNPs) and its application as emerging green catalysts. This chapter contains six sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of MNPs as green catalyst. Section 2 reviews the preparation and characterization of supported metal nanoparticles for a wide range of catalytic applications. Section 3 presents the catalytic properties of supported metal nanoparticles. Section 4 describes briefly some of the most commonly reported supported MNPs in different green catalytic applications. Section 5 concentrates on our own results that related to the application of supported MNPs in catalysis. In this section, the oxidation of benzyl alcohol to benzaldehyde, the production of adipic acid from cyclohexane, the photodegradation of dyes using green route will be discussed. Finally, Section 6 describes the summary of main points and also presents an outlook of the application of MNPs in green chemistry.
Part of the book: Green Nanotechnology
Replacement of fossil materials by renewable feedstocks is forced by depletion and environmental concerns but requires new technologies for energy generation or production of chemicals. Co-processing of petroleum with renewable feedstocks in current refinery infrastructure is an attractive option in the mid-term to increase renewable fuel capacity, as the capital investment and operational costs would be marginal. In this chapter, various strategies for admixing of phenolic compounds as renewable feeds into standard refineries are described. Starting from the role of renewable resources (e.g. biomass, lignin and bio-oil) in the current and future energy and chemical community, an overview on the present energy supply situation and the role of phenolic compounds are discussed. Later, a summary on co-feeding of phenolic model compounds with conventional feeds in refineries are illustrated. The co-processing of upgraded bio-oil in refinery units [e.g. fluid catalytic cracking (FCC), hydrotreating] is summarized, showing the potential utilisation of bio-feeds via such processes. Finally, some concluding remarks address the perspectives for further research and development to overcome future challenges.
Part of the book: Phenolic Compounds