Pluripotent stem cells are classified into naïve and primed based on their growth characteristics in vitro and their potential to give rise to all somatic lineages and the germ line in chimeras. In this chapter, I describe the similarities and differences between the naïve and primed pluripotent states as exemplified by mouse embryonic stem cells (mESCs), mouse epiblast stem cells (mEpiSCs), human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). I also review the efforts for derivation of naïve human pluripotent stem cells by manipulating culture conditions during reprogramming of somatic cells and attempts to revert primed hESCs to the naïve state. Understanding the requirements for induction and maintenance of the naïve pluripotent state will facilitate studies on early human embryonic development and understanding the mechanisms involved in X inactivation in vitro. In addition, the development of naïve hiPSCs will improve the efficiency of gene targeting for the purpose of modeling human diseases as well as for generating gene‐corrected autologous pluripotent stem cells for regenerative medicine.
Part of the book: Pluripotent Stem Cells