Typical Wind Turbine parameters.
\r\n\t
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"abf31c9873fc2d88b8ee05c6adb53a29",bookSignature:"Dr. David Bienvenido-Huertas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10104.jpg",keywords:"Sustainable Construction, Innovative Construction, Construction Processes, Sustainable Design, Design Optimization, Maintenance Minimization, Energy Efficiency, Energy Conservation Measures, Thermal Comfort, Socio-cultural Integration, Urban Environment, Visual Impact",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"September 23rd 2020",dateEndThirdStepPublish:"November 22nd 2020",dateEndFourthStepPublish:"February 10th 2021",dateEndFifthStepPublish:"April 11th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"David Bienvenido-Huertas has completed his Ph.D. as an Architect, currently, he is a researcher of the Building Construction II Department at Universidad de Sevilla, Spain",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido-Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido-Huertas",profilePictureURL:"https://mts.intechopen.com/storage/users/320815/images/system/320815.jpg",biography:"PhD Architect. Researcher of the Building Construction II Department at Universidad de Sevilla, Spain. Active member of the Research Group TEP970: Technological Innovation, 3d Modeling Systems and Energy Diagnosis in Heritage and Building at the Universidad de Sevilla. His area of expertise covers climate change in the building sector, adaptive thermal comfort, heat transfer, fuel poverty, energy conservation measures, and design of nearly zero energy buildings. He is an author of more than 25 manuscripts and frequently a reviewer of international peer-reviewed journals.",institutionString:"University of Seville",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"6884",title:"Wind Turbine Clutter",doi:"10.5772/7175",slug:"wind-turbine-clutter",body:'\n\t\tThe use of wind farms to generate electricity is growing due to the importance of being a renewable energy source. These installations can have over a hundred turbines of up to 120 m height each. Wind farm installations relatively near to radar systems cause clutter returns that can affect the normal operation of these radars. Wind turbines provoke clutter reflectivity returns with unpredictable Doppler shifts.
\n\t\t\tWind turbines exhibit high radar cross sections (RCS), up to 1000m2 in some instances, and then, they are easily detected by radars. A typical wind turbine is made up of three main components, the tower, the nacelle and the rotor. The tower is a constant zero velocity return that can be suppressed by stationary clutter filtering. Unlike the tower, the turbine nacelle RCS is a function of the turbine yaw angle, and then, the radar signature will depend on this factor. Moreover, most wind turbines present curved surface nacelles which will scatter the energy in all directions and so the variability of the RCS is prominent. In addition, the rotor makes the blades move fast enough to be unsuppressed by conventional clutter filtering.
\n\t\t\tIn this chapter, we will examine the characteristics of wind turbine clutter in great detail. For this purpose, we will use examples derived from real experimental data. After describing the experimental data gathered, we will perform several studies.
\n\t\t\tFirst of all, a complete statistical characterization of the experimental data will be accomplished. This statistical study will show the distinctive properties of this variety of clutter and then, it will give us clues for its correct detection, as every detection theory must rely on statistics. In this case we will study isolated turbines, so that the obtained characteristics will be accurate. After that, we will make an extensive frequency analysis. Different configurations will be studied, with variations such us the number of turbines, the yaw angle or the radar dwell time. This will show various wind turbine clutter situations that most affected radar systems have to deal with.
\n\t\t\tFinally, some mitigation techniques that have been published to date will be reviewed. Their main purposes, techniques and results will be analyzed and illustrated with descriptive examples.
\n\t\tWind power has proved to be one of the most profitable energy sources both in terms of economy and ecology. In fact, many countries have launched programs in order to deploy wind turbines as alternative sources of energy, trying to tackle the climate change as well as the increasing oil costs. As it can be seen in Fig. 1, wind energy production has been exponentially increasing (World Wind Energy Association, 2009) since the early 90s.
\n\t\t\t\tEvolution of the wind power installed in the world.
Traditionally, Europe has leaded the wind energy market, with 70% of the sales by 2000 (Hatziargyriu & Zervos, 2001). However, the wind energy capacity has been promoted all over the world, and countries such as China or India are now using this technology to produce large amounts of electrical energy. USA is currently the largest wind power market, followed by Germany and Spain, Fig. 2 (World Wind Energy Association, 2009). With respect to penetration rates, this power provides 19% of the total energy consumed in Denmark, 11% in Spain and Portugal, 6% in Germany and 1% in USA (Thresher & Robinson, 2007). In terms of growth, world wind generation capacity more than quadrupled between 2000 and 2006. Wind farms will continue its expansion, as it is expected that within the next decades wind energy will occupy 20 % of the total annual power consumed both in Europe and USA (Thresher & Robinson., 2007). As a consequence, the impact of wind turbine clutter on radars is going be more and more important.
\n\t\t\t\tCumulative wind power capacity in the world.
A typical wind turbine is made up of three components, the tower, the nacelle and the rotor. The tower means a constant zero velocity return than can be easily minimized by means of an appropriate clutter cancellation. Unlike the tower, the turbine nacelle radar cross section (RCS) is a function of the turbine yaw angle and then, the radar signature will depend on this factor. More over, most wind turbines present curved surface nacelles which will scatter the energy in all directions and so, will increment the variability of the RCS (Poupart, 2003). Some studies conclude (Greving, 2008a) that the traditional RCS scheme is not applicable for objects on the ground and, therefore, it is not a useful parameter for the definition of safeguarding distances of wind farms to radars. Besides, the rotor makes the blades move fast enough to be unsuppressed by stationary clutter filtering, with maximum angular velocities between 30 and 50 rpm (Freris, 1992). To sum up, the main effects wind turbines have on radars are the following (Perry & Biss, 2007):
\n\t\t\t\tThe magnitude of the reflections from the wind turbine can cause radar receivers to be driven to saturation. In fact, typical tower heights reach 100 m, with blades from 30 to 50 m long, see Table 1 (Gamesa, 2009). Some studies address this problem and propose stealth technologies to mitigate this effect. The solutions involve both shaping and development of absorbing materials (Matthews et al., 2007)
Model | \n\t\t\t\t\t\t\tG58 | \n\t\t\t\t\t\t\tG83 | \n\t\t\t\t\t\t\tG90 | \n\t\t\t\t\t\t
Turbine rating (kW) | \n\t\t\t\t\t\t\t850 | \n\t\t\t\t\t\t\t2000 | \n\t\t\t\t\t\t\t2000 | \n\t\t\t\t\t\t
Blade length (m) | \n\t\t\t\t\t\t\t28.3 | \n\t\t\t\t\t\t\t40.5 | \n\t\t\t\t\t\t\t44 | \n\t\t\t\t\t\t
Tower height (m) | \n\t\t\t\t\t\t\t44-71 | \n\t\t\t\t\t\t\t67-78 | \n\t\t\t\t\t\t\t67-100 | \n\t\t\t\t\t\t
Rotation rate (rpm) | \n\t\t\t\t\t\t\t14.6-30.8 | \n\t\t\t\t\t\t\t9-19 | \n\t\t\t\t\t\t\t9-19 | \n\t\t\t\t\t\t
Max Tip speed (m/s) | \n\t\t\t\t\t\t\t91 | \n\t\t\t\t\t\t\t80.5 | \n\t\t\t\t\t\t\t87.5 | \n\t\t\t\t\t\t
Typical Wind Turbine parameters.
The rotation movement of blades cause Doppler shifts. The velocity of a blade depend on the distance from the centre, therefore, there is an increasing Doppler shift from the centre to the tip of the blade. This spectrum can fall within the limits of some radars or exceed them.
These effects result in various situations in different radars.
\n\t\t\t\tFor primary surveillance radars, air traffic control and air defence (Jackson, 2007), wind turbine effects include clutter, increased number of unwanted returns in the area of wind farms; desensitisation, reduced probability of detection for wanted air target; and a consequent loss of wanted target plotting and tracking. In conclusion, they provoke higher probability of false alarm and lower probability of detection.
In weather radars (Vogt et al., 2008), the clutter, signal blockage and interference may cause the misidentification of thunderstorm features and meteorological algorithm errors such us false radar estimates of precipitation accumulation, false tornadic vortex and mesocyclone signatures and incorrect storm cell identification and tracking.
Monopulse secondary radars performance is also affected by the presence of wind turbines (Theil & van Ewijk, 2007). The azimuth estimate obtained with the monopulse principle can be biased when the interrogated target emits its response when partially obscured by an large obstacle such as a wind turbine.
In the experiments, made with the aid of the Spanish weather C-band radar network, we gathered data in normal and spotlight operation modes. In the first case, the aim is to calculate the Doppler spectrum in two ways: for each range gate, for a specific azimuth angle; and for each azimuth angle, for a specific range gate. This will show the variations of the wind turbine clutter Doppler spectrum as functions of range and azimuth angle. This spectrum is expected to have specific features which would aid the identification and mitigation of these clutter returns. In the second case, spotlight operation mode, the data are collected from a particular cell, known to experiment wind turbine clutter and so defined by specific range and azimuth angle. That is to say, the radar dish is stationary and a large and contiguous set of time series is collected. Thus, the information about temporal evolution of the amplitude of the signal and its Doppler spectrum can be easily extracted. These experiments allow us to do a detailed examination of the spectral characteristics and statistics of the wind turbine clutter signal.
\n\t\t\t\tAll data were taken from a C-band weather radar near Palencia, Spain. Up to three different wind farms can be seen in a narrow sector between 30 and 45 km away from the radar. The main wind farm is composed by 54 wind turbines model G-58 (Gamesa, 2009), which provide an average power of 49300 kW. It was a clear day, so there weren’t interfering weather signals. In the following figure we can distinguish the three wind farms.
\n\t\t\t\tPPI representation of the data under study.
The turbines layout within the wind farm let the radar resolve the different rows. It is usual to maintain a minimum distance between turbines (Jenkins, 1993) because when a wind turbine extracts energy from the wind it creates a wake of slower, more turbulent air which will negatively impact on the performance of adjacent turbines. This spacing is usually set from five to eight times the blade diameter, that is, about 200 m. Therefore, with a radar range resolution of 125 m it is possible to resolve different turbines in range. However, azimuth resolution does vary with the distance and most of the times two or more turbines will occupy the same resolution cell.
\n\t\t\tBy calculating the Doppler spectrum, defined as the power weighted distribution of radial velocities within the resolution volume of the radar (Doviak & Zrnic, 1984), for each azimuth angle, for a particular range gate, the spectral content versus the azimuth angle can be studied. I-Q radar data were gathered with the slowest antenna velocity, the lowest elevation angle (the most affected by the presence of wind farms) and the highest pulse repetition frequency (PRF). See Table 2 for detailed radar parameters. The spectral content of several range bins has been studied using a Short-time Fourier Transform (STFT) of partially overlapped time sectors to build a spectrogram. A Hamming window was used in order to diminish windowing effects.
\n\t\t\t\tAn example has been represented in Fig. 4 (Gallardo-Hernando et al. 2008b). There was an isolated wind mill in the selected range gate, so, the spectrum is located at a very specific azimuth angle. This spectrum is extremely wide, as some of its components seem to be overlapped.
\n\t\t\t\tDoppler spectrum versus azimuth angle.
Frequency | \n\t\t\t\t\t\t\t5500 MHz | \n\t\t\t\t\t\t
Beam width | \n\t\t\t\t\t\t\t0.8o | \n\t\t\t\t\t\t
Power | \n\t\t\t\t\t\t\t250 kW | \n\t\t\t\t\t\t
Antenna gain | \n\t\t\t\t\t\t\t43 dBi | \n\t\t\t\t\t\t
Pulse repetition frequency (PRF) | \n\t\t\t\t\t\t\t1300 Hz | \n\t\t\t\t\t\t
Elevation angle | \n\t\t\t\t\t\t\t0.5o | \n\t\t\t\t\t\t
Antenna velocity | \n\t\t\t\t\t\t\t12o/s | \n\t\t\t\t\t\t
Pulse length | \n\t\t\t\t\t\t\t0.5 s | \n\t\t\t\t\t\t
Scanning radar parameters.
The spectrum of two different turbines in the same range bin is plotted in Fig. 5. The Doppler frequency shift is different for each turbine for two reasons. First, the rotors can have different velocities of rotation. Second, although the turbines were rotating at the same velocity, the yaw angle could be different and so the radial velocity.
\n\t\t\t\tDoppler spectrum of two adjacent wind turbines.
\n\t\t\t\t\tFig. 6 shows a similar variation of the Doppler spectrum, now as a function of range. This spectrum is also extremely wide, and it obviously appears at every range gate with wind turbines located in.
\n\t\t\t\tDoppler spectrum calculated on the 54º azimuth bin.
In this operation mode, defined in (Isom et al., 2008), a large set of time series was collected while the radar dish was stationary and the azimuth angle defined to get data from the wind farm, 54.03º. Radar parameters are similar to those of Table 2, but for the radar antenna, zero velocity.
\n\t\t\t\t\n\t\t\t\t\tFig. 7 shows the variation of the signal amplitude versus time. It shows a clear periodicity that is supposed to be caused by the motion of blades. Later on this periodicity will be studied, see section 3.3. The noise level seems to be 20 dB under the signal and the effect of target scintillation is clearly seen.
\n\t\t\t\tAmplitude variation at 42.5 km bin versus time.
A frequency transform was made to calculate the Doppler spectrum. Fig. 8 shows the Doppler spectrogram in time, and the same periodicities seen in Fig. 7 seem to be here. The echo of the blades is characterized by short flashes, which occur when one blade is orthogonal with respect to the propagation direction of the transmitted signal (Gallardo-Hernando et al., 2008b). Once again, the spectrum is spread all over Doppler frequencies, and so, we cannot assure which components are moving towards or away from the radar.
\n\t\t\t\tThen, there are five very intense Doppler returns in Fig. 8. These flashes are separated approximately 1.33 seconds. By considering a three-blade wind turbine, this period means than one blade takes over 4 seconds to do an entire rotation of 360º, that is to say, the angular velocity of the blades is estimated to be 15 rpm. The reason why negative Doppler shifts (blades going down) are less powerful lies in the elevation angle, the differences of RCS between blade sides, and also in a possible shadowing of the radar beam. The aspect of these flashes is explained by the fact that the sum of the contributions of the different parts of a blade is coherent only when the blade is perpendicular to the line of sight. If there is no perpendicularity, the vector sum is destructive, as a consequence of the variability of the phase. Just in the blade tip the vectors are not enough to cancel the signal and a peak appears. This peak is visible in Fig. 8, and as the blade describes a circumference, a sinusoidal function appears in the spectrogram.
\n\t\t\t\tAlthough the blades tip velocities can be much higher than the maximum non ambiguous velocity of approximately 18m s-1, the yaw angle involves a lower radial velocity.
\n\t\t\t\tDoppler spectrum at 42.5 km bin versus time.
In most cases the blade’s energy returns are distributed over the entire Doppler frequency spectrum, there is a total ambiguity scheme, Fig. 9.
\n\t\t\t\tAmbiguous WTC.
Focusing on the most powerful flashes, the wind turbine whose time behaviour has been represented in Fig. 9 rotates at 20 rpm. But, what is the meaning of the weaker flashes between them? There are several possibilities. First, they can correspond to the same blades on a different position than the perpendicular as they seem to have the same period. Second, there is another wind turbine in the same range bin with apparently the same rotation rate. Third, and more probable, they are the effect of the antenna side lobes. Then, for most wind farms and wind turbines, not even the time between flashes will be completely clean of clutter. More examples of spotlight WTC are plotted in Fig. 10.
\n\t\t\tExamples of WTC.
The aim of the characterization of wind turbine clutter by means of statistical analysis is to model it as a stochastic process. Although this kind of clutter is not strictly stationary, it may exhibit some features that would allow an optimal detection of wind turbines for a latter mitigation.
\n\t\t\t\t\n\t\t\t\t\tDoppler statistics\n\t\t\t\t
\n\t\t\t\tThis section focuses on detailing the dynamic behaviour of the Doppler spectrum as well as the relationship between amplitude and spectral qualities (Gallardo-Hernando et al., 2008b).
\n\t\t\t\tAs it can be seen in Fig. 11, the amplitude variations follow the behaviour of the Doppler centroid, defined as the centre frequency of the Doppler spectrum of the data. Its most significantly variations take place at the same time the amplitude maximums appear. The Doppler Bandwidth is centred on 200 Hz and has very small variations.
\n\t\t\t\tComparison of Doppler Centroid, Doppler Bandwidth and Amplitude of the signal versus time.
Autocorrelation.
\n\t\t\t\t\tAmplitude statistics\n\t\t\t\t
\n\t\t\t\tThe autocorrelation of the signal in time, Fig. 12, confirms the periodicities we mentioned before, as a main lobe appear at 1.15 seconds.
\n\t\t\t\tA modelling of the experimental amplitude probability density function has also been done. This empirical PDF has been fitted to the Log Normal, Weibull, Rayleigh, Gamma and K distribution. We employed the maximum-likelihood method in all the distributions except for K, where we implemented the method of moments. Fig. 13 shows the result of the fitting process of the experimental PDF to the different theoretic functions. The K distribution seems to provide the best fit. In order to determine the best fit, another technique has been used. The experimental and theoretic moments of the distributions have been calculated from the fitting resulting parameters and then compared. The experimental moments are better approximated by the K distribution, Fig. 14.
\n\t\t\t\tComparison of several distribution functions.
Comparison of several distribution moments.
As it has been shown in previous sections, wind turbine clutter is unpredictable. It can fluctuate from one scan to the following. The blades rotate at such a rate to produce Doppler shifts on the order of 70 or even 90 m s-1. These values can exceed the maximum non-ambiguous Doppler velocity of some radars and then, make more difficult WTC detection and mitigation.
\n\t\t\tThis section summarizes some of the mitigation techniques that have been published to date. These state-of-the-art processing techniques have been categorized in function of the affected radar: primary air surveillance radars and meteorological radars.
\n\t\t\tApart from processing techniques, stealth solutions are also being studied to reduce the problem (Matthews et al., 2007). These techniques try to develop radar absorbing materials as well as to design new wind turbines with reduced radar cross section, preserving the efficiency of turbines in terms of electricity production and construction costs. The main inconvenient of these solutions is that the materials employed might be only efficient for very specific radar frequency bands.
\n\t\t\tSeveral techniques can be employed to minimise the effect of signal blocking and ghost target appearance which wind turbines can provoke. Some of them are listed below (Perry & Biss, 2007) and (Sergey et al., 2008):
\n\t\t\t\tMoving Target Detection (MTD) Doppler processing would reduce the magnitude of the blade returns separating the blade spectrum into Doppler increments.
Range Averaging Constant False Alarm Reduction (CFAR) processing. Wind turbines provoke the detection threshold to rise, and then, the shadow effect appears. CFAR would then be applied for each Doppler increment from MTD and then anomalous power bins would be substituted with average noise power.
Increased System Bandwidth would allow detections between wind turbines by using a higher resolution clutter map.
Plot and Track Filters would reduce false alarms on returns with non-aircraft profiles.
Range and Azimuth Gating (RAG) maps would enable unique mitigation algorithms to be implemented only in wind farm areas, maintaining normal performance outside the wind farms.
Sensitivity Time Control (STC) would minimize the radar sensitivity at short range in order to limit the return from the wind turbine while not affecting target detection and so, prevent the receptor to be driven to saturation.
Enhanced target tracking techniques can be used after detection. Feature aided tracker (FAT) identifies features from signals and process them in a probabilistic manner. The tracker would incorporate special processing techniques such us adaptive logic, map aided processing, processing priorization, enhanced tracking filters or classification algorithms.
These techniques can be used all together and, theoretically, they would allow the detection of aircrafts in wind farm areas with similar results in terms of detection and false alarm probabilities than in areas free from wind turbine clutter.
\n\t\t\tWeather radars are one of the most affected radio systems by wind turbine clutter. This radar is a special type of primary radar intended to measure atmospheric volumetric targets: large volumes of clouds and rain. The main distorting effects include reflections from the static parts, reflections from the rotating parts and shadowing or blocking (Greving & Malkomes, 2008b). These effects cause the meteorological algorithms to fail and give false radar estimates of precipitation and wind velocity, as it can be seen in Fig. 15.
\n\t\t\t\tPPI reflectivity image in a clear day. All the returns come from wind farms.
\n\t\t\t\t\tPrevention\n\t\t\t\t
\n\t\t\t\tSome of the mitigation efforts are focused on the prevention of this clutter (Donaldson et al., 2008). The assessment for new wind farms should be planned taking into account nearby weather radars by using line of sight calculations, standard 4/3 radio propagation model and echo statistics. But already built wind farms are still distorting weather radars, and then, specific processing is needed.
\n\t\t\t\t\n\t\t\t\t\tInterpolation\n\t\t\t\t
\n\t\t\t\tWind turbine clutter spectrum usually exceeds most weather radar Doppler capacities. Current clutter filtering techniques are capable of removing the tower component effectively but the effects of the blade motion remains. The objective is to remove the blade components without distorting the desired weather signal. Some studies (Isom et al., 2007) propose interpolation techniques to mitigate WTC. These techniques use uncontaminated data to estimate the weather signal in bins which have been previously detected as contaminated. Results are plotted in Fig. 16. However large wind farms will cause an important loss of valuable weather information in their areas if the separation between turbines is narrower than twice the resolution distance, as none clean bins can be used.
\n\t\t\t\t\n\t\t\t\t\tRain rate dependence\n\t\t\t\t
\n\t\t\t\tInterpolation has also been used in other works (Gallardo-Hernando et al.,2009) to show the dependence of this technique on rain rate variations. The study included simulated weather data as well as real clutter data retrieved from the radars described in section 3. The
\n\t\t\t\tInterpolation in PPI plots (Isom et al., 2007).
mitigation algorithm is based on the interpolation of correct values in the range bins which had been previously detected as contaminated by WTC. This interpolation is made in the direction of the velocity of the wind. The simulated rain Doppler spectrum was directly added to the WTC spectrum. Zero velocity clutter was previously removed. Fig. 17 shows the result of the addition of simulated rain spectrum to the WTC spectrum data in range plots. The estimated values of reflectivity, Fig. 17a, and velocity, Fig. 17b are drawn for all of the circumstances: WTC plus rain, simulated rain and corrected values. The simulated spectrum uses a rain intensity of 1 mm/h, which implies that the rain would be barely visible under the wind farms. The wind velocity does not vary with range. In reflectivity, the error drops from 32 to 4 dB. In velocity, the error drops from 23 to 0.5 m/s.
\n\t\t\t\tTotal, rain and corrected reflectivity and velocity values for R=1mm/h. In reflectivity, the error drops from 32 to 4 dB. In velocity, the error drops from 23 to 0.5 m/s.
Rain Doppler spectra were simulated from 1mm/h to 70 mm/h and used the same mitigation algorithm, with the previous detection of WTC contaminated range bins. The results are summarized in Fig. 18. Fig 18a shows the errors found in the reflectivity estimation, in dB before and after the algorithm. The error decreases almost exponentially as the rain intensity increases and there is a point where the error is almost the same using or not the algorithm. This happens when rain is much more powerful than clutter. Fig 18b shows the errors found in the velocity estimation before and after applying the algorithm. In this case at certain rain intensity WTC stops affecting the estimation of reflectivity, and the error is slightly greater when using the algorithm due to the evident loss of information.
\n\t\t\t\tAbsolute error in reflectivity and velocity estimations.
\n\t\t\t\t\tAdaptive thresholding\n\t\t\t\t
\n\t\t\t\tAs we have seen, these techniques require the previous detection of contaminated cells. However, it has also been shown that an adaptive detection can be applied in spotlight mode (Gallardo-Hernando et al., 2008c). This technique is based on the removal of flashes by means of adaptive thresholding. In Fig 19a a real WTC spotlight spectrum can be observed. Flashes are spread over the entire spectrum. Fig. 19b shows a spectrogram of the addition of real wind turbine spectrum and simulated 5mm/h variable velocity rain spectrum.
\n\t\t\t\tWTC spotlight data spectrum and its addition to simulated weather data.
The election of an appropriate threshold has to be made regarding the significant changes in the amplitude of the signal, Fig. 20a. Finally, Fig. 20b shows the results after the flashes detection, removal and replacement with information of adjacent time bins.
\n\t\t\t\tAdaptive thresholding.
\n\t\t\t\t\tTomographic techniques\n\t\t\t\t
\n\t\t\t\tIn (Gallardo-Hernando et al., 2008a), an image processing technique to remove WTC in spotlight operation mode is presented. If Fig. 19b is considered as an image, it can be handled by means of specific image processing. The Radon transform of an image is calculated by integrating the intensity values among straight lines characterized by an angle and a distance. Therefore the vertical lines in the original image are going to be seen as 0º points in the Radon domain, as they only appear at 0º integrations. In particular, variations of 0.1º were used in a -90º<90º interval. Fig. 21a shows the result of the transformation of Fig. 19b into the Radon domain. The six clutter flashes that appeared before are now six 0º points, whereas the rain is mostly near 90º, as well as the ground clutter. WTC is now very easy to remove without distorting the weather information, in this case, values between -5º<5º were filtered. Fig. 21b shows the results after the removal of the clutter points and the inverse transformation.
\n\t\t\t\tRadon transformation and results after filtering.
\n\t\t\t\t\tAdaptive Arrays\n\t\t\t\t
\n\t\t\t\tAdaptive phased array radars have also been proposed as possible solution to WTC in weather radars (Palmer et al., 2008). These arrays offer the capability to obtain a signal that accurately represents the weather only scattering field. By carefully using the interfence of the radiation pattern, the WTC near the ground is rejected while the scattered energy of the weather above the ground is preserved.
\n\t\t\tIn this chapter the main effects of wind turbines on the performance of radar systems have been explained. The radar signature of wind turbine clutter is unique and then, it requires a special treatment when developing mitigation techniques. WTC clutter remains spatially static, but it fluctuates continuously in time. In surveillance radars the return from wind turbines can be completely different from one scan to the following. In addition, apart from the powerful tower return, the movement of blades produces large Doppler shifts. Some of the latest mitigation techniques have been described; however, a more extensive study has to be accomplished. As future research, novel automatic detection techniques as well as accurate mitigation schemes in scanning radars have been planned to be developed.
\n\t\tLidia’s cattle breeding has been, and continues to be, one of the most genuine animal production sectors, due to the particular ethological characteristics of this breed and the peculiarities of the production system and the product obtained, in this case suitable animals for the show [1].
\nSpain is the first Lidia cattle breeding country and has the most varied and important genetic heritage of this breed [2] that is also present in Portugal, southern France, and much of South America such as Mexico, Colombia, Venezuela, Peru, and Ecuador [3].
\nLidia cattle sector represents in Spain a socioeconomic activity of considerable importance, with a total turnover of approximately 1.5 billion euros per year, which does not only affect entrepreneurs, ranchers, and bullfighters, but also more than 200,000 jobs that depend directly or indirectly on the bullfighting activities [4], which constitute the second mass spectacle of Spain and Portugal [5]. Lidia cattle, the second pure breed in the bovine census in Spain [6], are considered the greatest exponent of an extensive breeding system, due to their ethological characteristics, the need for wide spaces, and the difficulty in handling that it presents [7]. In turn, it is a breed of great rusticity, able to adapt and take advantage of all types of terrain, including those of extreme weather conditions [8]. Many farms are located in territories of high landscape value such as natural parks, playing an important role in maintaining biodiversity and contributing to the conservation of the ecosystem [9].
\nThe characteristics of a Lidia standard farm are an average size of 253 mother cows and a total number of heads of 748 animals, including animals of other breeds or those belonging to other species, necessaries for livestock’s handling, with an annual replacement rate of 12% [10]. However, after the economic crisis of 2008, most livestock farms have decreased the number of heads. Nevertheless, the livestock internal distribution remains stable. For a Lidia cattle farm of 100 mother cows, the ideal average internal scheme, considering the different types of animals classified by sex and age, could be the one presented in Table 1 [11].
\nSires | \n3 | \n
Cows | \n100 | \n
Calf male <1 year | \n40 | \n
Males 1–2 years | \n38 | \n
Males 2–3 years | \n36 | \n
Males 3–4 years | \n35 | \n
Bulls 4–6 years | \n34 | \n
Calf female <1 year | \n40 | \n
Heifers 1–2 years | \n36 | \n
Heifers 2–3 years | \n20 | \n
Halters | \n12 | \n
Internal distribution of a standard Lidia farm considering the different types of animals classified by sex and age [11].
The standard farm has a number of hectares ranging from 586 to 721, of which 92% of the land is used as pastures [12].
\nToday, the farming system of the Lidia breed continues to be, mainly, an extensive management system that has gradually adapted to new grazing techniques and food supplementation in times of natural grass decline, such as winter and summer, in dry climates [13]. The extension of the farms is still remarkable, but of much less spacious than that of several decades ago and in terms of quality, the brave cattle have been relegated to less productive and more stepped mountain farms in favor of agriculture or other more profitable species, such as the Iberian pig in Spain and Portugal [7]. In Mexico, most farms are located in the central part of the country, with a dry climate similar to Spain, carrying out similar feeding management. On the other hand, Lidia cattle in Colombia, Venezuela, Ecuador, and Peru are in territories with a tropical climate, whose diet is based on natural grass with a concentrated supplementation during the last stage of preparing the males for the show [14].
\nLidia bull growth estimation [9].
The Lidia cow is a very rustic animal, of few requirements, since its small size also dictated its nutritional needs. Even so, adequate feeding is essential to obtain a good fertility rate, avoiding abortions and perinatal mortality, and, after a good lactation, wean the calf in an optimal state [7, 15]. Currently, the use of natural resources is maximized, preferably by grazing and the supplementation of hay or silage, and if necessary, concentrated food is used at a rate of 2–4 kg/day, depending on the richness of the grass and forage [16, 17].
\nDuring the first 3–4 months, calves are fed exclusively with cow’s milk and develop optimal growth, as long as it comes from a well-fed cow that produces milk of adequate quality and quantity.
\nAfter weaning, and when the animals are between 9 and 10 months old, they are usually supplemented in times of shortage of grass with rations whose fundamental components are fibrous products (beet and citrus pulps, dehydrated or henified alfalfa, and cereal straw), industrial by-products (gluten-feed, wheat bran, soy cake, and beet molasses), and common products in the composition of concentrates of other types of farm animals (corn, barley, wheat, and sunflower meal).
\nGalvanized iron feeders are frequently used, 5 m long by 40 cm wide approximately, which allow to guarantee half a meter of free space per animal, avoiding hierarchy problems, present in any group of this breed, which could result in some type of undernourishment particularly important in this stage of development. Likewise, several water points distributed along the fenced space must be installed, arranged around the feeder area, to favor the movement of animals across different areas and to avoid their concentration in one point.
\nWhen the animals are around 23 months of age, they are slowly provided, during 4 weeks of adaptation, an increasing proportion of the ration designed for adult animals of 3 and 4 years, in order to adapt them to the finishing feeding diet composition.
\nLivestock facilities used for these animals have similar characteristics to the ones described for young animals, although in case of using individual feeders, the number of feeders is usually 10% greater than the number of animals to be fed [18]. Also, the different water points are often installed at a greater separation distance from the feeders (at least 500 m), to facilitate a better distribution throughout the land surface. As in previous phases, a supplementation is necessary, which as an example could be based on the addition of 0.5 kg of alfalfa hay to the total supplementation established in the previous phase, thus leaving 2.5 kg of alfalfa hay added to 0.5 kg of concentrate per animal per day [15].
\nThe feeding systems described during the 1980s based on a final bait are still in force today. Although each farmer has its own feeding methodology, depending on the availability of grass and other types of food on the farm, the possibility of growing the forage or concentrate on the farm itself or the use of agricultural by-products such as citrus pulp or some derived from the olive oil industry.
\nThis final bait is carried out in fenced areas of small size, frequently without grass, with a daily supply of rations of high energy concentration and high digestibility [19]. This last feeding stage is called “pre-lidia bait” or “finishing,” and it can vary between 5 and 12 months and usually begins during the winter [20], adapting the amount of ration supplied to the bulls at the date on which they have to fight.
\nThe average fenced area used for these bulls is usually around 60 hectares per farm, and the average number of animals per enclosure is 20 (which is equivalent to a density of 3 hectares per bull), although each farm distributes its animals in a way different. The average daily gain (GMD) is approximately 450 g/day (Figure 1), which means that in this period, the bulls gain about 150 kg of weight, 30% of their final body weight, considering a standard bull of 500 kg of weight at 4 years of age [7].
\nThe use of long feeders is common, especially in southern Spain, compared to the classic individual and small feeder used in farms located on the center of Spain (Figure 2). The distribution of food is done during the morning and the afternoon in most of the farms [21].
\nLong feeder and single feeders.
There is a critical point in the strategy of feeding management, due to the overfeeding carried out during the last year, prior to the fight, which causes an overload of weight in the bone structure, added to the state of obesity that causes a lack of strength and mobility of the animal that limits its behavior in the arena and, therefore, the show itself.
\nThe problem lies in the overfeeding to which it is subjected in the final phase of its growth during variable periods of time (from 8 to 12 months) that generates a series of pathologies and inconveniences that negatively influence its productive aptitude: the behavior in the ring.
\nSeveral studies have been carried out on the effect of intensive bait on rumen physiology of Lidia cattle [16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], and all of them point to ruminal acidosis, a primary pathology that predisposes the appearance of secondary lesions such as liver abscesses, gastrointestinal ulcers, ruminal parakeratosis, laminitis, anthill, and so on. Later we will address this pathology more widely.
\nLidia females reach puberty at approximately 12 months of age but must reach the two-third of adult body weight before becoming pregnant [7] at approximately 2 years of age, and the productive lifespan time lasts for 8–10 years with a calving-gestation interval of 2–4 months [32].
\nLidia bulls begin to show sexual activity from 6 months of age reaching puberty at 10–12 months, having been necessary to separate them from females before 1-year olds [7]. At 2 or 3 years, the selected sires are tested with a small group of females, but they are not profusely used until their female offspring are tested, and the quality of their genetic is proved, once this happens, they could be 15 years contributing its genetic flow in natural mating to the cattle ranch [32].
\nAt present, in the majority of Lidia farms, the reproductive handling is very traditional with natural mating of one sire and 30–40 cows during several months. The outstanding difference with the past management is that now the fertility is greater due to a better cow’s body condition that allows them to perform a successful gestation and lactation every year [33] (Figures 3 and 4).
\nLive weight variation of a Lidia cow [23].
Calving and natural mating management based on grazing availability in seasonal countries.
In Europe, the duration of the mating period in Lidia cattle is similar to that of other extensive bovine breeds, being able to reach up to 8 months (autumn–spring) in livestock farms with longer periods, but its duration is often shorter, from the end of winter to the beginning of summer (March–July), since at this time, the best results are obtained in heat of the cows and fertility, due to both photoperiod and feeding reasons. In countries as Colombia without reproductive stations, the cycle is continuous.
\nThere are relevant anatomical differences in the reproductive system of the female of the Lidia cattle: the cervix is longer in length than other bovine breeds; they present a uterine body very short, and it seems as nonexistent during transrectal palpation [34]. It is similar to the bipartite uterus in rodents, and the ovary has a very small size compared to other breeds of similar size presenting at the oviduct level the largest infundibulum that surrounds much of the ovary [35].
\nAt the same time, there are hormonal differences because the Lidia cow reaches puberty earlier and has a shorter gestation period than other breeds: 286 days [36]. The natural mating should last long enough to guarantee a good fertility rate, with a minimum recommended period of 3–4 months (each cow has at least three opportunities to get pregnant), but there are farmers who extend it more, and there are even systems with continuous natural mating, more common in tropical countries like Colombia. Short mating periods have the advantage of being able to concentrate the calving with better control of herd management and feeding. It is done more in larger herds, in large areas, where lactation is adapted to times of pasture abundance.
\nThe utilization of techniques for semen collection and conservation for artificial insemination (AI) began to be used three decades ago in Lidia bulls. Later, embryo-transfer from high genetic merit Lidia cows to dairy cattle and cloning of one sire to preserve the excellent genetic quality was achieved. These reproductive methods, used to improve the productive characteristic of dairy and beef cattle, could be useful future tools to increase the genetic progress in Lidia cattle behavior selection [37].
\nThere are immense advantages in using cryopreservation, due to semen dilution and conservation during medium and large periods, increasing the possibilities to use it for decades through AI when the behavioral results of their offspring are well known. There is also the possibility to extract post-mortem semen from the epididymis after the fight in the bulls of extraordinary behavior [38]. In this way, each farmer begins to have his own semen bank of his own sires and bulls. In turn, this would allow the exchange of semen between breeders, to refresh the blood of their livestock, being easy to transport to farms located in the countries of America. Among the advantages of this technique are avoid risks of contagions of potential pathologies, allowing the reproduction of animals of different sizes because natural mating is not necessary, and also is not necessary to move the male, allows the collection of semen in extreme situations, and, above all, enables the possibility to use some improving individuals of a contrasted character in a large number of females [39].
\nThe biggest problems are due to the handling difficulties of these animals due to the untidy nature of this breed. Insemination implies added high-risk management both for animals and for people that seriously conditions, from a technical and economic point of view, its generalization in the Lidia cattle [37]. The introduction of other reproductive techniques such as early pregnancy diagnosis allows to discover and treat uterine pathologies, helping to detect nonpregnant cows that could be resynchronized or intended for natural mating and reducing calving pregnancy intervals. Reproduction control does not necessarily imply the hormonal treatment of all animals nor their subsequent insemination because it is possible to use mixed models in which the natural mating and AI are used in a complementary way [40].
\nOnce the AI technique will be established, the next step will be to adapt an embryo transfer program to this type of cattle. Currently, it is used to preserve the valuable genetic material of small farms and to increase the reproductive efficiency of some females. In recent years, this technique has contributed to the formation of germplasm banks as genetic reserve in cases of farms with severe health problems or encastes\n1 in danger of extinction [35].
\nAt the same time, the use sexed semen to obtain a greater number of males than females could create an opportunity, considering the superior economic value of those. However, its use could jeopardize the process of selection and breeding of the farms due to the fact that reducing the numbers of females could be a risk if the proper and strict selection pressure is not applied.
\nRegarding cloning, there are many questions about its efficacy in general and in Lidia cattle in particular. It is not known, for example, if a cloned animal can develop and interact normally with its peers in a highly hierarchical and of great rivalry environment. A cloned individual may have a poor development of the immune or cardiovascular system, and it is not known whether the libido and fertility of a future cloned breeder will be normal. At the moment, it is known that it ages quicker and has a shorter productive lifespan [41]. A cloned bull must also be tested, and in the event that his quality would be acceptable, it will be also necessary to test its offspring to see if it is able to convey his characters.
\nThe cloning of a sire, with the aim of collect semen, may be important in the case of some farms with few breeding males or if it is an individual of outstanding genetic merit and advanced age [42]. In any case, a clone might not have the same ethological characteristics as the animal from which it proceeds, since the behavior is the consequence of its genetic background, the environment in which it develops [33] its ontogenesis or sequential development.
\nTraditionally, three types of selection are made: genealogical, morphological, and functional [32]. In relation to the first, the farmer systematically records information, in his own books, the lines, or families that form the basis of the genetic heritage of his livestock, as well as the results of the offspring of each generation.
\nThis information is used to choose future breeding animals. In addition, each farm defines its morphological preferences, depending on the type it belongs to or the priorities of the owner. The selection criteria are usually higher for males than those used for females. They focus, fundamentally, on aspects related to external appearance, neck musculature conformation, bone structure and development, and so on [43]. And finally, the functional selection consists in measuring the brave character of each animal, although each farmer understands the meaning of this term in a very subjective way. A series of tests are carried out on both females and males to assess their bravery [32].
\nIn the case of females, animals of 1, 2, or 3 years are evaluated. The test is practiced in the tienta,2 under the direction of the farmer and with the participation of professional bullfighters, trying to discover the functional performance of each animal. The behavior of each individual in each phase of the test is assessed using the horse and with the muleta. There are different parameters (prompt response, attack, fixity, mobility, nobility, fierceness, aggressiveness, repetition, and so on) that are evaluated by the farmer, to achieve a final note for each animal and, subsequently, keep the best females as breeders [44].
\nIn the test of males, animals of 2–4 years of age are chosen, initially selecting the specimens that have obtained the best results in the genealogical and morphological tests. They are tested in a small bullring, and if the animal does not respond properly, the test is interrupted, and the bull is withdrawn and will be destined for normal fighting. Those animals initially selected, after testing the behavior of their offspring, will become part of the livestock as a sire or will be discarded, losing their value for a standard fight since they have developed sense during the test fight [32].
\nThere is another circumstantial and sporadic form of sire selection, performed by fans and not by the farmer, which is the case of indulto.3 It occurs in the context of a bullfight where many influential factors could alter the true criteria by which a bull must be selected. Therefore, it is the breeder who will decide, later, if the animal should be used for reproductive purpose or not.
\nCurrently, another type of selection, genetics, has been introduced by livestock associations, which has become increasingly important [9]. It consists of identifying the individuals carrying the most beneficial genes for the interest characters and using them as breeding animals to transmit them to their descendants. The way to evaluate whether or not the phenotype of an animal is a good reflection of the genes of which it is a carrier (genetic value or merit) is based on calculating the heritability of that character [45].
\nThe capacity to transfer behavioral characters is very slow because it is limited by the production of a calf per year, at the most, as well as the complexity to accurately and quickly assess the ethological response of its products in the show [46].
\nAccording to Cañón et al. [2], many of the behavioral characters manifested by the Lidia bull, such as mobility, repetition, nobility, rhythm, and fierceness, despite its complexity and subjective assessments, if scored with enough rigor, can manifest high heritability (>0.35) that makes them susceptible to be selected in one way or another, at the choice of the farm’s owner.
\nA very precise selection of the best individuals entails the maintenance of a population with high consanguinity; therefore, controlling it is an always necessary activity in a Lidia cattle ranch, preserving the necessary genetic variability within it. In general, in Lidia farms, the level of consanguinity does not seem to be very high: 0.12 and 0.13 [47]. Even so, it is possible to find bulls with a consanguinity coefficient of 0.25 [48]. However, regulated mating strategies should be followed, to avoid mating animals with common ancestors, establishing a short- or medium-term conservation program. However, we must be aware of the difficulties involved in the conservation of some minority genetic lines, cattle ranches, or “encastes” [48], because the smaller a population is and the greater the imbalance between the sexes the more difficult it is to preserve their genetic characteristics, complicating the task of avoiding mating between related animals.
\nFinally, the incorporation of the computer methods to control the productive data of the animals allows organization and best valuation of each reproductive potential. With the information reduced to informative schemes, the results can be checked immediately, which make it possible to know, through the corresponding analysis of the offspring, the racing power of the father or mother [45, 49, 50, 51].
\nThe most frequent diseases of Lidia cattle, which also affect extensive cattle, are parasitic processes (coccidiosis, ostertagiosis, dictyocaulosis, and sarcosporidiosis), infectious processes (clostridiosis, anthrax, paratuberculosis, tuberculosis, actinomycosis, actinobacillosis, and pyobacillosis), poisonings (aflatoxicosis, ochratoxicosis, aluminum phosphide, and lead poisoning), and deficiency processes as poliencefalomalacia [52].
\nIn addition, the extensive nature of this animal production system predisposes him to suffer from eye problems such as infectious keratoconjunctivitis and horn wounds due to fights between animals [53]. The latter represents a very important chapter in the economies of Lidia farming assuming losses of traumatic etiology ranging from 3 to 15% of male adult individual. Most of them require surgical treatment; some of the interventions are simple, and others are more complicated, but all have in common the septic character of the traumatic focus [54].
\nThe gorings have an etiology closely related to the age of the bulls, strength, and encaste, with an increase in frequency of incidence in 4-year-old bulls with a weight of 500 kg, and the wounds occur with a greater probability in the head and extremity regions. They are caused by external violence in which the surface of the traumatic agent is wide. We can find open or closed wounds. The closed wounds, even when not seen to affect external skin tissues, can cause internal muscular or vascular lesions. Hematomas or serous effusions (blood and lymphatic exudates) of difficult reabsorption due to their large size appear, and they require intervention. They evolve to contamination and abscess formation [55].
\nThe treatment of all types of wounds should be focused on controlling, primarily, the bleeding, either by suturing damaged vessels or by hemostatic parenteral treatments, then preventing or controlling the infection, disinfecting and cleaning the affected area, and finally achieving the rapid healing, usually by second attempt, and is always suggested to leave a drain at the trauma point even if it is small [56].
\nAnother pathology that has been observed with a high incidence in the Lidia breed is osteochondrosis [57]. It is a degenerative process of the joint surfaces, widely described in horses and in bait cattle of other breeds, with few studies in fighting bulls to know if it could influence the mobility of the animal during the show [27].
\nRA is a metabolic disease that settles in the rumen and is produced by the ruminal fermentation of large amounts of nonfibrous carbohydrates, such as starch and sugars, which lead to the production of high amounts of volatile fatty acids (VFAs) and lactate, which accumulate in the rumen and cause an abnormal reduction in rumen pH [58]. Ruminal epithelial cells, not protected by mucus, are vulnerable to chemical acid damage [59], and this decrease in ruminal pH together with high concentrations of VFAs causes ruminitis, erosions, and ulcerations of the ruminal epithelium. In turn, abnormal thickening of the stratum corneum of the mucosa occurs due to accumulation of corneal cells with perturbations in their keratinization resulting in hyper and parakeratosis, observing partially pigmented ruminal mucous membranes [60, 61].
\nAmong the works carried out on the feeding management of the Lidia bull, the one carried out by Bartolomé [26] stands out because he observes 66.2% of the animals studied with ruminal pH values compatible with RA, of which 41.5% chronically (pH = 6.2–5.6) according to the classification of González et al. [62]. In addition, 70.7% of animals presented parakeratosis in the mucosa, and in 26.9% of bulls sampled, liver lesions were detected. In the same line, Lomillos et al. [27] reported a 43% reduction in the length of the ruminal papilla of bulls subjected to the finishing bait, added to an increase in the thickness of their mucosa, which approximately doubled the value obtained in the group of animals considered control, and maintained in pure extensive regime (Figures 5 and 6).
\nNormal papilla of extensive animal.
Thickened and shortened papilla of finished bulls [27].
In this context, the decrease in rumen pH predisposes the epithelium to become fragile and loses its ability to act as a barrier between the ruminal environment and the blood, which predisposes the appearance of continuity solutions, which allow the passage of microorganisms toward the bloodstream and the consequent risk of suffering sepsis for the animal [60]. Among others, Fusobacterium necrophorum and Corynebacterium pyogenes, are bacteria often carried to the liver through the portal vein, and there they begin infection and abscess formation, which compromise their metabolic capacity [5]. From the liver, they can go to the peritoneum, generating peritonitis, and sometimes they can go to the lung, heart valves, kidneys, joints, and so on [63]. In this sense, García et al. [12] recorded abscesses at the liver level in 4% of the studied bulls and hepatic-diaphragmatic adhesions in 21% of cases that extended to the pulmonary pleura, confirming, after culture, Fusobacterium necrophorum as the main causative agent of lesions.
\nAt the same time, the intense finishing feeding management based on the use of high amounts of carbohydrates is a predisposing cause of hoof lesions such as the lameness by diffuse aseptic pododermatitis observed in the animals as an excessive growth of the hoof [60] widely described in Lidia cattle [25, 29] and detected with a prevalence of 28% in the fought animals [12].
\nAccording to Nocek [64], the relationship between RA and laminitis seems to be associated with hemodynamic alterations of peripheral microcirculation. During acidosis, as a consequence of the decrease in ruminal pH, a process of bacteriolysis takes place in the rumen, releasing vasoactive substances (histamine and endotoxins), which are absorbed through the damaged rumen wall and cause vasoconstriction and dilation, which destroy microcirculation at the level of synovial joints and chorionic tissue of the hoof [65, 66]. The combination of high concentrations of histamine in areas of terminal circulation [67], the increase in digital blood flow and high blood osmolarity induce an increase in blood pressure inside the animal’s hoof, producing a serum exudate, which results in edema, internal hemorrhages from thrombosis, and finally, the expansion of the chorion, causes intense pain [60, 64]. The disease presents with signs of lameness, excessive growth of the hooves, and the appearance of dark lines or bands on the surface of the hooves, a consequence of the ischemia generated by vascular damage and edema [68]. At present, lameness is treated with anti-inflammatories, and the hoof overgrowth is usually remedied in livestock by a functional cut of the hoof, using the cattle crush facilities to immobilize the animal.
\nIt seems clear that the RA generated after the intensive bait and the pathological processes to which it predisposes or directly causes, affects the performance of the bull in the arena in the form of physical decline of the animal that hinders its ethological and physical performance [12, 20, 26, 69]. Therefore, it is of great importance to explore possible solutions or prevention strategies by designing a new food management.
\nTo control the process, in principle, it would be enough to reduce the amount of nonfibrous carbohydrates provided with the diet, but this measure would lead to a decrease in the rations’ energy level, with the consequent delay in the fattening of the bull and the consequent economic losses.
\nIn the case of the final bull bait, improved rationing and feeding management could have a considerable impact on rumen pH stability. Adapting the ruminal environment by slowly and gradually changing from one forage feed ration to another concentrate would stimulate the development of the rumen papillae and the growth of the lactic acid transforming flora [5], in such a way so that a greater amount is metabolized and the mucosa of the rumen can absorb a greater amount of generated VFAs. This adaptation of the mucosa to concentrated rations takes approximately 4–6 weeks [64] and changes in microflora about 3 weeks [70].
\nThe adoption of the mixed total ration type feeding system, better known as “unifeed” carriage (Figure 7), widely used in dairy cattle, ensures a balanced consumption of concentrate and forage, which is a very important advantage. In this way, it is possible to increase the energy density of the rations by reducing the risk of digestive problems [71]. In fact, in recent years, this type of food management has begun to be incorporated into the Lidia farms, mainly in farms located in the south of the peninsula, later extending through Madrid and Salamanca [72].
\nSmall format “unifeed” mixer truck, adapted to Lidia cattle (BIGA).
In this sense, the contribution of compensated and high fiber rations through the use of “unifeed” mixer cart during the bull bait does not generate a pH decrease below the physiological limits, as shown in Graph 1 that describes the pH ruminal of bulls fed following this pattern of food management for a month [31]. However, it is not clear that this handling is the solution to the RA of the bull since the use of these mixing machines during the entire bait period, which usually lasts between 3 and 9 months, can generate lesions in the morphology of the papilla ruminal (decrease in length and thickening of the mucosa) similar to those found in animals fed through traditional feeding management. In addition, the feeding time generates a negative effect on the severity of the lesions, with the animals fed for more than 6 months being the ones with the greatest lesions at the level of the rumen mucosa [27].
\nAnother strategy to prevent RA is the use of additives both chemical and microbial. Among the first are buffer substances such as bicarbonate, alkalizing agents such as magnesium oxide, or adjuvants such as bentonite, which can help fight RA because it absorbs part of the volatile fatty acids at the ruminal level [5, 65, 73, 74]. The most commonly used microbial additives to combat RA are yeast extracts and live yeasts. These microorganisms help maintain ruminal pH by stimulating the growth of cellulolytic bacteria and lactic acid users, preventing their accumulation in the rumen [75].
\nMuscle weakness syndrome, which involves motor incoordination and transient loss of standing and balance, all encompassed under the common term of “falling syndrome,” has been worrying different authors for almost a century [76]. The frequency with which this problem occurs in the arena had not become worrisome until the beginning of the last century, from the being of 1930 when the manifestation of the problem became general and the falls were more frequent and alarming [77], reaching incidence percentages in the most critical decades close to 99% [78] or 98% [26] of the sampled animals. It affects both males and females and specimens of all ages: bulls, calves, and cows [79, 80]. It is observed in individuals of different livestock farms, regardless of their weight, the category of the arena where they fought, the distance from its farm of origin [77], and, additionally, within the same livestock, the incidence of this problem can be very diverse.
\nDespite recent research work done in this regard, the falling syndrome of the brave bull is an issue in which consensus is not yet perceived. The theories that have come to light in order to explain the etiology of the syndrome have been very numerous and varied, without any of them providing definitive conclusions to date. The simplest attributes the problem to physical reasons such as transport trauma and intentional fraud, while others, more complex, consider that the origin of the syndrome is genetic, due to the inheritance of a gene that determines the fall [81]. However, given the appearance of the problem in cattle ranches whose original genetic distance is very wide, it is logical to assume that the appearance of this syndrome must be influenced by the action of the environment, within which food management, in addition to other factors, such as the health status of the livestock itself would play a very important role.
\nNowadays, in view of the different studies carried out, it is possible to think that the falling syndrome is a multicausal problem, where we can observe some predisposing causes, such as the genetic endowment, the characteristics of the transport, the physical demands of the fight, the effect of the puya and the banderillas, the lack of functional gymnastics, nutritional deficiencies, and other more determinants, such as the possible pathological, circulatory, nervous, metabolic, endocrine, genetic, or ethological causes [76].
\nOn the other hand, the bull is by nature a sedentary animal. In the last year of life, he is transferred to small enclosures where his chances of exercising naturally are limited and the energetic components in his diet are increased. Although cattle are not considered an athletic species, the bull is subjected to tremendous exercise in the arena, lasting approximately 20 min, maintaining a physical and metabolic effort of great intensity to which it is not accustomed [82]. These circumstances mean a lack of physical condition for the show.
\nThis muscle weakness, manifested in the falling syndrome, is projected in various acute muscle injuries associated with intense physical exercise and in chronic muscle injuries that may result from nutrient deficiencies of selenium and vitamin E [83]. On the other hand, Aceña et al. [84] demostrated the existence of a reduction in glycogen stored and very high concentrations of lactic acid in the muscles at the end of the fight, results that indicate the existence of muscle fatigue due to physical exercise in an anaerobic situationss. Similarly, a high correlation has been observed between the main parameters indicative of metabolic acidosis (HCO3−, lactate, and low blood pH) and respiratory acidosis (PCO2) with the falling syndrome [69].
\nTherefore, it is essential to subject the animals to a physical preparation and adaptation to the fight. In fact, in recent years, the number of farmers who seek to achieve adequate physical condition in their animals has increased, through an empirical training program along a running track or by moving them in the same enclosure where they normally live.
\nThere are few studies on the effect of training on the physiology of the bull [85, 86, 87]; however, we can state that training potentially increases athletic performance, as can be deduced from muscular and blood metabolic adaptations [88, 89]. It has been observed that training favors the β-oxidative metabolic pathway of fatty acids (oxidative metabolism) prevailing over the glycolytic pathway, requiring a protocol of at least 6 months to increase its antioxidant capacity [89, 90].
\nIn addition, this training would increase the muscle mass of the animal favoring physical performance [91]. To train, and for the result to be effective, great care of the diet should be taken into account since, in the finishing phase of the bulls, it is intended that the animal’s body weight increases and that the training will serve to increase muscles and adapt the cardiovascular system to an aerobic exercise. With this training management, it is being pursued that the bull endures the fight better, increasing its mobility while achieving greater lung capacity and, therefore, a greater chance of recovery, after efforts made in the first moments of fight.
\nWith training, physical capacity is enhanced, stimulating the body’s level of work above normal. These animals have a great capacity for adaptation and although at the beginning of the training they show signs of fatigue and body loss, this is followed by a phase of recovery/adaptation and maintenance of body weight.
\nA basic training program would consist of three sessions per week, within a total period of 5–6 months, depending on the date scheduled for the fight. A group of animals, with a variable number of bulls, around 12, are forced to move for approximately 3 km, accompanied by horsemen.
\nIt usually begins with a weekly session, increasing the pace until reaching 3 sessions/week in the second month. The intensity is progressive, each session begins with the first minute to the step, to warm the animals, increasing the pace until they are trotted or lightly galloped, to return to the initial point in a progressive cooling. The orography of the land is usually flat, but there are farmers who prefer to exercise the cattle on sloping terrain to increase the intensity of the session. This training is interrupted approximately 15 days before the fight [92].
\nEach breeder has been carrying out a particular training protocol, adapted to their availability of time and cowboys, the number of animals they intend to prepare, and the date of their fight. Generally, a more intense preparation is usually carried out with bulls whose destiny is first or second category arena. In turn, the orographic characteristics of the farm, its distribution of fenced areas, and its extension will have an important influence on the programmed exercise.
\nConsidering the high economic value of the Lidia breed animals, the number of farmers who establish a health management program in their livestock as a control system against infectious or parasitic diseases, and to increase fertility and pregnancy rates as well as to decrease mortality rates in new-born calves, is rising in recent years.
\nProblems related to infectious and contagious diseases represent the main source of economic losses. The pathogens that have tropism for the reproductive, respiratory, or digestive system stand out. Therefore, reproductive and respiratory alterations and neonatal diarrhea are the main problems we find in these cattle [93].
\nCurrently, there are several emerging diseases that could affect these animals during the last decade such as blue tongue, foot and mouth disease, or bovine spongiform encephalopathy, which have joined those that already have an eradication program in our country (brucellosis and tuberculosis), which require periodic official livestock checking on farms (Order DES/6/2011). On many occasions, the health problem itself is linked to a cumbersome legislation that hinders the transit of animals through the various communities of the national territory and between intracommunity countries such as Spain, France, and Portugal (Royal Decree 186/2011).
\nThe official campaigns of eradication of brucellosis and tuberculosis are based on hard controls of the herds and on the application of a legal regulation on these aspects that makes, in certain cases, the movement of animals from the infected cattle ranches, including sales for bullfighting, impossible [94]. It is essential to consider the peculiar factors of this cattle production system. One of them is the level of consanguinity within some farms with a very small number of individuals, which works against disease resistance. It is also necessary to consider the complexity of handling these animals, which coexist in extensive systems with species of different sanitary categories (hunting and/or wild) that could be reservoir for numerous diseases.
\nIn addition, cross-reactions with paratuberculosis (a widespread disease in the Spanish countryside) compromise the reliability of diagnostic analytical tests, posing serious problems when addressing eradication plans [95]. The fight against diseases, both endemic (tuberculosis and brucellosis) and emerging (bluetongue), to achieve eradication and control, will be one of the workhorses for the Lidia sector. This should not entail, in any case, any risk to the maintenance of the diversity of encastes and genetic lines that characterize this breed. Important and unique farms for their genealogy are being decimated by this cause, to the point of endangering the survival of certain encastes.
\nOne of the most valued and delicate body parts of the bull is its horns. They suffer a risk of deterioration, mainly in the last year of life, as a result of potential fights, friction, contacts, or blows with the ground, with trees, fencing, feeders, or the walls of the handling facilities [96]. Therefore, to protect the horns during the last year of animal live, a fiberglass bandage is placed on the horns, easy to handle, porous and that hardens quickly by polymerization with water, providing good consistency (Figure 8). The technique consists of immobilizing the animal in the restraining facilities and wrapping the horn with this bandage to protect it from any aggression or friction. The distal part of the horn is reinforced in many cases with metal tubes or similar hard materials, in order to reduce the wear of the apical zone [97, 98].
\nLidia bull with protected horns.
The horn is increased in thickness by the sheath, and the end of the horn is blunt, which decreases the effect of the lesions of horns between animals by 90% and, in addition, improves their handling for vaccinations, deworming, and other treatments, due to the risks of deterioration of the defenses when the animals pass through the handling facilities minimized [99]. In spite of the obvious advantages of the sheathing mentioned above, and the answer to many questions about the influence of this management practice on the structure and corneal anatomy and the ethological performance of the animal in the arena provided by Alonso et al. [100], there is still some controversy about its usefulness.
\nLidia cattle production presents unique characteristic that requires farmer and veterinary knowledge about the particularities of these animals and its management. The Lidia production sector, from its origins, has been adapting to the new times making use of the most current technological advances. In this way, the feeding system, selection criteria, and reproductive techniques have been modified, driving the need for a modernization of the medical and management practices. However, there are difficulties associated with the breeding, either because of the temperament of animals that increase the difficulty in handling, as well as to the predisposition to present diseases that greatly affect the animal, such as the ruminal acidosis, the falling syndrome, and some health problems that it shares with other extensive bovine cattle.
\nWe would like to thank Mr. Logan Scott for his revision and edit of the English translation.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"f28a2213571fb878839bcbacb9827a1d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10950",title:"Landslides",subtitle:null,isOpenForSubmission:!0,hash:"8fcc0f63c22c087239f07a8e06ec2549",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10950.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"958",title:"Solid-State Chemistry",slug:"semiconductor-solid-state-chemistry",parent:{title:"Semiconductor",slug:"semiconductor"},numberOfBooks:2,numberOfAuthorsAndEditors:59,numberOfWosCitations:22,numberOfCrossrefCitations:14,numberOfDimensionsCitations:24,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"semiconductor-solid-state-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7671",title:"Concepts of Semiconductor Photocatalysis",subtitle:null,isOpenForSubmission:!1,hash:"549e8caa1b260cea0dd3fe688cd126f5",slug:"concepts-of-semiconductor-photocatalysis",bookSignature:"Mohammed Rahman, Anish Khan, Abdullah Asiri and Inamuddin Inamuddin",coverURL:"https://cdn.intechopen.com/books/images_new/7671.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1342",title:"Superconductors",subtitle:"Properties, Technology, and Applications",isOpenForSubmission:!1,hash:"ff7437dc228e08de3e841f2d0418d5f9",slug:"superconductors-properties-technology-and-applications",bookSignature:"Yury Grigorashvili",coverURL:"https://cdn.intechopen.com/books/images_new/1342.jpg",editedByType:"Edited by",editors:[{id:"115989",title:"Dr.",name:"Yury",middleName:null,surname:"Grigorashvili",slug:"yury-grigorashvili",fullName:"Yury Grigorashvili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"35789",doi:"10.5772/38652",title:"MgB2 SQUID for Magnetocardiography",slug:"mgb2-squid-for-magnetocardiography",totalDownloads:1572,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"Yoshitomo Harada, Koichiro Kobayashi and Masahito Yoshizawa",authors:[{id:"118528",title:"Prof.",name:"Masahito",middleName:null,surname:"Yoshizawa",slug:"masahito-yoshizawa",fullName:"Masahito Yoshizawa"},{id:"118529",title:"Dr.",name:"Yoshitomo",middleName:null,surname:"Harada",slug:"yoshitomo-harada",fullName:"Yoshitomo Harada"},{id:"118530",title:"Prof.",name:"Koichiro",middleName:null,surname:"Kobayashi",slug:"koichiro-kobayashi",fullName:"Koichiro Kobayashi"}]},{id:"35777",doi:"10.5772/38278",title:"Superconductivity in Nanoscale Systems",slug:"superconductivity-in-nanoscale-systems",totalDownloads:2137,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"Meenakshi Singh, Yi Sun and Jian Wang",authors:[{id:"116389",title:"Prof.",name:"Jian",middleName:null,surname:"Wang",slug:"jian-wang",fullName:"Jian Wang"},{id:"138959",title:"Dr.",name:"Meenakshi",middleName:null,surname:"Singh",slug:"meenakshi-singh",fullName:"Meenakshi Singh"},{id:"138960",title:"Dr.",name:"Yi",middleName:null,surname:"Sun",slug:"yi-sun",fullName:"Yi Sun"}]},{id:"35784",doi:"10.5772/37929",title:"Structural Characteristic and Superconducting Performance of MgB2 Fabricated by Mg Diffusion Process",slug:"structural-characteristic-and-superconducting-performance-of-mgb2-fabricated-by-mg-diffusion-process",totalDownloads:2109,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"Minoru Maeda, Jung Ho Kim and Shi Xue Dou",authors:[{id:"10861",title:"Prof.",name:"Shi-Xue",middleName:null,surname:"Dou",slug:"shi-xue-dou",fullName:"Shi-Xue Dou"},{id:"24527",title:"Dr.",name:"Jung Ho",middleName:null,surname:"Kim",slug:"jung-ho-kim",fullName:"Jung Ho Kim"},{id:"114820",title:"Dr.",name:"Minoru",middleName:null,surname:"Maeda",slug:"minoru-maeda",fullName:"Minoru Maeda"}]}],mostDownloadedChaptersLast30Days:[{id:"68467",title:"Semiconductor Nanocomposites for Visible Light Photocatalysis of Water Pollutants",slug:"semiconductor-nanocomposites-for-visible-light-photocatalysis-of-water-pollutants",totalDownloads:946,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Fatima Imtiaz, Jamshaid Rashid and Ming Xu",authors:[{id:"292882",title:"Dr.",name:"Jamshaid",middleName:null,surname:"Rashid",slug:"jamshaid-rashid",fullName:"Jamshaid Rashid"},{id:"302498",title:"Ms.",name:"Fatima",middleName:null,surname:"Imtiaz",slug:"fatima-imtiaz",fullName:"Fatima Imtiaz"},{id:"308434",title:"Prof.",name:"Ming",middleName:null,surname:"Xu",slug:"ming-xu",fullName:"Ming Xu"}]},{id:"68791",title:"Radiative Transference Equation Algorithm as an ANSYS® User-Defined Function for Solar Technology Applications",slug:"radiative-transference-equation-algorithm-as-an-ansys-user-defined-function-for-solar-technology-app",totalDownloads:317,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Diana Barraza-Jiménez, Adolfo Ruiz-Soto, Sandra Iliana Torres-Herrera, Elva Marcela Coria-Quiñones, Raúl Armando Olvera-Corral, David José Romero-Soto and Manuel Alberto Flores-Hidalgo",authors:[{id:"198497",title:"Dr.",name:"Manuel Alberto",middleName:null,surname:"Flores-Hidalgo",slug:"manuel-alberto-flores-hidalgo",fullName:"Manuel Alberto Flores-Hidalgo"},{id:"304002",title:"Dr.",name:"Diana",middleName:null,surname:"Barraza-Jimenez",slug:"diana-barraza-jimenez",fullName:"Diana Barraza-Jimenez"},{id:"304003",title:"Dr.",name:"Sandra Iliana",middleName:null,surname:"Torres-Herrera",slug:"sandra-iliana-torres-herrera",fullName:"Sandra Iliana Torres-Herrera"},{id:"306132",title:"MSc.",name:"Elva Marcela",middleName:null,surname:"Coria-Quiñones",slug:"elva-marcela-coria-quinones",fullName:"Elva Marcela Coria-Quiñones"},{id:"306133",title:"Dr.",name:"Raúl Armando",middleName:null,surname:"Olvera-Corral",slug:"raul-armando-olvera-corral",fullName:"Raúl Armando Olvera-Corral"},{id:"308422",title:"MSc.",name:"Adolfo",middleName:null,surname:"Ruiz Soto",slug:"adolfo-ruiz-soto",fullName:"Adolfo Ruiz Soto"},{id:"309838",title:"BSc.",name:"David José",middleName:null,surname:"Romero-Soto",slug:"david-jose-romero-soto",fullName:"David José Romero-Soto"}]},{id:"69599",title:"Introductory Chapter: Fundamentals of Semiconductor Photocatalysis",slug:"introductory-chapter-fundamentals-of-semiconductor-photocatalysis",totalDownloads:243,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Mohammed Muzibur Rahman",authors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}]},{id:"66250",title:"Toward the Creation of Highly Active Photocatalysts That Convert Methane into Methanol",slug:"toward-the-creation-of-highly-active-photocatalysts-that-convert-methane-into-methanol",totalDownloads:452,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Yuichi Negishi, Seiichiro Watanabe, Marika Aoki, Sakiat Hossain and Wataru Kurashige",authors:[{id:"198877",title:"Prof.",name:"Yuichi",middleName:null,surname:"Negishi",slug:"yuichi-negishi",fullName:"Yuichi Negishi"},{id:"294421",title:"Dr.",name:"Wataru",middleName:null,surname:"Kurashige",slug:"wataru-kurashige",fullName:"Wataru Kurashige"},{id:"294422",title:"Dr.",name:"Sakiat",middleName:null,surname:"Hossain",slug:"sakiat-hossain",fullName:"Sakiat Hossain"},{id:"294423",title:"Ms.",name:"Marika",middleName:null,surname:"Aoki",slug:"marika-aoki",fullName:"Marika Aoki"},{id:"294424",title:"Mr.",name:"Seiichiro",middleName:null,surname:"Watanabe",slug:"seiichiro-watanabe",fullName:"Seiichiro Watanabe"}]},{id:"67697",title:"TiO2 Nanoparticles Supported on Hierarchical Meso/Macroporous SiO2 Spheres for Photocatalytic Applications",slug:"tio-sub-2-sub-nanoparticles-supported-on-hierarchical-meso-macroporous-sio-sub-2-sub-spheres-for-pho",totalDownloads:415,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Keyla M. Fuentes, Margarita Sánchez-Dominguez and Sara A. Bilmes",authors:[{id:"93593",title:"Dr.",name:"Margarita",middleName:null,surname:"Sanchez-Dominguez",slug:"margarita-sanchez-dominguez",fullName:"Margarita Sanchez-Dominguez"},{id:"290978",title:"Ph.D.",name:"Keyla M.",middleName:null,surname:"Fuentes",slug:"keyla-m.-fuentes",fullName:"Keyla M. Fuentes"},{id:"300173",title:"Prof.",name:"Sara",middleName:null,surname:"Aldabe Bilmes",slug:"sara-aldabe-bilmes",fullName:"Sara Aldabe Bilmes"}]},{id:"35784",title:"Structural Characteristic and Superconducting Performance of MgB2 Fabricated by Mg Diffusion Process",slug:"structural-characteristic-and-superconducting-performance-of-mgb2-fabricated-by-mg-diffusion-process",totalDownloads:2109,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"Minoru Maeda, Jung Ho Kim and Shi Xue Dou",authors:[{id:"10861",title:"Prof.",name:"Shi-Xue",middleName:null,surname:"Dou",slug:"shi-xue-dou",fullName:"Shi-Xue Dou"},{id:"24527",title:"Dr.",name:"Jung Ho",middleName:null,surname:"Kim",slug:"jung-ho-kim",fullName:"Jung Ho Kim"},{id:"114820",title:"Dr.",name:"Minoru",middleName:null,surname:"Maeda",slug:"minoru-maeda",fullName:"Minoru Maeda"}]},{id:"64785",title:"Effect of Annealing on Metal-Oxide Nanocluster",slug:"effect-of-annealing-on-metal-oxide-nanocluster",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Naorem Khelchand Singh and Rajshree Rajkumari",authors:[{id:"263847",title:"Dr.",name:"Naorem Khelchand",middleName:null,surname:"Singh",slug:"naorem-khelchand-singh",fullName:"Naorem Khelchand Singh"},{id:"276260",title:"Ms.",name:"Rajshree",middleName:null,surname:"Rajkumari",slug:"rajshree-rajkumari",fullName:"Rajshree Rajkumari"}]},{id:"35783",title:"Properties of YBa2Cu3O7−δ Superconducting Films on Sr2YSbO6 Buffer Layers",slug:"properties-of-superconductor-films-on-sr2ysbo6-buffer-layers",totalDownloads:1428,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"Omar Ortiz-Diaz, David A. Landinez Tellez and Jairo Roa-Rojas",authors:[{id:"114759",title:"MSc.",name:"Omar",middleName:null,surname:"Ortiz-Diaz",slug:"omar-ortiz-diaz",fullName:"Omar Ortiz-Diaz"},{id:"117597",title:"Dr.",name:"Jairo",middleName:null,surname:"Roa-Rojas",slug:"jairo-roa-rojas",fullName:"Jairo Roa-Rojas"},{id:"117599",title:"Dr.",name:"David",middleName:null,surname:"Landinez Tellez",slug:"david-landinez-tellez",fullName:"David Landinez Tellez"}]},{id:"35780",title:"Magnetical Response and Mechanical Properties of High Temperature Superconductors, YBaCu3O7-X Materials",slug:"review-magnetical-response-and-mechanical-properties-of-second-generation-htsc-ybco-materials",totalDownloads:1880,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"J.J. Roa, F.T. Dias and M. Segarra",authors:[{id:"114244",title:"Dr.",name:"Joan Josep",middleName:null,surname:"Roa",slug:"joan-josep-roa",fullName:"Joan Josep Roa"},{id:"117397",title:"Dr.",name:"Fabio T",middleName:null,surname:"Dias",slug:"fabio-t-dias",fullName:"Fabio T Dias"},{id:"117398",title:"Dr.",name:"Mercè",middleName:null,surname:"Segarra",slug:"merce-segarra",fullName:"Mercè Segarra"}]},{id:"35776",title:"Non Resonant Microwave Absorption (NRMA) Anomalies in High Temperature Superconductors (HTS) Relevance of Electromagnetic Interactions (EMI) and Energy Stabilized Josephson (ESJ) Fluxons",slug:"non-resonant-microwave-absorption-nrma-in-superconductor-relevance-of-electromagnetic-interactions",totalDownloads:1499,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"superconductors-properties-technology-and-applications",title:"Superconductors",fullTitle:"Superconductors - Properties, Technology, and Applications"},signatures:"G.K. Padam",authors:[{id:"116203",title:"Dr.",name:"Gursharan",middleName:null,surname:"Padam",slug:"gursharan-padam",fullName:"Gursharan Padam"}]}],onlineFirstChaptersFilter:{topicSlug:"semiconductor-solid-state-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/180166/ziaul-huque",hash:"",query:{},params:{id:"180166",slug:"ziaul-huque"},fullPath:"/profiles/180166/ziaul-huque",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()