Heart failure (HF) is a global public health concern that has the potential to reach epidemic proportions. The gold standard for treating end-stage HF remains heart transplantation. Unfortunately, given the scarcity of available organs, alternative means for providing cardiac support are required. Mechanical circulatory support devices (MCSDs) have the potential to treat many patients with end-stage HF. They replace some of the mechanical functions of the failing heart to improve cardiac output and organ perfusion. These include the intra-aortic balloon pump, extracorporeal membrane oxygenation, ventricular assist devices, and the total artificial heart. In this chapter, we will discuss a brief history of MCSD, available devices, indications, patient selection, surgical procedures, postoperative management, complications, and outcomes.
Part of the book: Frontiers in Transplantology
Orthotopic heart transplant is recognized as the gold standard for the treatment of end-stage heart disease. However, there is a perennial shortage of donor organs. Left ventricular assist devices (LVAD) represent a revolutionary tool for temporizing heart failure that is refractory to medical management until a suitable organ becomes available. This review highlights the LVAD as a tool for bridging to transplant. The history of the LVAD and its use in heart transplantation is described, as well as the current indications for use in the general heart transplant candidate as well as for selected subpopulations. It also highlights the major complications of LVAD use, advancements in the field, and selected current controversies related to the LVAD as bridge-to-transplant therapy.
Part of the book: Heart Transplantation
Lung transplantation has become an increasingly important modality for the treatment of severe lung disease. From its inception, the procedure has been refined so that it now represents the standard of care for end stage respiratory failure. The widespread adoption of this treatment option, however, has brought into sharp relief the current organ donor shortage. In tandem with the explosion in lung transplant procedures, a number of support modalities have seen an expanded role. Perhaps one of the most versatile tools in the armamentarium of the pulmonary transplant surgeon is extracorporeal membrane oxygenation (ECMO). This powerful tool is being increasingly implemented in all stages of lung transplantation—from supporting the failing native organ as a bridging tool to transplantation, to stabilizing the patient intra-operatively during the transplant procedure, to rescuing the patient with severe primary graft dysfunction immediately post-transplant. A number of advanced techniques for the application of ECMO in order to optimize the pulmonary transplant procedure are gaining traction—and with ECMO’s expanded role in lung transplantation, so also has come a new set of technical and ethical challenges that must also be overcome.
Part of the book: Advances in Extracorporeal Membrane Oxygenation
Lung transplantation has evolved as the gold standard for selective patients with end-stage lung disease since the first clinical lung transplant was performed in 1983 in the United States. Over the last few decades, lung transplantation volume has increased worldwide with steadily improving outcomes; however, access to lung transplantation remains limited due to the critical shortage of donor organs. Factors that have contributed to improved outcomes include a multidisciplinary management approach supported by advancements in surgical and anesthetic techniques, nursing and critical care, immunosuppressive therapy, transplant immunobiology, and the perioperative use of extracorporeal membrane oxygenation (ECMO) and ex vivo lung perfusion (EVLP). Excellent outcomes have been achieved in selective patients with high-risk comorbidities such as age over 65 years, concomitant severe coronary artery disease (CAD), and preexisting sensitization with donor-specific antibodies (DSAs). Such comorbidities are no longer considered absolute contraindications to lung transplantation. This chapter provides an overview of perioperative care of lung transplant recipients with focus on a multidisciplinary approach and highlights management strategies for patients with concomitant severe coronary artery disease and end-stage lung disease as well as those with preexisting sensitization with DSAs.
Part of the book: Perioperative Care for Organ Transplant Recipient
Procurement of thoracic organs can be divided into two major categories- donation after brain death (DBD) or donation after circulatory determination of death (DCDD). In this section we will focus primarily on DBD, which is the commoner of these two or at times referred to as standard procurement. DCDD is a relatively new and promising field that has helped ameliorate donor shortage, aided by the latest advances in medical technology. However, DBD continues to be the major avenue of organ donation. There are several different combinations of thoracic procurement surgeries: heart, double lung, single lung/ 2-single lungs, heart-lung en bloc for transplantation, Double Lung procurement for Bronchial arterial revascularization, Heart and Lung procurement in DCDD donors with the OCS, NRP or Lungs for EVLP.
Part of the book: Organ Donation and Transplantation