In this study we introduce the multidomain bivariate spectral collocation method for solving nonlinear parabolic partial differential equations (PDEs) that are defined over large time intervals. The main idea is to reduce the size of the computational domain at each subinterval to ensure that very accurate results are obtained within shorter computational time when the spectral collocation method is applied. The proposed method is based on applying the quasi-linearization technique to simplify the nonlinear partial differential equation (PDE) first. The time domain is decomposed into smaller nonoverlapping subintervals. Discretization is then performed on both time and space variables using spectral collocation. The approximate solution of the PDE is obtained by solving the resulting linear matrix system at each subinterval independently. When the solution in the first subinterval has been computed, the continuity condition is used to obtain the initial guess in subsequent subintervals. The solutions at different subintervals are matched together along a common boundary. The examples chosen for numerical experimentation include the Burger’s-Fisher equation, the Fitzhugh-Nagumo equation and the Burger’s-Huxley equation. To demonstrate the accuracy and the effectiveness of the proposed method, the computational time and the error analysis of the chosen illustrative examples are presented in the tables.
Part of the book: Nonlinear Systems