\r\n\t
",isbn:"978-1-83968-388-6",printIsbn:"978-1-83968-387-9",pdfIsbn:"978-1-83968-389-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"61ec2bad4fc3f7060fd64b91fa12e82c",bookSignature:"Ph.D. Vicente Vanaclocha",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10574.jpg",keywords:"Prevalence, Incidence, Worldwide Differences, Red Flags, Moyamoya and School Performance, Medical Treatment, Surgical Treatment, Genetic Markers, Immunologic Factors, Recommended Anesthetic Agents, Source of Intraoperative Complications, Post-Operative ICU Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 23rd 2020",dateEndSecondStepPublish:"October 21st 2020",dateEndThirdStepPublish:"December 20th 2020",dateEndFourthStepPublish:"March 10th 2021",dateEndFifthStepPublish:"May 9th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Vicente Vanaclocha is a Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He has over 25 years of experience in neuro-oncology and minimally invasive surgery techniques. He is a pioneer in many areas in neurosurgery (treatment of brain tumors, Chiari Malformation, and sacroiliac joint disorders).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"199099",title:"Ph.D.",name:"Vicente",middleName:null,surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha",profilePictureURL:"https://mts.intechopen.com/storage/users/199099/images/system/199099.jpeg",biography:"Vicente Vanaclocha is Chief of Neurosurgery. Doctor of Medicine from the University of Valencia, he has over 25 years experience in neuro-oncology, minimally invasive and minimally invasive surgery techniques. Specialist in neurosurgery both nationally and internationally (including the General Medical Register of England and stay at the Groote Schuur Hospital in Cape Town, South Africa) has been Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He was also associate professor of neurosurgery at the Faculty of Medicine of the University of Navarra and is a professor of neuroanatomy at the Catholic University of Valencia also serving as an editorial board member of repute.\nCurrently he is Associate Professor at the University of Valencia.",institutionString:"University of Valencia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6546",title:"Treatment of Brachial Plexus Injuries",subtitle:null,isOpenForSubmission:!1,hash:"24a8e7c7430e86f76fb29df39582855a",slug:"treatment-of-brachial-plexus-injuries",bookSignature:"Vicente Vanaclocha and Nieves Sáiz-Sapena",coverURL:"https://cdn.intechopen.com/books/images_new/6546.jpg",editedByType:"Edited by",editors:[{id:"199099",title:"Ph.D.",name:"Vicente",surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67203",title:"Introductory Chapter: Swirling Flows and Flames",doi:"10.5772/intechopen.86495",slug:"introductory-chapter-swirling-flows-and-flames",body:'Swirling flows are used in a very wide range of industrial applications. In non-reacting cases, examples of applications include vortex amplifiers and reactors, heat exchangers, jet pumps, cyclone separators, whirlpools, tornadoes, etc. In reacting cases, swirlers are widely used in combustion systems, such as gas turbines, industrial furnaces, boilers, gasoline and diesel engines and many other practical heating devices. Effects of using swirl on flow and combustion are significant and various and concern, for example, aerodynamics, mixing, flame stability, intensity of combustion and pollutant emissions. In this chapter, we are interested in the use of swirling flows in combustion systems.
In industrial plants, the geometric methods of flame stabilization are based on increasing the residence time of reactive gases either by the wake effect bluff-body burner, by the flow rotation of reactants swirl burner or by a combination of these two mechanisms.
Burners with helical flows generally referred to as the swirl burner have very wide applications in the industrial field. In the literature, many examples of uses of swirling jets are found as a means of controlling combustion [1, 2, 3, 4]. Other studies focused on the swirl effect on the characteristics of lifted flames [5], stabilization and blow-out phenomenon [6, 7, 8] and pollutant emissions [9, 10, 11, 12, 13].
There are several ways to generate the rotation of a flow. They can be classified into three main categories:
Use of fins or adjustable propellers tangentially deflecting the axial flow. Because of its simplicity, this device is generally used in industrial systems, in particular in gas turbines. However, this type of device introduces significant head losses, and the intensity of swirl is limited (design of fins) [14].
Rotating mechanical devices which generate a rotational movement to the fluid passing between them [10].
Tangential injection of part or all fluid quantity into a main duct. The intensity of the swirl is then determined by the ratio between the flow injected tangentially and that injected axially [15, 16].
The swirl number (Sn) is a dimensionless number that characterizes the rotating flows. It is defined as (Beér and Chigier [1])
where
U and W are the axial and tangential components of the velocity, respectively; p is the static pressure of the flow.
The introduction of this swirl number is based on
According to some studies as Beér and Chigier [1], for flows with a low swirl number (Sn = 0.6), there is no recirculation of the flow (Figure 1). The swirl induces an increase in the entrainment of the ambient fluid and a decrease in the axial velocity of the flow. Axial velocity radial profiles remain a Gaussian form as long as the swirl remains below 0.5. Velocity maximum deviate from the axis when approaching Sn = 0.6. Thus the degree of jet opening and the entrained mass flow then increase continuously with the swirl number. From a swirl intensity of about 0.6, a recirculation zone appeared in the main flow. The size and position of this recirculation zone varies with the intensity of swirl [1, 17]. This zone is an essential element for the stabilization of flames because it contains preheated fresh gases and allows a better combustion.
Swirl effect on flames [1]. (1) Low Sn, (2) intermediary Sn and (3) high Sn.
The swirl is commonly used in combustion because it has a stabilizing role for the flame [1, 8]. Indeed, if the swirl intensity is strong enough, a recirculation zone will appear. The latter is a region in which fresh gases and flue gases are well mixed. In addition, swirl improves the entrainment of gases and greatly increases flame-blow limits [3, 7]. Beer and Chigier [1] show the effect of the swirl intensity on the behaviour of the flame as shown in Figure 1.
Case (1): The intensity of swirl is low; the flame behaviour is similar to that encountered without swirl. The flame is detached from the burner.
Case (2): The intensity of swirl is intermediary; the flame is stabilized closer to the burner, in the recirculation zone rich in fresh gas. Turbulence levels are high and combustion is intense.
Case (3): The intensity of swirl is high; the interaction of flame/walls is intense; this is in generally an undesirable case, except in certain industrial furnaces to obtain an intense and uniform radiation.
Many advantages of swirling reacting flows are now well-known and studied, as the flame stabilization improvement through the vortex breakdown phenomenon, due to the central recirculation zone (CRZ) occurrence [3, 7, 19, 20] and enhancement in turbulent mixing of reactants by means of the precessing vortex core (PVC). Authors [21, 22, 23, 24, 25] studied the flow characteristics and mixing properties of the swirling double concentric jets at low Reynolds numbers with control discs. Jourdaine et al. [26], investigated premixed swirling flames of CO2–CH4–O2 and CH4-air using different optical diagnostics. Benim et al. [27] studied numerically turbulent swirling flames in a model gas turbine combustor, using OpenFOAM code through the LES approach. Elbaz and Robert [16] investigated non-premixed methane swirling flames and particularly the quarl geometry effect on the flame structure. They were interested in the measurements of the turbulent flow field, concentrations of species and temperature distribution. Khalil Ahmed and Gupta [28] studied the colourless distributed combustion (CDC) combustor. CDC was examined with both swirling and non-swirling cases using different injection of velocity to improve distributed combustion. Orbay et al. [29] reported experiments and numerical simulations of swirling turbulent flows in non-reactive and reactive cases in an academic gas turbine combustor. They conducted PIV-LDV measurements and LES calculations focusing on the characterization of the flow structures, the effect of inflow swirl and the heat release in a premixed natural gas-air combustor. Candel et al. [30] performed a review of some recent progresses on swirling flame dynamics, particularly with the presence of acoustic perturbations. They found that the presence of acoustic perturbations in swirling flows induces a vorticity wave which is convected by the flow. They showed that the response of flame is characterized by a combination of heat release rate fluctuations generated by the incoming acoustic and convective perturbations. Von Lavante and Yao [31] studied numerically different types of axisymmetric internal configurations to examine the development of turbulent swirling and non-swirling flows along the flow. A numerical algorithm for solving the three-dimensional axisymmetric internal turbulent flows was developed. Good agreement of the calculation and theoretical results of the velocity profiles and pressure distributions was obtained. Iyogun et al. [14] presented an experimental investigation on the stability of swirling non-premixed CH4 flames in a coaxial burner. Measurements were conducted for both reacting and non-reacting swirling flows. Cozzi and Coghe et al. [32] investigated by stereo-particle image velocimetry (S-PIV) technique the initial region of a swirling gas jet on a model burner in isothermal swirling air jets. Their study was interested to identify the presence of vortex breakdown, the central recirculation zone (CRZ) and the precessing vortex core (PVC). Boushaki et al. [13] investigated turbulent flames on a swirl burner with a radial injection of fuel (Figure 2). The burner consists of two concentric tubes with a swirler placed in an annular part supplying the air. Eight vanes are made to induce a swirl intensity variation. The central pipe delivers a fuel radially through eight holes symmetrically distributed on the periphery of the tube near the exit burner.
Diagram of the coaxial swirl burner, (a) 3D view of the top part and (b) vertical cross section.
Experimental and numerical investigations have been performed on this burner configuration as shown in Figure 3. On the left of Figure 3 [13], it shows contours of axial (U) velocity up to 2.5D downstream of the flow in non-reacting and reacting cases with the condition of a swirl number Sn = 0.8 and a global equivalence ratio Ф = 0.8. The velocity field is symmetrical about the dashed line x = 0. Note that only the left part of the field (x/Rb: from 0 to −3) is plotted in Figure 3. Velocity fields highlight the higher axial expansion induced by the combustion in the reacting flow. As expected, with high swirl intensity, an internal recirculation zone (IRZ) appeared for non-reacting and reacting conditions. The IRZ becomes larger by the combustion due to the change in fluid density and more intense for the reacting case compared to the non-reacting case.
On the left: fields of axial velocity (U) under non-reacting and reacting conditions (Sn = 0.8 and Ф = 0.8) [13]. On the right: snapshot of iso-surfaces of Q-criterion for the non-reacting (a) and reacting (b) cases [33].
On the right of Figure 3, the 3D coherent structures are identified using Q-criterion iso-surface for both non-reacting and reacting flows [33]. The iso-surfaces are coloured by the instantaneous axial velocity. The Q-criterion identifies vortices of an incompressible flow as connected fluid regions with a positive second invariant of the velocity gradient tensor [34]. The 3D coherent structures can reveal in a discernible manner the swirling flow instabilities. Two similar structures are present in the isothermal and the reacting flows, which are the vortex rings and the finger structures. In the near field at the burner exit, each jet is composed of two shear layers (ISL and OSL) owing to the annular geometry of the burner. More details about these works can be found in the previous paper of the authors [35, 36, 37].
Schmittel et al. [10] showed that the use of swirl in non-premixed combustion can lead to the reduction of pollutant emissions, particularly that of nitrogen oxides. Indeed, under the swirl effect and thus the mixing improvement of reactants, the flame temperature decreases and leads to the decrease of NOx production. In addition, when the intensity of the swirl is sufficient, increasing the swirl number induces a reduction of residence time in hot areas. This also has the effect of limiting NOx formation. However, it is necessary to find a swirl intensity that achieves a compromise between on the one hand the reduction of pollutant emission and, on the other hand, the distance flame burner to prevent the flashback. The study of Coghe et al. [11] on a lean natural gas burner (ϕ = 0.69) showed that NOx reduction can reach 30% for a swirl number between 0.7 and 0.82. Pesenti and Lybaert [38] tested in a 300 kW furnace with a swirl burner and an air co-flow by comparing three ratios of tangential airflow to total flow (air + natural gas) 0, 0.5 and 1. The authors showed that the optimum in terms of NOx emission is obtained when 50% of tangential air is injected. Burguette and Costa [39] evaluated the influence of the swirl intensity on NOx through the angle of the blades constituting the swirler. They found that at 45° the NOx rate is the most important; however, at 45° lower or higher, NOx emissions decrease. The authors explain these results by the fact that at 45° the recirculation zone starts, and therefore the residence time increases close to the burner, thus increasing the intensity of combustion and consequently the temperature and NOx formation. Cozzi and Coghe [12] studied NOx emissions on a coaxial swirled natural gas flame. They reported that the swirl intensity has a strong effect on non-premixed flames in which very low levels of NOx can be obtained at higher swirl.
Boushaki et al. [15, 40] investigated reacting swirling flows on a burner with triple jets as shown in Figure 4. The burner is composed of three nozzles, one central of natural gas and two laterals of pure oxygen. Each nozzle is surrounded tangentially by four small jets around the main jets. These small jets generate a swirling motion of the flow; the swirl intensity is controlled by the flow rate in the actuators. The authors reported that the swirl intensity through the flow rate of actuators affects significantly the flow field and consequently the flame behaviour (stability, shape, pollutants). For example, Figure 4b illustrates NOx emissions as a function of the swirl intensity controlled by the flow rate ratio r (ratio of flow rate of jet actuators and total flow rate). The results show that the NOx emissions with swirl intensity decrease in the first part. In this part, the NOx reductions are about 22, 36 and 60% depending to the burner configuration. From 0 to 15% of flow rate ratio, the swirling flow enhances mixing progressively and probably induces a reduction of NOx emission. Besides, the swirl by jet actuators enhances entrainment of combustion products, which decreases the flame temperature and NOx production. For the second part with higher swirl intensity, the increase of NOx production can be explained by the higher velocities of the small jet which disturb the main jets.
(a) Swirl burner with triple jets. (b) NOx emissions with the flow rate ratio for three burner configurations [15, 39].
Boushaki et al. [13] and Nazim et al. [41] reported the effect of the swirl number on the NOx and CO emissions. They found that in the case of a swirl number of 1.4, the EICO rate is slightly lower than in the case of a swirl number of 0.8. The authors noted that the swirl intensity might tend to enhance the mixing and to increase the residence time inside the reaction zone, which promotes the CO conversion to CO2. Concerning the NOx emissions, the authors found that increasing the swirl number tends to reduce the EINOx formation in particular for oxygen rate up to 27%. The authors explain this evolution by the decrease of flame temperature induced by the swirl through the Zeldovich mechanism. Some authors as [10, 42] by the experiments and computations demonstrated that NOx emissions decrease when the swirl number increases, mainly because of the better mixing with combustion products in the inner recirculation zone created by high swirling flows.
Two main algorithms are applied for reconstruction of tissue defects: the reconstructive ladder and the reconstructive elevator systems. The philosophy of the reconstructive ladder system is to use the simplest possible reconstructive option to reconstruct the defect. According to the “reconstructive ladder” concept primary closure, skin graft, local flap, and lastly distant flap options are evaluated and used for reconstructing a defect. The simplest option to reconstruct a defect in this order is used. However, according to the reconstructive elevator system, patients’ needs determine the reconstructive option to be used. In order to achieve a better functional and esthetic outcome, to improve donor site appearance, and to reduce its morbidity, many surgeons have used free flap transfer as the first choice over the past two decades [1]. Therefore, the reconstructive elevator system is favored since it is more functional and reduces donor site morbidity especially after the introduction of perforator-free flaps.
Modern technology has enabled us to produce finer microsurgical and surgical instruments; improvement in optics has produced improved operative microscopes [2]. Along with this, an increasing number of centers all over the world give microsurgical training opportunities, enabling more and more reconstructive surgeons to perform reconstructive microsurgical operations [2]. As a result of this, there is a general shift in favor of the reconstructive elevator versus the reconstructive ladder system all over the world. This means, more complicated operations that consider patients’ future functionality and donor site morbidity are performed. Donor site morbidity does not always refer to donor site appearance but, more importantly, it refers to sacrification of important vessels, underlying muscle, etc. After the introduction of perforator flaps to the field of reconstructive surgery, harvest and use of perforator flaps as a new option has become popular because of its numerous advantages compared to more traditional flaps. These advantages include the reliability of perforator flaps, decrease in donor site morbidity when compared to nonperforator options, and the possibility to use each perforator flap as a local pedicled flap or as a free flap. As a result of this, perforator flaps have gained legitimate popularity all over the world. Radial forearm free flaps or latissimus dorsi free flaps can be given as examples for less frequently used reconstructive options after popularization of perforator based free flaps.
In the past, before perforator flaps gained popularity, random pattern flaps with no described or known vascular supply had been frequently used to reconstruct defects. Ponten has described various lengths to width ratios for random pattern flaps in different locations of the body. However, as a result of a better understanding of blood supply to skin, a new era has begun in the field of reconstructive surgery. This has led to the development and use of fasciocutaneous and musculocutaneous flaps supported by the “angiosome theory.”
Evolution of flaps has continued contrary to the belief that there is very little left to discover about flap design [2]. In 1989, Koshima and Soeda reported on a skin flap supplied by a perforating vessel originating from the deep inferior epigastric artery and perforating the deep fascia [3]. This was the first perforator flap reported and was the beginning of another era in the field of reconstructive microsurgery. Following this report, an increasing number of papers have been reported sharing experience in reconstructing defects all over the body either by using local perforator flaps or by using perforator-free flaps.
In 2003, Blondeel et al. reported a paper representing the consensus of opinions of a group of pioneers in the field of perforator flap surgery that were reached during the Fifth International Course on Perforator Flaps in Gent in September 2001 [4]. They tried to classify perforators according to perforators’ anatomy, the route they passed through until they reached the subcutaneous tissue by piercing the deep fascia. According to this paper, five types of perforators were defined: “(1) direct perforators: these perforated the deep fascia and supplied the subcutaneous tissue and skin, (2) indirect muscle perforators that gave muscular branches but predominantly supplied skin and subcutaneous tissue, (3) indirect muscle perforators that gave branches to muscle, predominantly supplied muscle but gave secondary branches to subcutaneous tissue, (4) indirect perimysial perforators that traveled within the perimysium between the muscle fibers before piercing the deep fascia, (5) indirect septal perforators that traveled between the intermuscular septum, and pierced the deep fascia and supplied the subcutaneous tissue and skin” [4]. After the “2001 consensus” in classification of perforators, Blondeel et al. reported on roundtable talks on flap terminology at the “Sixth International Course on Perforator Flaps” that was held in Taipei from October 23 until October 26, 2002. During this meeting, they tried to simplify perforator classification and reported this simplified consensus in 2003 [5]. According to this, flaps are classified under three types: “(1) indirect muscle perforators or myocutaneous perforators that traverse through muscle and perforate the outer layer of deep fascia to supply overlying skin, (2) indirect septal perforators or septocutaneous perforators that traverse septum and supply overlying skin after perforating the outer layer of deep fascia, and (3) direct perforators that perforate deep fascia only” [5]. If we look from a practical point of view, it is important to know what kind of dissection is to be made: an intramuscular dissection or a dissection for a septocutaneous perforator. Dissection of a septocutaneous perforator requires a tedious dissection but is easier when compared with the dissection of a musculocutaneous perforator. However, dissection of a musculocutaneous perforator requires experience and much care. From this point, it is important to distinguish between two. On the other hand, we believe it is also very important to know the subtypes of musculocutaneous perforators for academic purposes.
Another issue concerns the nomenclature of perforator flaps. In Gent, they tried to reach a consensus on the nomenclature of new perforator flaps. Until this time, same perforator flaps are being reported in articles or in scientific meetings under different names, and this causes confusion among readers or audients. For this reason, the following statement is accepted:
“A perforator flap should be named after the nutrient artery or vessels and not after the underlying muscle. If there is a potential to harvest multiple perforator flaps from one vessel, the name of each flap should be based on its anatomical region or muscle” [4].
Perforasome theory has been raised by Saint-Cyr et al. as a result of a cadaveric study [6]. This theory defines the perforators supplying skin, the microanatomy of perforating vessels, perfusion characteristics, and the relationship among neighboring perforators all around the body. This theory also gives us clues in correct designing of perforator flaps. The importance of direct and indirect linking vessels has also been shown in this study. Similarly, Taylor and Palmer have defined the angiosome concept; they have demonstrated that the whole body is divided into composite blocks of tissue supplied by source vessels and each neighboring tissue block and source vessels communicate with each other by means of anastomotic vessels [7, 8]. Both are quite important studies that try to find answers to similar questions and are milestones in understanding the vascularization of skin.
The term “perforasome” has been used by Saint-Cyr et al. to describe the vascular arterial territory supplied by an individual perforator [6]. Over 350 perforators exist throughout the body [6]. In order to correctly plan perforator flaps, we have to know the territory of each perforator, the direction along which the perforator branches travel, and the anastomoses of each perforator with its neighboring perforators. For this purpose, Saint-Cyr et al. have published a study performed on fresh human cadavers; this study is a milestone in understanding the microanatomy of perforators and provides valuable information on how to plan a perforator flap [6]. “It has been reported that each perforasome is linked to the adjacent perforasomes by “direct and indirect linking vessels” [6]. “Indirect linking vessels are effective in capturing adjacent perforasome by means of recurrent blood flow through subdermal plexus” [6]”. Indirect linking vessels and the choke vessels of “angiosome theory” reported by Taylor et al. are the same [9]. According to Taylor et al., every angiosome is usually connected to other angiosomes by reduced caliber vessels named “choke vessels.” “Direct linking vessels are larger vessels that link adjacent perforators resulting in capturing of neighboring perforasomes based on single perforator [6].” The synonym of direct linking vessels in perforasome theory is “true anastomosis.” The vessel calibers of true anastomosis do not change and are especially found in places where vessels are accompanied by cutaneous nerves, in muscles, nerve trunks, or after flaps that have been delayed [10, 11, 12, 13, 14, 15]. Therefore, knowledge about the direction along which direct and indirect linking vessels lie is very important to correctly plan perforator flaps because inclusion of direct and indirect perforators secures perforator flaps. Making sure to include direct and indirect linking vessels into the flap enables reconstructive microsurgeons to harvest a larger flap by incorporating neighboring perforasomes into the flap. “Flaps raised from the extremities should be designed parallel to the extremities since the direction of the linking vessels follow the axiality of the involved limb [6].” “However, flap design should be made perpendicular to the midline for flaps that will be harvested from the trunk since the axiality of the trunk follows the axiality of the muscle fibers of posterior trunk and chest, and this is perpendicular to the midline [6].” That is why long axis of anterolateral thigh flaps, posterior tibial artery perforator flaps, medial sural artery perforator flaps, and many other flaps raised on the extremities are planned parallel to the long axis of the extremity, whereas long axis of dorsal intercostal artery perforator flaps, lateral intercostal artery perforator flaps, thoracodorsal artery perforator flaps, and other perforator flaps harvested from trunk and chest wall are planned perpendicular to the midline and have a horizontal oblique direction.
“Vascular filling and density is highest in the perforasomes of perforators from the same source artery, but lower in the neighboring perforasomes of other perforators branching from different source arteries [6].” This is known as the “preferential filling” of perforasomes; preferential filling occurs in the perforators branching from the same source artery initially, but later occurs in the perforators branching from neighboring source arteries. Therefore, it may be concluded that a perforator flap carrying neighboring perforasomes arising from different source arteries harvested on a single perforator will have less perfusion than a flap harvested on single perforator carrying two adjacent perforasomes arising from the same source artery. For example, when a large thoracodorsal artery perforator flap is planned, it must be planned over the latissimus dorsi muscle to incorporate neighboring perforasomes of other perforators arising from the thoracodorsal artery. It must be remembered that if perforasomes of dorsal intercostal artery perforators or circumflex scapular artery perforators are to be incorporated instead of perforasomes of thoracodorsal artery perforators, the vascular filling pressure of that flap may be less in the perforasomes of other source arteries. This is very important in flap planning.
“Perforators found close to an articulation have a flow distribution away from this articulation [6].” “However, perforators found at a midpoint between two articulations or found at the midpoint of trunk have multidirectional flow distribution [6].” Planning of posterior tibial artery perforator flaps are good examples of perforators found close to articulations. Distal perforators of posterior tibial artery arise 9–12 cm proximal to the medial malleolus of tibia at the ankle joint [16]. Skin island of posterior tibial artery perforator flaps supplied by distal perforators of posterior tibial artery must be planned toward the proximal part of cruris (away from the articulation). On the other hand, perforators of anterolateral thigh flaps arise around the midpoint of the line drawn between anterior superior iliac spine and the superolateral part of patella. That is why, anterolateral thigh flaps may be planned proximal to and distal to the perforator due to the multidirectional flow.
Advantages of perforator flaps include the potential to harvest flaps based on any reliable perforator throughout the body that they do not sacrifice major vessels since they are supplied by the branches of these vessels and that they do not necessarily sacrifice muscle if muscle is not needed for reconstruction. In radial forearm flaps, the radial artery is incorporated. Therefore, after the radial forearm flap has been harvested, the whole hand is supplied by ulnar artery only. Sacrification of an artery such as the radial artery is believed to produce considerable morbidity. On the other hand, when perforator flaps are used, the source artery can be preserved. In case of a musculocutaneous perforator, intramuscular dissection may become challenging. However, if intramuscular pedicle dissection is performed, sacrification of muscle can be avoided. For instance, when a thoracodorsal artery perforator flap is being harvested based on a musculocutaneous perforator, intramuscular dissection must be performed in order to preserve underlying muscle namely latissimus dorsi muscle in this example. The same is true for anterolateral thigh flaps whenever the flap is supplied by a musculocutaneous perforator. However, if needed, such as in the obliteration of a dead space, a muscle cuff can be incorporated into the harvested flap based on a separate perforator.
Tedious dissection is very important in perforator flap harvest. It must be performed under loupe magnification and requires special expertise and experience. Especially, intramuscular perforator dissection can be challenging. That is why, perforator flap harvesting requires a learning curve. For beginners of perforator flap dissection, a detailed anatomy of the perforator flap being harvested must be known and training in one of the experienced centers on perforator flap dissection is strongly recommended.
There is a conflict about the skeletonization of the perforators supplying perforator flaps. Some groups claim that skeletonization of perforators supplying local perforator flaps is not needed, whereas some others, including us, believe that without skeletonization of perforators, flap harvest is not completed. Groups who do not skeletonize perforating vessels claim that skeletonization of perforators is not performed in order to reduce the risk of damage to the perforating artery and its venae commitantes [17]. We believe that complete skeletonization of perforator is required, since soft tissue and fibrous bands around perforators may cause compression of perforating artery and venae commitantes, thus causing venous insufficiency and/or arterial compromise of perforator flaps. Therefore, we believe that it is a “must” in perforator dissection. We know that skin is supplied by rich vascular plexuses including subepidermal plexus, dermal plexus, subdermal plexus, subcutaneous plexus, prefascial plexus, and subfascial plexus. All these plexuses contribute to the vascularization of skin. Our opinion is to harvest the flap with the fascia overlying the muscle because it is important in vascularization of the harvested flap. This is especially so, when a large flap is being harvested since prefascial and subfascial plexuses will be left intact on the harvested flap.
Flap circulation is a dynamic process. Therefore, cadaveric studies are not sufficient to help us understand the exact margins a perforator can supply. It must be remembered that when all the side branches (muscle and cutaneous branches) of a perforator emanating from the source artery are ligated, hyperperfusion of the flap pedicle will occur [6]. Hyperperfusion of the perforator artery and its increased vascular filling cause its dilatation [6]. This, in turn, will open up the anastomotic vessels, namely direct and indirect linking vessels, and result in perfusion of adjacent perforasomes belonging to neighboring perforators [6]. Choke vessels (synonymous with indirect linking vessels) dilate as much as true anastomosis size; however, this takes 2–3 days [12, 13]. During this time, hyperplasia, elongation, and hypertrophy of cells in the tunica intima, media, and adventitia occur. This leads to the thinning of vessel walls, followed by thickening by the seventh day [13]. However, if necrosis occurs, it usually takes place in this anastomotic zone. Perfusion pressure decreases, arteriovenous shunting occurs, and oxygen tension is subsequently lowered during the first 3–4 days, a process that leads to necrosis [18, 19].
There are over 350 perforators throughout the body [6]. Perforator flaps can be potentially harvested from anywhere, where there is a reliable perforator. Perforator flaps can be used as local perforator flaps or as perforator-free flaps. With the report of freestyle free flaps by Wei and Mardini [20], a new gate has been opened for reconstruction of defects using tissues harvested from anywhere of the body provided that tissue encountered is “the most suitable and similar” and is supplied by a reliable perforator. However, freestyle perforator flaps can also be used as local options for soft tissue reconstruction. For local perforator flaps, defect-perforator distance, reliability of perforator, scar tissue around the perforator, and over the planned flap (if there is) must all be considered. As mentioned before, perforator flaps can be used as local perforator flaps or as perforator-free flaps. Perforator-free flaps require vascular anastomosis onto the source vessels or onto other perforating vessels in the recipient site, whereas local perforator flaps do not. Therefore, the dissection part of the operation is similar in local perforator flaps and perforator-free flaps. However, in order to cover the defect, local perforator flaps are mobilized in a propeller, rotational, advancement, or transpositional movement fashion. Perforator free flaps require vascular anastomosis; therefore, a longer operation is performed. Correct planning of perforator flaps is of primary importance for the success of flaps. Perforators supplying perforator flaps have a static zone and a dynamic zone. The static zone is the zone supplied by the perforator itself, whereas the dynamic zone is the zone a perforator can supply beyond its own perforasome. This means that the dynamic zone is the potential zone of a perforator to supply the perforasomes of neighboring perforators. Saint-Cyr et al. reported that vascular filling of perforators from the same source artery is more, when compared to vascular filling of neighboring perforators from different source arteries, and this is explained by “preferential filling” [6]. Therefore, a perforator flap planned incorporating perforasomes of perforators arising from the same source artery may be safer than that combining perforasomes of perforators from different source arteries. For the same reason, after identifying a large perforator at the desired flap base, Taylor et al. [21] look for another perforator close to the first perforator in all radial directions and combine both perforators on a line drawn in between; this line is going to be the flap axis. They believe that this kind of flap planning is safe [21]. The anatomical territory of a cutaneous perforator is defined as the zone that connects the perforator with adjacent perforators in all directions and is separated from the anatomical zones of other perforators by the anastomotic zone between each anatomical territory. On the other hand, the clinical territory of each perforator is wider than its particular anatomical territory as it usually captures the neighboring anatomical territory of the neighboring perforator. It may even capture the anatomical territory of the one beyond, especially when perforators are linked together by true anastomosis or direct linking vessels [7].
Taylor et al. have reported that locating perforators correctly in well-muscled volunteers using a handheld Doppler is comparable with the location of corresponding perforators found in fresh cadavers after dissection and concluded that there was a close correlation [22]. However, investigation in this issue continued. Color Doppler ultrasound and computed tomography angiography (CT angiography) is frequently performed for this purpose. Feng et al. have compared color Doppler ultrasound and CT angiography for their reliability and sensitivity in detecting the location of perforators accurately [23]. They have reported that, preoperative color Doppler ultrasound (95%) is more accurate with respect to CT angiography (82.5%) in detecting the localization of dominant perforators. However, this difference has not been statistically significant. The results obtained with Color Doppler Ultrasound has a mean error of 1.11 ± 1.29 mm, whereas CT angiography has a mean error of 2.55 ± 2.63 mm, a statistically significant difference. On the other hand, the time needed to evaluate the images using CT angiography (27.2 ± 1.77 minutes) has been less than those used for color Doppler ultrasound (34.83 ± 3.55 minutes). The success of color Doppler ultrasound has been directly related to the experience of radiologist; however, the same has not been true for CT angiography [23]. Metal implants are known to cause artifact formation in CT angiography images; however, this does not apply to color Doppler ultrasound. On the other hand, compared to CT angiography, Doppler ultrasound is a cheaper modality [23]. As a result, Feng et al. have advocated the use of color Doppler ultrasound in experienced hands instead of CT angiography for more correctly locating perforators, and also, it is less expensive [23].
In order to identify risk factors of perforator propeller flaps in lower extremity defects, Bekara et al. searched MEDLINE, PubMedCentral, Embase, and Cochrane databases for reported series of lower extremity reconstruction using pedicled perforator propeller flaps between 1991 and 2004 [24]. In total, 428 perforator propeller flaps from 40 articles which performed for lower extremity reconstruction were included in the study [24]. Partial necrosis was found in 10.2%, whereas total flap necrosis was found in 3.5% of cases [24]. Patients older than 60, or patients who had diabetes or arteriopathy, were determined as significant risk factors for flap failure [24]. However, smoking, acute injury, post-traumatic injury, location of defect over the distal third of lower leg, inclusion of fascia, pedicle rotation greater than 120°, accompanying bone fracture, and surface area greater than 100 cm2 were found to have no significant effect on flap success [24]. Hypertension could not be evaluated due to lack of data [24]. Since this study was a meta-analysis, it had some limitations, however: lack of standardization (different surgical techniques and different approaches by different surgeons, and flaps used for reconstruction), missing data (comorbidity, localization, size of flap, cause, pedicle rotation), and including nonhomogenous patient groups [24]. Nevertheless, it is important to identify risk factors threatening perforator flap viability since patients are to be selected considering those risk factors along with many other factors. Another important issue that must be considered in reconstructive planning is defect etiology. In traumatic defects, post-traumatic vessel disease may have developed [25]. “Post-traumatic vessel disease is defined as progressive changes in vessel and perivascular tissues following trauma” [24] and “loss of normal easy dissection planes, around the vessels, loss of vasa vasorum, increased tendency of vessels to vasospasm or easily damaging vessels during dissection along with lack of thromboresistant properties of healthy vessels” [24]. Therefore, post-traumatic vessel disease is considered as a risk factor in reconstructive surgery, and the reconstructive surgeon must be aware of this. Because of this, the reconstructive surgeon must be familiar with problem solving and must have a special strategy for each case, individualizing each patient during reconstructive planning.
Brief information about some of the workhorse flaps and some case examples will be given in the following section.
The anterolateral thigh flap is probably the most commonly used perforator flap for reconstruction of soft tissue defects especially when transferred as a free flap. The anterolateral thigh flap is supplied by the descending branch of lateral circumflex femoral artery, which is the branch of deep femoral artery [26]. A straight line is drawn from the anterior superior iliac spine to the superolateral edge point of patella [26]. The flap pedicle lies between rectus femoris and vastus lateralis [26]. The perforator supplying this flap can be septocutaneous or musculocutaneous. The anterolateral thigh flap has a long pedicle that is a great advantage for use as a free flap or for use in reconstruction of locoregional defects (Figure 1). It can be harvested with a muscle cuff or with fascia according to patients’ needs [27]. This flap can be raised with a muscle cuff from vastus lateralis muscle as a chimeric flap [28] or with fascia lata for different reconstructive purposes [29].
(a) The patient is feeling discomfort standing upright because of unstable scarring and a slight contracture over the right inguinal region. The operative plan is to excise the contracture band and reconstruct the defect using a pedicled anterolateral thigh flap. (b) The anterolateral thigh flap has been elevated. Note that two pedicles supplying the flap have been dissected off. (c) Patient as seen 18 months postoperatively. Note that patient can easily abduct and extend her thighs.
The source vessel for the thoracodorsal artery perforator flap is the thoracodorsal artery. This artery is a branch of the subscapular system and divides into transverse and descending branches after entering to the latissimus dorsi muscle. According to the cadaveric dissections of Heitmann et al. investigating the anatomical basis of thoracodorsal artery perforator flaps, out of 20 specimens, a total of 64 musculocutaneous perforators larger than 0.5 mm were found [30]. In total, 36 of these perforators were arising from the descending branch whereas 28 were arising from the transverse branch [30]. However, in 11 dissections, there was also a direct cutaneous branch with an extravascular course [30]. The flap is raised in the lateral decubitus position, and an incision lateral to the lateral border of latissimus dorsi muscle is made [31] (Figure 2). After the perforator is found, dissection of the perforator is continued until adequate length is reached. However, during dissection of the flap, attention must be paid for preservation of the thoracodorsal nerve [31]. In addition to their local use, thoracodorsal artery perforator flaps are also favorable flaps for transfer as free flaps taking advantage of their long pedicle.
(a) An exposed pacemaker is seen over the left pectoral region. The operative plan is to excise the infected skin and reconstruct the defect using a thoracodorsal artery perforator flap. Flap planning is seen. A 9 × 9 cm defect is formed after excision and flap dimensions are 20 × 9 cm. (b) The thoracodorsal artery perforator flap has been elevated. (c) Patient as seen 3 months postoperatively.
Koshima et al. were probably the first to report on the use of gluteal artery perforator flaps for reconstruction of sacral pressure sores [32]. Superior gluteal artery perforator flaps can be used in soft tissue reconstruction of locoregional defects as well as in breast reconstruction when used as free flaps [33]. However, for use in breast reconstruction, they are usually indicated in those whom abdominal flaps are risky or cannot be used [31]. Usually, three perforators supply superior gluteal artery perforator flaps [31]. Superior gluteal artery perforators are found one-third of the distance along the line drawn from the posterior superior iliac spine to the greater trochanter [31]. After the localization of the pedicle using a handheld Doppler, the flap may be centered on that pedicle or may be designed eccentrically. After the incisions have been made and the perforator supplying the flap has been found, intramuscular dissection toward the sacrum is performed in order to elongate the flap pedicle (Figure 3). Dissection of a single perforator is adequate to supply the flap. However, one can dissect more than one perforator to supply the flap. The donor area can be closed primarily.
(a) A presacral pressure sore is seen in a previously operated meningomyelocele patient. The operative plan is to reconstruct the defect using a superior gluteal artery perforator flap. The defect size is 4.5 × 5.5 cm and the planned flap is 16 × 8.5 cm. (b) The superior gluteal artery perforator flap has been elevated based on a single perforator. (c) The patient following reconstruction as seen 1 year postoperatively. Note that a small area of recurrence is seen at the superior border of the flap after 1 year.
Perforator flaps have evolved as a result of better understanding of the dynamics of the vascular supply and drainage as well as the vascular microanatomy of flaps. Perforator flaps are a step forward in reconstruction of soft tissue defects; they have opened a new era in reconstructive surgery. Perforator flaps provide very important advantages in reconstructive surgery. Nevertheless, they are not without hazards. For this reason, risk factors in perforator flap surgery and clues to successful planning must be kept in mind while planning reconstruction using perforator flaps.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\\n\\n9. Please send any complaints about advertising to: info@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\n\n9. Please send any complaints about advertising to: info@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"293",title:"Military Science",slug:"military-science",parent:{title:"Technology",slug:"technology"},numberOfBooks:2,numberOfAuthorsAndEditors:9,numberOfWosCitations:1,numberOfCrossrefCitations:8,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"military-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8588",title:"Military Engineering",subtitle:null,isOpenForSubmission:!1,hash:"03399bdb07c21c27150ee424106395e2",slug:"military-engineering",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8588.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4818",title:"Mine Action",subtitle:"The Research Experience of the Royal Military Academy of Belgium",isOpenForSubmission:!1,hash:"103b330f3e2931050ea640f9c94165ad",slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",bookSignature:"Charles Beumier, Damien Closson, Vinciane Lacroix, Nada Milisavljevic and Yann Yvinec",coverURL:"https://cdn.intechopen.com/books/images_new/4818.jpg",editedByType:"Authored by",editors:[{id:"185125",title:"Dr.",name:"Charles",middleName:null,surname:"Beumier",slug:"charles-beumier",fullName:"Charles Beumier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"52464",doi:"10.5772/65779",title:"InSAR Coherence and Intensity Changes Detection",slug:"insar-coherence-and-intensity-changes-detection",totalDownloads:1155,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Damien Closson and Nada Milisavljevic",authors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}]},{id:"55000",doi:"10.5772/66691",title:"Remote Sensing for Non‐Technical Survey",slug:"remote-sensing-for-non-technical-survey",totalDownloads:952,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yann Yvinec, Nada Milisavljevic, Charles Beumier, Idrissa\nMahamadou, Dirk Borghys, Michal Shimoni and Vinciane Lacroix",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"55272",doi:"10.5772/67007",title:"Ground‐Penetrating Radar for Close‐in Mine Detection",slug:"ground-penetrating-radar-for-close-in-mine-detection",totalDownloads:2133,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez and Bart Scheers",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]}],mostDownloadedChaptersLast30Days:[{id:"55272",title:"Ground‐Penetrating Radar for Close‐in Mine Detection",slug:"ground-penetrating-radar-for-close-in-mine-detection",totalDownloads:2133,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez and Bart Scheers",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]},{id:"55347",title:"Data Fusion for Close‐Range Detection",slug:"data-fusion-for-close-range-detection",totalDownloads:583,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Nada Milisavljevic",authors:[{id:"4262",title:"Dr.",name:"Nada",middleName:null,surname:"Milisavljevic",slug:"nada-milisavljevic",fullName:"Nada Milisavljevic"}]},{id:"55688",title:"The Special Case of Sea Mines",slug:"the-special-case-of-sea-mines",totalDownloads:1469,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez, Alexander Borghgraef and Eric Mersch",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]},{id:"54115",title:"Positioning System for a Hand-Held Mine Detector",slug:"positioning-system-for-a-hand-held-mine-detector",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Charles Beumier and Yann Yvinec",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"67881",title:"Military Aviation Principles",slug:"military-aviation-principles",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"military-engineering",title:"Military Engineering",fullTitle:"Military Engineering"},signatures:"Kanchan Biswas",authors:null},{id:"53260",title:"Unmanned Ground and Aerial Robots Supporting Mine Action Activities",slug:"unmanned-ground-and-aerial-robots-supporting-mine-action-activities",totalDownloads:683,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yvan Baudoin, Daniela Doroftei, Geert de Cubber, Jean‐Claude\nHabumuremyi, Haris Balta and Ioan Doroftei",authors:[{id:"176831",title:"Dr.",name:"Yvan",middleName:null,surname:"Baudoin",slug:"yvan-baudoin",fullName:"Yvan Baudoin"}]},{id:"52765",title:"PARADIS: Information Management for Mine Action",slug:"paradis-information-management-for-mine-action",totalDownloads:601,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Vinciane Lacroix",authors:[{id:"176829",title:"Dr.",name:"Vinciane",middleName:null,surname:"Lacroix",slug:"vinciane-lacroix",fullName:"Vinciane Lacroix"}]},{id:"55000",title:"Remote Sensing for Non‐Technical Survey",slug:"remote-sensing-for-non-technical-survey",totalDownloads:952,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yann Yvinec, Nada Milisavljevic, Charles Beumier, Idrissa\nMahamadou, Dirk Borghys, Michal Shimoni and Vinciane Lacroix",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"52464",title:"InSAR Coherence and Intensity Changes Detection",slug:"insar-coherence-and-intensity-changes-detection",totalDownloads:1155,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Damien Closson and Nada Milisavljevic",authors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}]},{id:"54088",title:"Assessing the Performance of Personal Protective Equipment1",slug:"assessing-the-performance-of-personal-protective-equipment1",totalDownloads:1008,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Georgios Kechagiadakis and Marc Pirlot",authors:[{id:"176833",title:"Dr.",name:"Georgios",middleName:null,surname:"Kechagiadakis",slug:"georgios-kechagiadakis",fullName:"Georgios Kechagiadakis"}]}],onlineFirstChaptersFilter:{topicSlug:"military-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/18028/michael-h-abraham",hash:"",query:{},params:{id:"18028",slug:"michael-h-abraham"},fullPath:"/profiles/18028/michael-h-abraham",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()