\r\n\t
",isbn:"978-1-83968-460-9",printIsbn:"978-1-83968-459-3",pdfIsbn:"978-1-83969-232-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"babca2dea1c80719111734cc57a21a4c",bookSignature:"Dr. Amin Talei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10404.jpg",keywords:"Water Budget, Ground Measurement, Satellite Data, Empirical Models, Physical Models, Data-Driven Models, Artificial Neural Network, Neuro-Fuzzy Systems, Genetic Programming, Irrigation Management, Drought, Aquifer Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in developing hydrological models using adaptive neuro-fuzzy systems, a pioneering researcher in tropical biofiltration systems, appointed head of the Civil Engineering Discipline in Monash University Malaysia.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"335732",title:"Dr.",name:"Amin",middleName:null,surname:"Talei",slug:"amin-talei",fullName:"Amin Talei",profilePictureURL:"https://mts.intechopen.com/storage/users/335732/images/system/335732.jpg",biography:"Associate Professor Amin Talei joined Monash University Malaysia in January 2013 and currently is the head of Civil Engineering discipline. His previous appointment was as researcher in School of Civil & Environmental Engineering of Nanyang Technological University of Singapore where he studied for his PhD during 2008-2011. His research is predominantly focused on hydrological modeling and flood forecasting using artificial intelligence techniques. Most recently, he has been also involved in research projects dealing with sustainable urban water management. To date, he has published over 50 articles in reputable journals and international conference proceedings. He has supervised several PhD and Master students and won the Supervisor of the Year Award in Monash University Malaysia in 2017. He has absorbed over AUD370,000 research funding from industry and international/national funding agencies since 2014 and is a chartered professional engineer of the Engineers Australia.",institutionString:"Monash University Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Monash University Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60855",title:"Calculations of Heat Transfer in the Furnaces of Steam Boilers According to the Laws of Radiation of Gas Volumes",doi:"10.5772/intechopen.75529",slug:"calculations-of-heat-transfer-in-the-furnaces-of-steam-boilers-according-to-the-laws-of-radiation-of",body:'Radiant heat transfer is the main kind of heat transfer in furnaces and combustion chambers and accounts for 90–98% of the total heat transfer in steam boiler fireboxes [1, 2, 3].
Since the late nineteenth century and throughout the twentieth century, heat transfer in torch furnaces, fireboxes, and combustion chambers was calculated based on the law that was experimentally established by Stefan in 1879 in studying radiation from solid bodies, which was then theoretically substantiated by Boltzmann in 1884. In the late nineteenth to the early twentieth century, solid lumped fuel (coal, peat, and wood) was fired in furnaces on fire grates, and the first descriptions of heat transfer processes were essentially descriptions of problems and calculation of radiant heat transfer between two arbitrarily located surfaces (a fuel bed and a heating surface) on the basis of Stefan-Boltzmann’s law. In 1924, Kirpichev gave an analysis of methods for solving this problem that had been developed by different researchers [4], and Stefan-Boltzmann’s law is presently formulated as follows:
where q is the density of heat flux radiated from the fuel to the heating surface (W/m2), cs is the black body emissivity factor (W/(m2 K4)), εred is the reduced emissivity, Т1 and Т2 are the temperatures of fuel bed and heating surface (K), and φ12 is the view factor for radiation from the fuel bed on the heating surface.
In the twentieth to the twenty-first centuries, flaring of gas, liquid, pulverized fuel in furnaces, fire boxes, and combustion chambers was widespread. Fuel flaring is characterized by volume emission, a three-dimensional radiation model [1, 2, 3, 4, 5, 6]. In torch, gas volume emits 1015–1030 particles of atoms. Radiation of each particle and atom on the calculated area should be considered. The calculation of heat radiation on the calculated area of all the atoms in the gas volume and the torch requires the solution of triple integral equations [7, 8, 9, 10]. The solution of triple integral equations to determine the average path length of beams from the emitting particles, atoms, and angular radiation coefficients of the gas volume on the calculated area in the twentieth to the twenty-first centuries has not been found [7, 8]. The laws of radiation from gas volumes were not disclosed.
It is considered that the problem of calculating heat transfer in torch furnaces, fireboxes, and combustion chambers was solved with the appearance of computers and the use of numerical simulations of integral equations of heat transfer [11, 12]. However, long-term analytical and experimental studies of heat transfer have shown that the results of the numerical solution of integral equations of heat transfer on computers are not valid [9]. The method uses the laws of heat radiation of a blackbody, solid bodies, and Stefan-Boltzmann law (1); however, gas volume radiation is not subject to the laws of Stefan-Boltzmann [9, 10]. This method uses the Stefan-Boltzmann law and a large mass of approximate values of the temperatures and optic coefficients of surface and volume zones, and the accuracy of calculations is 40–80% [9, 10, 11, 12, 13].
Paradoxical cases are observed using the existing calculation methods. The torch power can be increased by additionally heating the air supplied to the burner. For example, with air heated from 20 to 600°C, the torch power increased by 17%, and its temperature rose from 1300 to 2000°C, i.e., by a factor of 1.5 [14]. According to expression (1), the density of heat flux radiated from the torch to the calculated zone should increase by a factor of 5, and the heating rate of articles being processed should also increase by a factor of 5, which is in contradiction with the energy conservation law. Under the real conditions of heating furnace operation, with air subjected to preheating and with the torch power increased by 17%, the heat flux density and the heating rate increase by 12–15%, i.e., in direct proportion to the growth of torch power and not to the fourth power of temperature [14].
In the twentieth century, the torches and emitting gas volumes remained a “black box” despite the applied enormous intellectual resources to solve the problem. Formulas for determining the main parameters of heat radiation from gas volumes, torches, formulas for determination average beam path length from quadrillions of radiating atoms, and the local angular coefficients of radiation from radiation flux densities on the calculated area were not available. The solution to the problem has stalled.
At the end of the twentieth century, in 1996–2001 the laws of heat radiation from gas volumes [13, 15, 16] and the laws of heat radiation from gas isothermal isochoric concentric spherical (Figure 1) and coaxial cylinder gas volumes (Figure 2) were dislosed, the volumes, that the torches, gas volumes of the furnaces, fireboxes, and combustion chambers are currently modeled by [17, 18, 19].
The radiation from isothermal isochoric concentric spherical gas volumes on the calculated area dF.
The radiation from isothermal isochoric coaxial cylinder gas volumes on the calculated area dF.
The laws are called Makarov’s laws with the goal of adherence to the age-old scientific traditions and copyright [13]. Based on the scientific discovery, geometric, physical, and mathematical models of gas volume and torch as a source of heat radiation have been developed. In the gas volumes formed during flare combustion of the fuel, spherical or cylindrical gas volumes are inscribed. Radiating gas atoms are simulated by emitting quadrillions of spheres, uniformly filling the spherical and cylindrical gas volumes.
The statement of the scientific disclosure is as follows. “The average path length of beams from quadrillions of radiating particles of each isochoric isothermal concentric spherical or coaxial cylindrical gas volumes to the calculated area is equal to the arithmetic mean distance from the symmetry axis of volumes to the calculated area and the angular coefficients, flux densities of radiation from gas volumes on the calculated area are equal. The flux density of radiation from the central spherical or central cylindrical gas volume of a small diameter on the calculated area is equal to the sum of the fluxes of the radiation fluxes from all the concentric spherical or coaxial cylindrical volumes on the calculated area at the radiation power released in the volume of a small diameter, equal to the sum of the radiated powers released in all spherical or coaxial cylindrical gas volumes radiating on the calculated area.
The density of the heat flux incident from the cylindrical or spherical gas volumes to the calculation area is directly proportional to the power, the local angular emission factor of the gas volume to the calculation area and inversely proportional to the absorption coefficient of the gas medium, the average path length of the rays from the emitting particles of the gas volume to the calculation area and the area of calculation area.”
Mathematical notation of the laws is as follows:
where l1, l2, l3, and li are the average beam path lengths from the first to the ith cylindrical or spherical gas volumes to the calculated area dF and l is the arithmetic mean distance from the axis of symmetry of the cylindrical volumes or the center of symmetry of the spherical volumes to the calculated area dF:
where
where
where
where
Mathematical notation of the laws of heat radiation from gas volumes and the laws of Makarov is obvious and grounded in a similar manner to the statement and mathematical notation of Newton’s third law of motion in texts on physics for students of secondary schools and technical universities:
“The force with which two bodies act upon each other are equal in magnitude and opposite in direction”:
where F1 is the force with which body 1 acts on body 2 and F2 is the force with which body 2 acts on body 1.
Laws of heat radiation from gas volumes possess the compactness and the accuracy of the description of physical phenomena in a similar manner to the fundamental laws of physics. For example, a fundamental law of physics, Ohm’s law, describes the relationship between the current I flowing in the conductor and the voltage U applied to the conductor and the conductor resistance R:
Similarly, the law of heat radiation from gas volumes characterizes the dependence of flux density of heat radiation q of gas volume from the angular coefficient of the radiation φ, radiated power P, and the average beam path length rays l of gas volume. For the calculation of parameters of heat radiation from gas volumes (6) φ, P, and l analytical expressions, formulas were derived [16, 17, 18, 19].
A unique, natural harmony of heat radiation from quadrillions of particles of spherical and cylindrical gas volumes is disclosed, namely, that the average beam path length from these particles is equal to the arithmetic mean distance from the symmetry axis of volumes to the calculated area.
Complex, a triple integration of no solution within the gas volume to determine the average beam path length is reasonably replaced by computing actions of elementary mathematics and analytic geometry; this produces the same result, which would have been gotten in triple integration.
The uniqueness of the scientific discovery is that the flux densities of radiation and angular radiation coefficients of spherical, coaxial, and cylindrical gas volumes to the calculated area are equal and it is sufficient to hold a single integration of trigonometric functions within the height of the cylindrical gas volume of a small diameter, located on the axis of symmetry to define them [15, 16, 17, 18, 19, 20, 21, 22].
Heat radiation from cylindrical gas volumes of diameter 2, 5, and 10 m and more in calculations can be equivalently modeled by heat radiation from cylindrical gas volumes of an infinitely small diameter and the axis of their symmetry. Scientific discovery of heat radiation from gas volumes provides researchers and designers with great opportunities for improvement of electric arc and torch furnaces, fireboxes, and combustion chambers.
With the discovery and development of the laws of geometrical, physical, and mathematical models of torch, the radiating gas volumes and torches as sources of heat radiation become an investigated physical phenomenon, not a “black box.” The formulas for calculating the density of the radiation flux from the gas volume, the torch on the calculation area (6), for determining the local angular coefficients of gas volumes on the calculation area [15, 16, 17, 18, 19, 20, 21, 22], for determining the mean path length of quadrillion rays (2) from gas volumes on the calculation area were obtained. Basing on the scientific discoveries of the laws of heat radiation from gas volume, the theory of thermal radiation from the gas volume and the new concept of calculating heat transfer in torch furnaces, fire chambers, and combustion chambers were developed [19]. The theory of thermal radiation of the gas volume includes the output 14 of the formulas for calculating the coefficients and fluxes of the radiation of the flame on the heating surface in Vivarelli, mutually perpendicular coils and arbitrarily located planes.
In accordance with the new concept and the theory, cylinder gas volumes, from which the calculation of radiation fluxes on the calculated areas and heating surface is performed, are inscribed in torches.
Radiation fluxes from torch, heated surfaces, and combustion products are determined for each calculated area taking into account multiple reflections and torch for each calculated area platform determined by taking into account multiple reflections and absorptions. The calculations of heat transfer in steam boiler boxes [9, 10, 18, 19, 20], torch heating furnaces [7, 8, 15, 16, 17], and combustion chambers of gas turbine installations [19] are made with the use of the new concept.
The calculations allow to determine rational energy modes of electric arc and torch furnaces, fireboxes, and combustion chambers in which fuel consumption reduces and operational life increases. In 15 years since the first publication of the author of scientific discovery in printing, the theory of thermal radiation of the gas volume and the new concept of calculating heat transfer in torch furnaces, fire chambers, and combustion chambers have been tested by time; the results of calculations are confirmed by the results of experimental studies on existing kilns, furnaces, and combustion chambers; and the accuracy of calculations does not exceed 10%. Since the radiation laws of a blackbody and the laws of Stefan-Boltzmann and Planck, these wines belong to the fundamental laws of physics, and the laws of radiation by gas volumes are both fundamental laws of physics.
The laws of heat radiation, the theory of heat radiation from gas volumes, and the new concept of calculation in electric arc and torch furnaces, fire boxes, and combustion chambers were published in the form of text [19], which is used for teaching university students. The method for calculation that had existed until the scientific discovery had not allowed to calculate and to manage rational heat transfer in torch furnaces, since the error of calculations was 20–50%, so the efficiency of fuel energy in torch furnaces is 25–45% at the present time. The use of scientific discovery and its base-developed theory allows to determine the rational parameters of the torch (capacity, length, expansion angle) and its spatial position to the heating surface (vertical, horizontal, inclined at a certain angle).
Rational position of products and torches and burners will increase consumption efficiency of fuel energy half-twofold from 25–45 to 65–75% and decrease fuel consumption twofold over the coming years all over the world.
A unified procedure for calculating heat transfer in electric arc and torch furnaces, fireboxes, and combustion chambers has been developed proceeding from the discovered regularities pertinent to heat transfer in torch gas layers [19]. The resulting integral heat fluxes consisting of radiant fluxes falling on the heating surfaces from the torch, wall and arch lining, combustion products, and convective fluxes are all calculated according to this procedure. Innovative designs of torch furnaces and fireboxes have been developed proceeding from the discovered regularities, and the use of which makes it possible to obtain a higher output from fireboxes, more uniform steam generation in tubes, more uniform heating of articles, and smaller consumption of fuel.
The distribution of integral radiant fluxes over the boiler firebox walls and bottom surfaces was calculated taking the TGMP_204 boiler as an example used as part of a 800 MW power unit, and the firebox of which has the shape of a rectangular parallelepiped of height Hf = 46 m, width a = 20.66 m, and depth b = 10.40 m. The firebox rear wall has an aerodynamic nose in its upper part. The boiler operates on fuel oil and is equipped with 36 double-flow vortex burners with a throughput capacity of 5.2 t/h each, which are installed in opposite directions in three tiers on the front and rear walls of the firebox. The burners installed on each wall are placed in a common duct through which air and recirculating gases are supplied. The air excess factor in the furnace α = 1.03, and the gas recirculation ratio r = 0.14. With these values of air excess factor and gas recirculation ratio, the average values of particle diameter dp, density ρ, concentration μ, and the medium attenuation coefficient k are determined from the formulas given in [1, 2, 3]. The calculated values of these parameters were found to be dp = 0.278 μm, ρ = 2 × 103 kg/m3, μ = 0.06 g/m3, and k = 0.162.
The distribution of temperature along the height of steam boiler fireboxes was investigated [23, 24, 25]; the results of temperature measurements are reported in many publications, e.g., in [12]. The torch fills the entire firebox chamber and has the shape of a straight elliptical cylinder; the isotherms shown in Figure 4 divide it along the height into six volume bodies.
Five volume bodies with ellipses in their bases and vertices and with a parabolic generatrix (the torch vertical parts) have the shape of elliptical paraboloids resting on the sixth volume body having the shape of a truncated ellipsoid of revolution (the horizontal part of torch 7).
The own radiation from gas volumes and the radiation power decrease along the firebox height in accordance with temperature variation along the flame height. Below, we denote the power releasing in the flame horizontal part by Ph and the powers releasing in five vertical volume zones (from the bottom to top) by Р1–Р5. The power releasing in the torch is determined from the expression as follows:
where Qri is the fuel heating value equal to 41 MJ/kg and Bf is the fuel flow rate (kg/h). During the operation of 36 burners with a throughput of 5.2 t/h, the fuel flow rate will be Bf = 187.2 × 103 kg/h, and the torch power will be Ptr = 2155 MW.
Introducing the assumption that the radiating volumes are isothermal within the confines of their volume zones and taking into account that the volume bodies have identical bases and different heights, we can write the following proportion for determining the power releasing in each of the six volume zones:
where Th and T1–T5 and hh and h1–h5 are the temperatures and heights of the corresponding zones.
The following values of powers releasing in the torch volume zones were obtained from expression (10): MW: Ph = 645, P1 = 905, P2 = 216, P3 = 172, P4 = 129, and P5 = 87.
For calculating the integral radiation fluxes falling from the torch on the waterwall surfaces and for reducing the calculation error, the torch should be decomposed as follows: three straight circular cylinders are inscribed into the straight elliptical cylinder representing the torch vertical part (see Figure 3) and these circular cylinders will model the radiation from the flame vertical part both over its height and volume, i.e., over the firebox width and depth. The way in which the radiation fluxes from the cylinder are distributed over the heating surface does not depend of the cylinder diameter; therefore, the torch vertical part should be subdivided into 15 small-diameter cylinders representing linear radiation sources by 3 in each vertical volume zone.
Schematic design of the regenerative soaking pit with a two-tier unit of regenerators (a) and the distribution of integral heat fluxes falling on the lateral surfaces facing the soaking pit longitudinal symmetry axis over the ingot height (b). (1) chamber; (2) cover; (3–5) rear, lateral, and front walls, respectively; (6) regenerator units; (7 and 8) air and gas regenerators; (9) mixing chamber; (10) technological holes; (11) ingots; and (12) torch.
After that, we determine the density of integral radiation flux from each jth cylindrical source in the horizontal and vertical volume zones falling on the ith elementary area on the wall surface:
where jth is the cylindrical radiation source on the ith area, which is determined from the analytical expressions given in [19]; Pj is the power of the jth cylindrical source (MW); Fi is the surface area of the ith elementary area (m2); and l is the average beam length (m).
The density of incident integral radiation flux from the torch on the ith elementary area is determined as the sum of integral heat flux densities from all cylindrical sources, i.e.,
The distribution of integral radiation fluxes falling on the front and rear walls of a TGMP-204 steam boiler firebox is almost the same and is characterized by curves 1 and 5 (Figure 4a), and so is the distribution of integral radiation fluxes falling on the firebox right- and left-hand walls, which is characterized by curves 3 and 4. The calculation results coincide with the results from measurements of integral radiation flux densities along the frontal wall vertical symmetry axis [1], testifying that the developed torch mathematical model adequately reflects the real conditions.
Distribution of the integral radiation flux density over the walls (a) and bottom (b) of the TGMP-204 boiler firebox. (1) Results of calculation over the front wall symmetry axis; (2) measurement results for the same; (3–5) results of calculation over the lateral wall vertical symmetry axis, over the lateral wall height at a distance of 4 m from the lateral wall vertical symmetry axis and over the front wall height at a distance of 8 m from the front wall vertical symmetry axis; and (6 and 7) results of calculation over the bottom’s major symmetry axis and over the horizontal line parallel to the bottom major symmetry axis at a distance of 4 m from it.
The maximal integral radiation fluxes are observed on the front and rear walls at a height of 12–16 m (4–5 m above the top tier of burners). The waterwall surfaces at a height of 12–16 m experience the maximal radiation from the horizontal volume zone and from the torch’s first vertical volume zone. The densities of integral radiation fluxes reach here 780 kW/m2 on the front and rear walls and 520 kW/m2 on the lateral walls. The integral radiation fluxes observed on the walls at the firebox bottom level are a factor of 1.7–1.9 smaller and equal to 460 and 270 kW/m2, respectively. This is because the wall lower belt is located at a considerable distance away from the first vertical volume zone and the more so from the second to the fifth volume zones. The density of integral radiation fluxes falling from the torch on areas lying at a height of above 20 m decreases along the wall height in a similar manner.
The densities of integral radiation fluxes on the walls under the ceiling are equal to 150 and 110 kW/m2, respectively, on the front and lateral walls along the vertical symmetry axis. Such decrease of integral radiation fluxes on the wall surfaces under the ceiling is due to the fact that the wall upper belt is situated at a considerable distance away from the torch horizontal and first vertical volume zones, in which 72% of the torch power is released, whereas only around 10% of the torch power is released in the nearby fourth and fifth vertical volume zones.
The variation of integral radiation flux densities over the wall perimeter is also essentially nonuniform in nature. The densities of integral fluxes radiated from the torch in the front and rear wall “hot belt” situated at a height of 12–16 m vary from 780 kW/m2 at the wall vertical symmetry axis to 180 kW/m2 at their periphery; i.e., they drop by a factor of 4.3. This is because the vertical symmetry axes of the front and rear walls are situated at the shortest distances from the linear sources and from the central and peripheral cylinders by which the torch is modeled.
The densities of integral fluxes radiated from the torch at the vertical symmetry axis and at the periphery of lateral walls differ from each other to a significantly lesser extent. The densities of integral fluxes radiated from the torch at a height of 12–16 m are equal to 520 and 290 kW/m2, respectively, at the vertical symmetry axis and at the periphery of lateral walls. The flux densities in the underceilng zone of lateral walls differ from each other to a still lesser extent and are equal to 120 and 95 kW/m3, respectively, at the vertical symmetry axis and at the periphery. This is because the distance from the cylindrical sources of radiation to the vertical symmetry axis of lateral walls differs insignificantly from the similar distance to the periphery of lateral walls [19].
Figure 4b shows the calculated distribution of integral radiation flux densities over the bottom surface. The 250 kW/m2 isorad forms an elliptic hot spot in the bottom surface center with the sizes along the major and minor axes equal to 12 and 8 m. The integral radiation fluxes at the bottom periphery do not exceed 125 kW/m2.
As is well known [23], the surface density of deposits inside the tubes increases with the density of integral radiation flux falling on the waterwall surfaces. With a heat flux equal to 200 kW/m2, the surface density of deposits inside the tubes is 0.1 kg/m2, whereas at 500 kW/m2, it is equal to 0.3 kg/m2; that is, the density of deposits inside the tubes grows in proportion to the heat flux. Hence, reducing the densities of integral heat fluxes and making them more uniform over the perimeter and height of steam boiler firebox walls are presently a topical problem.
An experimental confirmation of the results obtained from the performed calculations aimed at determining the distribution of integral radiation flux densities over the surfaces of the TGMP-204 steam boiler firebox can be found in [1], as well as in [24, 25].
In [19], the experimentally determined distribution of integral radiation fluxes over the height of the left-hand lateral waterwall of a TGMP-204 KhL steam boiler firebox is presented for the case of boiler operation in the mode of power unit maximal load equal to 800–820 MW1. The difference between the maximal local incident radiation fluxes in the firebox of a TGMP-204 steam boiler obtained by calculation (780 kW/m2) and by measurements (870 kW/m2) [25] does not exceed 12%, which confirms that the developed torch mathematical model adequately reflects the real conditions.
Nonuniform distribution of the densities of integral fluxes radiated from the torch over the wall perimeters and heights gives rise to similar nonuniformity of steam generation and deposits in the tubes. Engineers who develop and design steam boilers, as well as researchers in this field, should apply additional efforts on improving the designs of fireboxes aimed at decreasing the heat fluxes over the wall perimeters and heights and at making them more uniform, which will lead to similar reduction and more uniform distribution of deposits in the tubes. The shortcoming of the considered firebox of a TGMP-204 boiler is that the waterwall heating surfaces in the furnace lower part experience high heat loads, which result in a high growth rate of deposits inside the tubes. High heat loads entail a growth of temperature of waterwall tube metal surfaces and facilitate the occurrence and development of high-temperature corrosion in these surfaces. All the abovementioned factors have a negative effect on the service life of waterwall heating surfaces and, hence, result in less reliable operation of the entire boiler.
The use of the proposed calculation procedure allows one to get a more comprehensive idea about heat transfer and to design new improved fireboxes for steam boilers. This improvement is achieved through changing the shape of firebox and waterwall surfaces and the inclination angle of oppositely arranged burners, which leads to rational distribution of heat loads [26, 27].
In [27], a firebox for firing gas and oil fuel was proposed. This firebox consists of a bottom, arch, walls, waterwalls repeating the firebox inner surface, and oppositely placed burners built in the walls. The firebox is made in the form of two truncated cones with their larger bases facing each other. The firebox bottom serves as the base of the lower cone; the lateral walls of the upper cone are matched with vertical walls forming the shape of a straight cylinder. The burners are inclined to a horizontal plane at an angle of 5–10°.
Figure 5 shows the innovative firebox of a TGMP-204-I steam boiler with rational distribution of heat loads intended for use as part of an 800 MW power unit. This furnace has the form of two truncated hexagonal pyramids with a common base having the shape of a regular hexagon with a radius of 9.6 m. The firebox is fitted with 36 vortex double-flow burners with a throughput of 5.2 t/h each. The burners are installed in three tiers uniformly over the perimeter of walls at the corners and in the middle of each face of the lower inverted pyramid. The firebox has a height of 46 m, and its volume is approximately equal to that of the TGMP-204 steam boiler. The air excess factor in the TGMP-204-I boiler firebox α = 1.03, the gas recirculation ratio r = 0.14, the concentration of particles μ = 0.06 g/m3, the particle diameter dp = 0.278 μm, the particle density ρp = 2 × 103 kg/m3, and the attenuation coefficient k in the medium = 0.162.
Firebox of the TGMP-204-I steam boiler (the dashed line in view A–A depicts the section of the TGMP-204 boiler furnace).
Figure 5 shows the expected distribution of temperature over the height of the TGMP-204-I boiler firebox. Owing to the sloped walls, the firebox has a larger volume in the zone of burners; the maximal expected temperature in the active fuel combustion zone is 1600°C, and the temperature of combustion products leaving the firebox chamber is 1300°C. The torch is modeled by a vertical cylinder with five volume zones and by 12 inclined cylinders (Figure 5). The torch power Ptr = 2155 MW. The procedure described above was used to calculate the densities of heat fluxes falling from the torch on the waterwall surfaces (Figure 6).
Distribution of integral radiation flux density over the walls of the TGMP-204-I boiler furnace.
Owing to the fact that all waterwall surfaces and all faces of the truncated pyramid are situated at the same distance from the torch and from the cylindrical
sources of radiation by which the torch is modeled, the integral radiation flux density along the wall symmetry axis and at the wall periphery is characterized by one curve shown in Figure 6. The integral radiation flux density has the same distribution over all waterwall surfaces and over all faces of the upper and lower truncated pyramids. The heat flux density in the zone of maximal heat loads at a height of 12–16 m in the TGMP-204-I boiler firebox is by 200 kW/m2 lower than it is in the TGMP-204 boiler firebox. As a result, more uniform steam generation is obtained in all tubes of waterwall surfaces over the firebox perimeter.
Owing to lower heat loads, the waterwalls operate at lower temperature, which result in a lower rate of their corrosion. This, in turn, results in a longer service life of waterwall heating surfaces and in a longer interval between their outages for cleaning the boiler with acid.
The proposed design of the steam boiler firebox has also other advantages over the existing ones. The new firebox has a larger volume in its part opposite to the burners, and the torch has a lower temperature in this volume, which results in less intense generation of nitrogen oxides. In addition, the waterwall surfaces in the firebox upper part are situated closer to the torch axis, due to which the working fluid absorbs heat more intensely and the heat fluxes are distributed along the firebox height more uniformly (see Figure 6). It is expected that the formation of deposits inside the tubes will be less intense in the proposed steam boiler firebox, that its operational costs will be reduced, that the firebox will have higher efficiency, and that the waterwall surfaces and working fluid will absorb heat more intensely [26].
Comparison between the distribution pattern of integral radiation fluxes over the TGMP-204 boiler firebox walls and that of the TGMP-204-I boiler firebox with the similar capacity testifies that the latter has certain advantages over the former: the heat loads of the waterwall surfaces are more uniformly distributed over the firebox height, the maximal heat loads in the burner zone are decreased by 25%, the torch has a lower temperature, and a smaller amount of nitrogen oxides is generated.
Here, we examine calculations of heat transfer in the furnace of a type TGMP-314 steam boiler with modeling of the flare by radiative zones and large cylindrical gas volumes.
The TGMP-314 steam boiler furnace for a 300 MW power-generating unit is in the shape of a rectangular parallelepiped (Figure 7a, b) with height Hw = 35 m, width a = 14 m, and depth b = 7 m. The boiler runs on fuel oil and has 16 burners with a combined capacity Bb = 67 torch-mounted counter to one another in two rows of eight burners each, at heights of 3 and 6 m from the bottom surface. The minimum heat of combustion of the fuel oil is Qrl = 41 MJ/kg. The attenuation coefficient for radiation in the medium in the furnace is k = 0.162 [19]. The distribution of isotherms along the height of the furnace with oppositely mounted burners is shown in Figure 7a. In terms of its height and perimeter, the flare fills the entire furnace and is in the shape of a right elliptical cylinder. The isotherms divide it height-wise into seven volumes. Six of these volumes, with ellipses at their base and top, and a parabola as a lateral generator, are elliptical purebloods which lie on the seventh volume, which is a truncated ellipsoid of rotation. An ellipsoid of revolution formed by the 1900°C isotherm is contained within the truncated ellipsoid.
A type TGMP-314 steam boiler furnace with modeling of the flare by radiating cylindrical volumes: (a) distribution of isotherms and cylindrical radiation sources, (b) dividing the furnace into large cylindrical radiating volumes, and (c) the distribution of the integrated radiative flux along the height of the front and side walls: (1–7) arrays of vertical cylindrical sources; (8 and 9) arrays of horizontal cylindrical sources; (10) measurement and computational results along the vertical axis of symmetry of the front wall; (11) calculated results along the vertical axis of symmetry of the side wall; and (12 and 13) calculated results along the heights, respectively, of the side wall (at a distance of 2 m from its vertical axis of symmetry) and the front wall (at a distance of 4.7 m from its vertical axis of symmetry).
Figure 7c shows the calculated radiative fluxes incident on the shielding surfaces of the furnace walls of a TGMP-314 steam boiler furnace. The distribution of the integrated radiative flux along the vertical axis of symmetry of the front wall is characterized by graph 1, which also illustrates the distribution of the integrated radiative flux along the vertical axis of symmetry of the rear wall.
The measured and calculated integrated radiative fluxes along the vertical axis of symmetry of the front wall differ by less than 10% [28, 29]. This confirms the adequacy of the model developed here for the flare in type TGMP-314 steam
boiler furnaces. The maximum heat release zone, located at a height of 2–5 m from the bottom of the furnace, is characterized by maximal integrated radiative fluxes of the flare onto the front and rear walls at a level of 680 kW/m2. At heights of 2–5 m on the side walls, the radiative fluxes along the axis of symmetry are 590 kW/m2; at a distance of 2 m from the axis of symmetry, they fall to 440 kW/m2.
On the periphery of the front wall at a height of 2–5 m, the radiative fluxes from the flare fall to 250 kW/m2. The heat release in the flare decreases along the height of the furnace; the integrated radiative fluxes of the flare on the shielding surfaces also decrease.
The nonuniform distribution of the radiation fluxes from the flare along the perimeter and height of the screen surfaces of the walls gives rise to similar nonuniformity of vaporization and deposits in the tubes [2, 3]. The high heat loads in the bottom part of the front and back walls increase the temperature of the screen tubes and promote high-temperature corrosion in them. As a result of this, the problem of lowering the maximum temperature of the flare and equalizing the radiation flux densities on the screen surfaces along the height and perimeter of the firebox walls of steam boilers is of high priority. The importance of finding a solution to this problem also increases because the temperature in the fuel combustion zone affects thermal nitrogen oxide NOx emissions the most [30].
An innovative modification of the shape of the firebox of a steam boiler was proposed in order to obtain a rational distribution of the heat loads along the screen surfaces and to reduce nitrogen oxide emissions. The bottom part remains a rectangular parallelepiped; it is expedient to make the top part (Figure 8a) a truncated four-sided pyramid [26].
Firebox of TGMP-314 steam boiler with innovative modification: (a) distribution of the isotherms and cylindrical sources of radiation which are used to model the flare (same as in Figure 7) and (b) radiation flux density distribution along the height of the front wall 1 and side wall 2.
We shall examine heat transfer in such a firebox for the example of the previously studied boiler of the TGMP-314 power plant [19]. To suppress nitrogen oxide and organize two-step combustion of fuel, the nozzles are installed to feed air in amounts of 16 units (8 units per tier at heights 5.5 and 11 m). Oil is fed into a burner with air deficiency á = 0.8–0.85; the remaining air required for complete combustion of the fuel equals Äá = 0.2–0.25 and is fed through a nozzle higher up on the flare. The implementation of the two-step combustion of the fuel makes it possible to lower the temperature of the flare in the active burn zone and the nitrogen oxide emissions by 25–60%.
In order that the implementation of two-step combustion of fuel not to increase the temperature of the combustion products at the outlet of the firebox, the radiative heat transfer was organized from the flare to the screen surfaces in the middle and top parts of the firebox. To this end, the front, back, and side walls are built to slope at 4–6° relative to the vertical axis starting from the height 15 m, forming a truncated pyramid of height hp. = 20 m. The walls converge onto the axis of the flare, the radiative heat transfer from the flare to the screen surfaces increases, the heat fluxes along the height of the screen surfaces equalize, and the temperature of the flare decreases. The expected distribution of the temperatures in the firebox of a TGMP-314 steam boiler modernized in this manner is shown in Figure 8. As a result of the two-step combustion of fuel, the temperature in the zone of active combustion decreases to 1750°C. As a result of the improvement of the radiative heat transfer, the temperature of the combustion products leaving the firebox does not exceed 1300°C with the walls converging on the flare. The heat transfer in the modernized firebox of the TGMP-314 steam boiler was calculated.
The computational results obtained from expression (12) are displayed in Figure 8b. It is evident that the highest values of the maximum radiation flux densities—546 kW/m2—lie on the front walls at 10 m on the vertical axis. The radiation flux densities on the vertical axis of the front and side walls equal 352 and 306 kW/m2, respectively, at a height of 18 m, 246 and 205 kW/m2 at 24 m, and 175 and 148 kW/m2 at 30 m. Comparing the radiation flux densities of the flare along the screen surfaces of the front side in the fireboxes of conventional and modernized TGMP-314 boilers (Figure 8b) shows that in the firebox of the modernized boiler the highest radiation flux densities on the screen surface decreased by 24% from 680 to 546 kW/m2 in the bottom part, increased by 40% from 252 to 352 kW/m2 at height 18 m, and increased by 47% from 167 to 246 kW/m2. In the top part at height 30 m, the heat fluxes from the flare in the firebox of the modernized boiler increased by 41% compared with the conventional boiler: from 126 to 178 kW/m2. Similar variation of the radiation flux density distributions also occurs along the height of the screen surfaces of the side walls.
Altering the configuration of the firebox of a steam boiler from a rectangular parallelepiped in the bottom part to a truncated rectangular four-sided pyramid whose walls incline at angle 5–6° to the vertical plane inside the firebox in the central and top parts made it possible to increase the heat fluxes on their screen surfaces and reduce the no uniformity of the heat flux distribution along the height and perimeter of the firebox.
These changes ease the operating conditions of the tubes in the bottom part, lower the maximum gas temperatures in the interior volume of the firebox and the gas temperature at the exit from the firebox, reduce the production of nitrogen oxides in the firebox, and increase the service life of the screens.
The scientific discovery of the laws and the development of the theory of heat radiation from gas volumes is a contribution to the foundation of modern physics, as it allows calculating and managing the transfer of heat around the world in tens of thousands of electric arcs and torch furnaces, steam boiler boxes, and combustion chambers of gas turbine units, reducing energy consumption and saving millions of tons of fuel, reducing emissions of pollutants and anthropogenic load on the environment, and improving the quality of life in many countries. The laws and the theory of heat radiation of the ionized and non-ionized gas volumes and the laws of Makarov were included in the text [19], in the amount of fundamental knowledge on the quantum nature of radiation, and are in line with the laws of heat radiation from absolutely black body and with even more than 30 fundamental laws of physics.
Today, the medical community considers endometriosis as a significant disease and problem. According to different resources, about 176 million women are suffering from the disease worldwide. In multination, multicenter study [1] about 50% of gynecologists polled in Russia in 2007 examined 7–28 patients with endometriosis per month (240 patients per year). The number was almost equal to that of patients with myoma.
\nEndometriosis is known to be found in 60% of women aged under 30. More important is the fact that there is a 7-year delay from the first disease manifestation to the diagnosis [2].
\nThe physician should suspect the endometriosis if the following complaints are present [3]:
Dysmenorrhea, acyclic pelvic pain, deep dyspareunia, and infertility
If a woman of reproductive age has the following symptoms: dyschesia, dysuria, hematuria, and rectorrhagia
Even though the exact mechanism of endometriosis-associated infertility is still unknown, some aspects are well studied. Endometriosis has an influence on the quality of peritoneal fluid with growing macrophage concentration as well as proteases and cytokines negatively influencing the quality of oocytes, sperm, embryo, and fallopian tube potential.
\nIt is difficult to recommend the optimal treatment as the development of the disease is unpredictable—from asymptomatic to very aggressive though pelvic pain and infertility usually called “active endometriosis” [4].
\nThe American Society of Reproductive Medicine (ASRM) classification of endometriosis describes four stages of the disease. But that does not always correlate with the actual symptoms (pain, infertility, etc.) [5, 6, 7]. The more you work with this classification, the more it becomes obvious that patients with the same stages of the disease by ASRM classification, in fact, are incomparable. The ideal approach to endometriosis treatment should take into consideration how active the disease is. The “active” disease requires a combined treatment. The combination of surgical, hormonal treatment, and in vitro fertilization (IVF) could be individually chosen in each specific case of infertile patients.
\nFor an easier understanding of how to treat endometriosis-associated infertility, it is better to separate the disease in four different phenotypes: superficial, endometrioma, deep infiltrated endometriosis, and adenomyosis.
\nThe “gold” standard of superficial endometriosis treatment is laparoscopy. The common indications for surgery are pelvic pains and infertility. Hysteroscopy and biopsy, laparoscopy with fallopian tube perturbation, adhesiolysis, endometriosis staging with ablation, and/or removal lesions could be recommended. Pregnancy rate (PR) after laparoscopic treatment is the same for all stages [5].
\nHowever, if pelvic pain dominates, empirical conservative medical treatment could be applied. Infertile patients should be informed of alternative methods of treatment. Pregnancy can be achieved with IVF without surgery.
\nLaparoscopic treatment of minimal and mild endometriotic lesions (stage 1 and 2 ASRM) is justified in the case of pelvic pain because their destruction significantly decreases the pain compared with diagnostic laparoscopy alone. In this context, ablation and excision give identical results in terms of pain reduction. It is not recommended to treat asymptomatic patients. Literature shows no interest in uterine nerve ablation in case of dysmenorrhea due to minimal and mild endometriosis. With regard to treatment of minimal and mild endometriosis in infertile patients, only two studies can be selected, and both show that laparoscopy with excision or ablation and ablation of adhesions is superior to diagnostic laparoscopy alone also in terms of pregnancy rate [8].
\nThe effectiveness of adjuvant hormonal treatment after surgery is not improved. Most hormonal medications have a contraceptive effect and make spontaneous pregnancy almost impossible.
\nIVF should be recommended in cases of fallopian tubes’ low potential and/or male infertility. The spontaneous PR is very low if there are several simultaneous infertility factors. The very important factor is also the maternal age. At present, there is no generally accepted age for patients who should be recommended to go straight to ART after surgery and who could try to achieve spontaneous pregnancy. But a lot of surgeons agree that the maternal age of 35 and higher should be considered in favor of ART after surgery.
\nde Ziegler’s et al. in the review [9] presented an algorithm for the management of infertility associated with endometriosis. This algorithm is presented in Figure 1.
\nAlgorithm for management of infertility associated with endometriosis [9]. IVF, in vitro fertilization; ART, assisted reproductive technologies; GnRH, gonadotropin-releasing hormone; ICSI, intracytoplasmic sperm injection.
The repeated surgery is not recommended due to low spontaneous PR. The second (third, fourth, etc.) laparoscopy results in further IVF. This is not because of the bad surgery performed but because endometriosis is a chronical complex disease, which is associated with pelvic inflammation and profound alterations of peritoneal fluid, which surrounds the pelvic organs [10]. These alterations could affect natural conception.
\nRecently, the number of patients with deep infiltrating endometriosis (DIE) has been steadily increasing. It is estimated to affect up to 12% of all women with endometriosis. DIE is detected in 50–70% of patients of reproductive period with pain syndrome. This disease is diagnosed when there is an infiltration of 5 mm or more beneath the peritoneal surface [11] and/or an involvement of muscular layer of affected organ into the pathologic process is found [12].
\nDIE is characterized by multifocal distribution with the involvement of peritoneum, pelvic spaces, uterus ligaments, rectovaginal septum, vagina, intestine, bowel, ureters and bladder, and diaphragm. The feature of such dissemination is the lymphovascular invasion, the degree of which one is correlated with sizes of the primary endometrioid nodules. It is also estimated that endometriotic lesions seem to infiltrate the bowel wall preferentially along the nerves, even at distance from palpated nodules, while the mucosa is rarely and only focally involved [13].
\nThere is no correlation between the stage of endometriosis, how deep it is, the number of symptoms, and their duration. Infertility is the most frequent symptom. Development of infertility in DIE is multifactorial: pelvic adhesions, the decrease in ovarian reserve, and a poor quality of oocytes in case of involvement of the ovaries. It is assumed that changes in ectopic endometrium are not as pronounced in patients with DIE as in cases of severe adenomyosis. This conclusion could be made on the basis that in patients with DIE, the frequency of miscarriages is less, and the frequency of successful IVF attempts is satisfactory.
\nIn cases of lesions difficult location (myometrium, bowel and ileum, pararectal space), where removal is technically impossible or highly risky, the combination of surgery and medication is very promising. According to the data of Darai et al., spontaneous PR after surgical treatment is 51.1%, whereas IVF PR is 18.9% [14].
\nThe medical treatment of deep infiltrating endometriosis may decrease symptoms and is often associated with such side effects as noncyclic bleedings, weight increase, libido loss, and headaches. It doesn′t provide the control of disease course in a long-term period, and when the treatment is over, the disease progresses. Moreover, the medical options have contraceptive effects and can′t be used when pregnancy is attempted [15].
\nSurgical treatment of DIE and infertility in most cases is preferable. Spontaneous pregnancy rate (PR) after surgical treatment of DIE is close to 50% [15]. It means that every second patient with DIE and infertility will not require IVF.
\nAt the same time, we must not forget that the rate of severe postoperative complications of DIE treatment (rectal bleeding, anastomosis insufficiency, rectovaginal fistulas, abscesses, fecal peritonitis) is 10% [16]. Patients must be informed about the possible complications and results of DIE infertility treatment. IVF is preferable if other symptoms (pain, dyspareunia, dyschezia, low urinary tract symptoms) are absent.
\nThere are no doubts about the removal of such endometriotic nodules in the bladder and parametrium, but the choice of ideal surgical approach to the treatment of bowel endometriosis is more controversial. Three types of surgical removal of endometrioid nodules are described: shaving, discoid, and bowel resection. According to the data of Abrao et al. [17], the treatment algorithm for deep endometriosis compromising the bowel must be individualized (Figure 2). “Conservative” surgery (shaving) is more appropriate in reproductive medicine due to its less risk. Surgery of DIE including bowel resection should be considered as a second-line treatment after failed IVF and in cases when there is a presentation of such symptoms as pelvic pain, dyspareunia, dyschezia, and bowel stenosis.
\nTreatment algorithm for deep endometriosis compromising the bowel by Abrao et al. [17] (VAS—visual analog scale).
We can’t recommend the anticipating spontaneous pregnancy after surgery for more than 9–12 months. It is attended with the risk of recurrent endometriosis and pelvic pain, which will make IVF more complicated.
\nIn Malzoni et al. [18] publication, indications for radical colorectal surgery are described and clearly stated. Absolute indications are severe pain, bowel stenosis with functional organ compromise, and infertility in patients after unsuccessful IVF attempts even asymptomatic. The relative indications to radical surgery are the following: infertility in young patients (<35 years), infertility (even aged >35 years) after two or more IVF failures before the oocyte donation, and increased risks of pregnancy and delivery complications.
\nThe last indication is one of the most disputable. Exacoustos et al. [19] described the obstetrical complication in patients with colorectal endometriosis. The number of premature delivery <37 weeks was five times more in colorectal endometriosis group than the control group. Placenta previa was diagnosed in every six patients with posterior endometriosis (only 1 case from 300 patients in control group). Cesarian section was performed in 68.3% in colorectal endometriosis group. Hysterectomy, hemoperitoneum, bowel resection, and bladder injury were described in 3.6–7.1% of patients with colorectal endometriosis.
\nThe pathogenic mechanisms of pregnancy complications can be the following: endometriosis-related chronic inflammation, adhesions and their mechanical implications, and invasion of decidualized ectopic endometrium to the vessel walls.
\nTaking into account the risks of surgical intervention in cases of DIE, it′s reasonable to perform the operation in the specialized medical centers by multidisciplinary team, including gynecologist, urologist, colorectal surgeon, and fertility specialist. But endometriosis is a gynecological disease, and the gynecologist should be the leader of this team.
\nA very important practical question is what would be the recommendations if an unexperienced surgeon found DIE with diagnostic laparoscopy? In such case no one has repealed one of the basic rules of medical practice—“primum non nocere”—do not harm. If the surgeon is not enough experienced, to prevent complications, it would be better to stop the surgery after doing those steps, which could be done, according to the experience and send the patient to the clinic, which is focused on DIE treatment. Providing all the information about the presence of the disease to the patient is essential.
\nIn recent years, indications for surgical treatment of endometriomas in infertile patients are reconsidered due to the negative impact of surgery on the ovarian reserve, especially in recurrent cysts and bilateral localization. The surgeon faces the question which patients should be operated and if expectant management is chosen and then what period is appropriate. Comparative evaluation of cystectomy of non-endometriotic cyst (dermoid, serous, and mucinous cystadenoma) and endometriomas highlighted that some ovarian tissue was removed only in 6% during surgical treatment of non-endometriotic cysts. In contrast, in the resection of endometriomas, ovarian tissue was present in the specimen in 54% of cases [1].
\nNowadays, there is no consensus on the size of endometriomas which should be treated surgically. International recommendations indicate surgical treatment for cysts larger than 3–4 cm [3, 20] and according to some other guidelines, more than 6 cm.
\nAccording to some published data, surgery on the ovaries before IVF does not improve reproductive outcomes. The exception is large endometriomas which are difficult to puncture [21]. Asymptomatic endometriotic cysts of small size do not require surgical treatment, especially in patients older than 35 years. Surgical treatment must be performed in patients with long-term infertility in the presence of cysts greater than 4 cm [3].
\nIn patients with a high risk of ovarian reserve damage (second ovarian surgery, bilateral localization, late reproductive age), it is necessary to consider cryopreservation of embryos or vitrification of oocyte before surgical treatment.
\nSurgical treatment can be performed in three ways—aspiration, sclerotherapy, and laparoscopic/open removal. The endometriotic lining of endometrioma may undergo pressure atrophy, and that spontaneous resolution of cyst can be achieved by simple aspiration by ultrasound or laparoscopic control. In difficult cases (adhesions, high risks of anesthesia, recurrence of small endometrioma), transvaginal puncture by ultrasound guidance could be recommended. According to different publications, the recurrence rate for sclerotherapy is 9.1–66.7% and could be decreased to 12% by the use of 95% ethanol in situ [22]. However, this procedure has been associated with postoperative pelvic abscesses.
\nIf the surgery is to be performed, then the “gold” standard in case of endometrioma and infertility is laparoscopic cystectomy. Cystectomy can be performed in two ways: cyst ablation and enucleation. Laparoscopic cystectomy demonstrates the best results in achieving pregnancy for the first identified unilateral endometriomas. The spontaneous PR after cystectomy is more than 60%.
\nHowever, in the second surgery, partial capsule removal and ablation are the better options (to save ovarian reserve). In case of bilateral endometriomas in more advanced reproductive age and recurrent endometrioma, urgent IVF is indicated (the risk of decreased ovarian reserve). The removal of small endometrioma does not have an impact on cumulative PR. In some cases (recurrent endometrioma, difficulty in follicle puncture), sclerotherapy by ultrasound control could be recommended.
\nThere are pitfalls of endometrioma’s surgery. Surgery should be performed in the follicular phase to prevent recurrence. High power electrosurgical technique should be avoided. Bipolar coagulation (max 30 Watts) and/or suturing of the ovarian tissue is safer. Ablation can be applied for recurrence endometrioma in particular. New energies (PlasmaJet, CO2 laser, argon-spread).
\nIn our unpublished study, from 2010 to 2018, we performed 1187 laparoscopic procedures with removing of endometriomas in Moscow Regional Scientific Research Institute of Obstetrics and Gynecology. The average age of patients was 31.6 years old. Among them we make a follow up in 530 patients, and only 259 were included in the study. From 259 patients 105 have primary infertility before surgery (40.5%), 45 (17.37%) have secondary infertility, and 93 (35.9%) did not desire a pregnancy. In total, infertility was detected in 150 cases (57.9%). Laparoscopy and cyst removal (stripping) were done in the majority of cases—211 (81.6%); in 48 (18.4%) ovarium resection with the cyst was performed. Spontaneous pregnancy was registered among 77 women (51.3%). In 16 cases pregnancy was unexpected. Twenty-eight patients (18.6%) became pregnant after IVF. Cumulative pregnancy rate was 70% (105 patients). Ineffective attempts of spontaneous conception were 30, and IVF attempts were also unsuccessful in 36 cases (24%). After surgery, hormonal therapy was prescribed: dienogest in 34.3%, COC in 15%, and gonadotropin-releasing hormone agonists (GnRH-a) in 1.9% cases. The recurrence rate of the disease was 13.1% (34 cases).
\nThere are the risks of nonsurgical management of patients with cysts and infertility [23]. The conditions with an expected high risk of complications, if patients go to IVF without surgical treatment, are the following: low ovarian responsiveness to the stimulation, low quality of oocytes, technical difficulties for ovarian puncture, endometrioma rupture, injury to adjacent organs, infection of the endometrioma, follicular fluid contamination, progression of endometriosis, pregnancy complications, the opportunity to miss the malignancy, and/or cancer development after IVF.
\nHowever, the meaning of surgery was overestimated. Surgical treatment did not improve an ovarian responsiveness to the stimulation, quality of oocytes, rate of technical difficulties during ovarian puncture, rate of injury to adjacent organs during this procedure, follicular fluid contamination, progression of endometriosis, and pregnancy complication rate.
\nAdenomyosis is a common gynecological disease, defined as the presence of ectopic endometrial epithelium and stroma in the myometrium.
\nThrough the twentieth century before the widespread of transvaginal ultrasound (TVU) and magnetic resonance imaging (MRI) techniques, adenomyosis remained the disease, whose diagnosis was based on histological examination of the specimen after hysterectomy. As this examination was held after the surgery, the connection between infertility and adenomyosis was not well established. However, over the last three decades, the introduction of new diagnostic tools, mentioned above (TVU and MRI), made it possible to study adenomyosis without performing surgery. The measuring of the inner myometrium or myometrial junctional zone (JZ) described by Hricak group [24], provided new noninvasive diagnostic criteria for adenomyosis [25]. These new diagnostic tools allow us to diagnose the adenomyosis from early to advanced stages and see the progressing of the disease with high sensitivity and specificity. By different authors, the sensitivity and specificity range is 53–89% and 65–98% respectively. Although there is a great success in noninvasive diagnosis, the real incidence of adenomyosis is still unknown. The prevalence has been reported to range from 1 to 70%. This large range primarily reflects the lack of agreed diagnostic standards both by imaging tools and pathological analyses.
\nEven though many classifications, as well as scoring systems, have been proposed since the first mentioning of endometriosis as a disease, no widespread agreement on a classification for endometriosis has been reached. Unfortunately, there is no ideal classification of endometriosis that would be able to reflect all the aspects of the disease, the pathogenesis, anatomical distribution, clinical manifestation, progression, and recurrence.
\nThe clinical presentation of adenomyosis can vary from patient to patient, but the main symptoms are abnormal uterine bleeding and dysmenorrhea, occurring in approximately 65% of patients [26]. Today there is a strong data that there is a correlation between the type, localization, and the number of endometriotic lesions and painful symptoms [27]. Despite the fact that the link between infertility and adenomyosis is still a subject of debate, the association between these two processes is clinically recognized [28]. Infertility is found in 11–12% of patients with adenomyosis [29].
\nThe effect of adenomyosis on fertility has been assessed by examining its prevalence in infertility in patients or its effect on the outcomes of assisted reproduction technologies (ART). In a review by Campo et al. [30], several pathogenesis hypotheses of infertility in patients with adenomyosis are described. The first one was proposed by Kunz et al. [31, 32], which points out the idea of thickening and disruption of the myometrial JZ which can result in perturbed uterine peristalsis. In 1984 Birnholz [33] has published his data about the presence of contraction waves in the myometrium: using transabdominal ultrasound, he showed that uterine peristaltic activity originates exclusively from the JZ, while the outer myometrium remains static. During the follicular and periovulatory phases, contraction waves have a cervico-fundal orientation, and their amplitude and frequency increase significantly towards the time of ovulation. There is an idea that adenomyosis causes infertility by impairing sperm transport.
\nThe second hypothesis is focused on biochemical and functional alterations in both eutopic and heterotopic endometrium in individuals with adenomyosis [34]. These alterations could lead to lower receptivity, as suggested by the presence of “implantation marker” defects. This increased knowledge has created new therapeutic options, including the block of local aromatase production through the use of selective estrogen receptor modulators, estrogen-progestin combinations, and gonadotropin-releasing hormone super agonists.
\nThe third hypothesis proposes that the presence of an abnormal concentration of intrauterine free radicals [35] and of altered decidualization [36] is also suggestive of altered receptivity. The authors propose that free radicals may adversely affect eggs and fertilized eggs in adenomyosis by a similar mechanism to that in endometriosis. The exaggerated expression of these enzymes suggests a crucial role of superoxide in infertility and/or miscarriage in these diseases.
\nA lot of studies showed the effect of adenomyosis on fertility in patients, who underwent ART. Recent reviews by Vercellini et al. [37] and Younes et al. [38] allowed to shed light on many questions, even though the number of publications analyzed in these reviews is small. In Vercellini review 1865 women were enrolled in the 9 selected studies, and in Younes paper only 15 studies were analyzed.
\nThe prevalence of adenomyosis in the infertility population undergoing IVF/ICSI varies widely, from 6.9% [39] to 34.3 [40]. A clinical pregnancy after IVF/ICSI happens in 40.5% of women with adenomyosis and in 49.8% in those without this disease. The effect of adenomyosis on implantation rate per cycle is still controversial, and different authors have different data, related to that topic [40, 41]. According to Piver’s publication [42], JZ thickness could be a predictive factor of repeated implantation failure in women who underwent IVF, suggesting that adenomyosis may impair embryo implantation in IVF cycles. As for the miscarriage rate, we now know that adenomyosis almost doubles this index: 31.9%, compared to 14.1% in women without adenomyosis. There could be also a connection between the miscarriage rate and a live birth rate per cycle. Martínez-Conejero et al. [40] reported 26.8% in the adenomyosis group and of 37.1% in the no adenomyosis group.
\nDespite the fact that now we have such meta-analysis data, it is still hard to understand the exact influence of the adenomyosis on the fertility, as in some analyzed studies there were groups of patients with both adenomyosis and endometriosis, so it is difficult to identify whether IVF failure and early pregnancy complications were directly related to the presence of endometriosis or the presence of adenomyosis. However, Vercellini and his team concluded that adenomyosis has a negative effect on the outcome of IVF/ICSI, which leads to reduced rates of clinical pregnancy and implantation and an increased risk of early pregnancy loss. To sum up, it seems logical to screen for adenomyosis before starting assisted reproduction procedures [43].
\nAnother publication shows that there is a heightened risk of preterm delivery in patients with adenomyosis. A case–control study of Juang et al. [44] reveals the connection between adenomyosis and preterm birth, and two other studies show poor pregnancy and perinatal outcomes in adenomyosis patients [45, 50].
\nAccording to Sandberg’s study [46], the prevalence of adenomyosis in women in the time of delivery is quite high (17.8%), but complications during spontaneous pregnancy in such patients are rare. They can include rapid growth in pregnancy [47], spontaneous rupture of an unscarred uterus [48], and delayed postpartum hemorrhage [49]. Also, there is data that women with adenomyosis are at an increased risk of second-trimester miscarriage, small-for-gestational-age, preeclampsia, fetal malpresentation, placental malposition, and postpartum hemorrhage [50]. However, there are no large studies investigating the influence of adenomyosis on perinatal complications, and further accumulation of data is required to reveal this issue. Taking into account that the majority of pregnancies will be uneventful, it may be best that available information should be given to pregnant women in a way that would avoid raising unnecessary anxiety [43].
\nTreatment of adenomyosis could be conservative and surgical. Medical treatment for adenomyosis follows the principles for medical treatment of endometriosis, which aim is to reduce the production of endogenic estrogen or induction of endometrial differentiation with progestins. The principles are inhibition of ovulation, abolition of menstruation, and establishment of a stable steroid milieu [51].
\nNowadays there are several different options of conservative treatment, mainly against menstruation-related symptoms such as dysmenorrhea and heavy menstrual bleeding. According to Streuli et al. review [52], there are almost no well-conducted randomized controlled trials on the pharmacological treatment of adenomyosis, and the information collected from published studies is insufficient. However, experts’ opinion in this review says that the use of levonorgestrel-releasing intrauterine system, oral contraceptive pills, and danazol can improve those symptoms. Also, there are very few reports showing therapeutic effects of these drugs for infertility. Despite the fact that there are many therapeutic options, the majority of them inhibits the ovulation and\\or inducts of necrosis, which is unacceptable in infertile patients. So, in this chapter, we will discuss options, which could be applied in such a group of patients.
\nThe use of gonadotropin-releasing hormone agonists (GnRH-a) and its effect on infertility were described in several studies. In two IVF studies [53] in which a long protocol GnRH-a was admitted, there were no lower pregnancy rates in women with adenomyosis. GnRH-a could be admitted in women with moderate to severe symptomatic adenomyosis, especially in women with failed implantation of embryos of high quality. The weak point of these studies is that both of them were retrospective, and other factors may also have contributed. In patients with adenomyosis who plan to have frozen embryo transfer, one study [54] showed that 2-month GnRH analog pretreatment improved rates of implantation, clinical pregnancy, and ongoing pregnancy.
\nThere is also data that the treatment of an intrauterine device containing danazol resulted in the successful conception of infertile patients [55].
\nGrimbizis reviewed studies on uterus-sparing surgical treatment options for adenomyosis and concluded that this kind of treatment is feasible and efficient [56]. There are several options nowadays: adenomyomectomy for diffuse or focal adenomyosis, cytoreductive surgery (partial adenomyomectomy), or a variety of non-excisional techniques (endometrial ablation, high-intensity focused ultrasound (HIFU) and uterine artery embolization (UAE)). Non-excisional techniques result in tissue necrosis, which is unacceptable in patients who desires pregnancy.
\nIn patients with adenomyosis who desires pregnancy, surgery should only be chosen if the medical treatment is no effect. In patients with the localized process (adenomyoma) it is possible to perform an adenomyomectomy and remove all pathologic tissue. Nowadays it is the most popular surgical technique, performed through the laparoscopic or open approach. Laparoscopic surgery (adenomyosis resection) might be proper for women younger than 40 years old with focal adenomyosis who failed infertility treatments including assisted reproductive technology [57]. Several kinds of incisions are proposed for such procedure—transverse, longitudinal, wedge-shaped, and transverse H-shaped incisions [58], which could be chosen according to the size and location of the lesion. As well as for the incisions, for suturing wounds, there are several different techniques, including double- and triple-flap methods [59, 60].
\nIn Figure 3 you can see the different types of complete adenomyomectomy.
\nDifferent complete adenomyomectomy techniques. (A) Classic technique, (B) classic technique with overlapping flaps, and (C) triple-flap technique [56].
In patients with the diffuse process, cytoreductive surgery is performed. The main aim of the uterine preservation surgery is quite challenging—to remove the adenomyotic tissue as much as possible and to preserve the functional myometrium to save a functional uterus. In cases of diffuse process, it could be quite difficult to find the right plane and the border between those two layers in the adenomyotic uterus, as the pathologic tissue invades the myometrium. On one side of the scale, there is a radical treatment and on the other a functional uterus.
\nIn the recent review of fertility-sparing treatment for adenomyosis by Rocha et al. [61], there is also an analysis of combined medical and surgical treatment. The overall pooled clinical pregnancy rate after surgical resection of adenomyosis was 38.8%, ranging from 12.5 to 61.5%. The pooled miscarriage rate was 17.9% and pooled live birth rate 30.4%. As for spontaneous pregnancies, the overall clinical pregnancy rate was very low (18.2%). However, when using GnRH-a for 24 weeks after surgery [62, 63], the pooled spontaneous pregnancy rate was higher than not using adjuvant GnRH-a. There was no significant difference between pooled results with or without GnRH-a after adenomyomectomy for pregnancy rate, live birth rate, IVF pregnancy rate, or miscarriage rate. Two studies examined the effect of combined treatment with the use of adenomyomectomy and GnRH-a versus GnRH-a treatment alone [62, 64]. Even though the number of patients in the studies was small, it appears that surgery is associated with increased pregnancy rate. To sum up, adenomyomectomy alone has low spontaneous pregnancy rates and should be followed by ART or medical therapy with GnRH-a. Assisted reproductive technologies have good pregnancy rates in women with adenomyosis, and data suggest that long stimulation protocol is superior to short protocol. Most authors agree that there is currently no convincing evidence of the superiority of one of the methods of treatment over another and further prospective studies are needed to elucidate the usefulness of adenomyosis cytoreductive surgery as a fertility treatment. Also at the moment, literature data on such complications like uterine rupture and placenta accrete after surgery is scarce.
\nThere is also a place for treatment adenomyosis with hysteroscopic techniques [65]. This method could be performed in patients with adenomyotic cysts, and crypts are suggested before treatment for fertility [66]. However, this procedure and its effect on adenomyosis are described only in case reports.
\nDueholm et al. [51] in the recent review proposed an algorithm of how the patient with adenomyosis should be treated in infertility clinic. This algorithm is presented in Figure 4. However, authors make a conclusion that this algorithm is based on limited evidence and further randomized controlled trials are necessary to define the best strategy for patients with adenomyosis who want to conceive.
\nTreatment algorithm for the patient with adenomyosis in an infertility clinic [51].
In the twenty-first century, new technologies come for patients suffering from uterine infertility, and without the option of surrogate motherhood, uterine transplantation could be the only way to parenthood. Since the report in 2014 of a successful pregnancy [67] in the transplanted uterus, research interest in this field has been steadily growing with an increasing number of surgical teams training on the technique. Thirty-seven transplantations have already been realized worldwide setting the stage for a complex new research area in gynecological surgery, which needs to address technical, ethical, social, and economic issues [68]. These new technologies in the nearest future could also give a chance to become a mother for patients with uterine infertility caused by adenomyosis, resistant to other types of treatment.
\nIn spite of huge achievements both in reproductive surgery and assisted reproductive technologies, endometriosis as a disease is very actual today. It is known that the number of ART centers has been increased recently, the majority of which do not have facilities to perform surgery. This fact seems quite controversial. It resulted in the situation when the importance of reproductive surgery is neglected. Most of the studies are originally oriented to a recognition of ART as a major method of infertility treatment. We think this practice leads to the loss of reproductive surgery quality and professional degradation. Spontaneous pregnancy rate occurs in 30–70% infertile patients after an adequate operation performed just in time. That means one- or two-thirds of patients with endometriosis-associated infertility do not need ART at all. However, surgery is not the only possible kind of infertility treatment. It is important to diminish the number of the second (third, fourth, etc.) surgery. The reproductologist should be involved in the treatment and ART could be recommended promptly. The best option is to find a balance between surgery and ART, which could be reached through the organization of the multidisciplinary team, “brother in arms” professional connections between the surgeon and the reproductologist. Only working together with a constant search of the best solution on how to reach the pregnancy and informing the infertile patient about all ways of the treatment could lead to success.
\nThe authors declare no conflict of interest.
IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"7"},books:[{type:"book",id:"9553",title:"Cryptocurrency Economy",subtitle:null,isOpenForSubmission:!0,hash:"2548b2dab88b36797382292832f86563",slug:null,bookSignature:"Dr. Sebahattin Demirkan",coverURL:"https://cdn.intechopen.com/books/images_new/9553.jpg",editedByType:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10551",title:"Beyond Human Resources - Research Paths Towards a New Understanding of Workforce Management Within Organizations",subtitle:null,isOpenForSubmission:!0,hash:"4a34551c1324fb084e902ad7f56e584d",slug:null,bookSignature:"Dr. Gonzalo Sánchez-Gardey, Dr. Fernando Martín-Alcázar and Dr. Natalia García-Carbonell",coverURL:"https://cdn.intechopen.com/books/images_new/10551.jpg",editedByType:null,editors:[{id:"332101",title:"Prof.",name:"Gonzalo",surname:"Sánchez",slug:"gonzalo-sanchez",fullName:"Gonzalo Sánchez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10753",title:"Taxes",subtitle:null,isOpenForSubmission:!0,hash:"9dc0293dca676c8e873312737c84b60c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10753.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:null,isOpenForSubmission:!0,hash:"33697a6f655fc4d7f4a21a0a083a9096",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10757",title:"Agricultural Value Chain",subtitle:null,isOpenForSubmission:!0,hash:"732ee82bf579a4bc4c5c929ceba2db26",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10757.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:null,isOpenForSubmission:!0,hash:"f8f21ec8134eff175fa49450269811d8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10916",title:"Firm Value",subtitle:null,isOpenForSubmission:!0,hash:"0de75a8efe6a5f4c8d42858ca3016f08",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10916.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10917",title:"Entrepreneurship",subtitle:null,isOpenForSubmission:!0,hash:"904717638ed1e5538792e4d431fe59a5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10917.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10918",title:"Digital Economy",subtitle:null,isOpenForSubmission:!0,hash:"dbdfd9caf5c4b0038ff4446c7bc6a681",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10918.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10919",title:"Consumer Behavior",subtitle:null,isOpenForSubmission:!0,hash:"51700695578f48743b0514ba6d8735b2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10919.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics",parent:{title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:99,numberOfAuthorsAndEditors:1355,numberOfWosCitations:3495,numberOfCrossrefCitations:3030,numberOfDimensionsCitations:5998,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physical-sciences-engineering-and-technology-robotics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6864",title:"Autonomous Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"c320902fc1cfc252c1db006b944996fb",slug:"autonomous-vehicles",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6864.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8883",title:"Autonomous Vehicle and Smart Traffic",subtitle:null,isOpenForSubmission:!1,hash:"841c82c0bf27716a7c800bc1180ad5de",slug:"autonomous-vehicle-and-smart-traffic",bookSignature:"Sezgin Ersoy and Tayyab Waqar",coverURL:"https://cdn.intechopen.com/books/images_new/8883.jpg",editedByType:"Edited by",editors:[{id:"156004",title:"Associate Prof.",name:"Sezgin",middleName:null,surname:"Ersoy",slug:"sezgin-ersoy",fullName:"Sezgin Ersoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8872",title:"Multi Agent Systems",subtitle:"Strategies and Applications",isOpenForSubmission:!1,hash:"6b0454f8f575d5d65603f329af59c80b",slug:"multi-agent-systems-strategies-and-applications",bookSignature:"Ricardo López - Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/8872.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Lopez-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo Lopez-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7792",title:"Unmanned Robotic Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"53805f091c3107536edd2579c9987649",slug:"unmanned-robotic-systems-and-applications",bookSignature:"Mahmut Reyhanoglu and Geert De Cubber",coverURL:"https://cdn.intechopen.com/books/images_new/7792.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6865",title:"Becoming Human with Humanoid",subtitle:"From Physical Interaction to Social Intelligence",isOpenForSubmission:!1,hash:"e208316a62e4ab5b042486aea682ee18",slug:"becoming-human-with-humanoid-from-physical-interaction-to-social-intelligence",bookSignature:"Ahmad Hoirul Basori, Ali Leylavi Shoushtari and Andon Venelinov Topalov",coverURL:"https://cdn.intechopen.com/books/images_new/6865.jpg",editedByType:"Edited by",editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",middleName:null,surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7779",title:"Path Planning for Autonomous Vehicle",subtitle:"Ensuring Reliable Driverless Navigation and Control Maneuver",isOpenForSubmission:!1,hash:"91196f0aadb70bd5cecac290401d614f",slug:"path-planning-for-autonomous-vehicles-ensuring-reliable-driverless-navigation-and-control-maneuver",bookSignature:"Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, Yanjun Huang and Muhammad Aizzat Zakaria",coverURL:"https://cdn.intechopen.com/books/images_new/7779.jpg",editedByType:"Edited by",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7386",title:"Advances in Human and Machine Navigation Systems",subtitle:null,isOpenForSubmission:!1,hash:"a60a4da048a8bee2e12c3fe40236afe9",slug:"advances-in-human-and-machine-navigation-systems",bookSignature:"Rastislav Róka",coverURL:"https://cdn.intechopen.com/books/images_new/7386.jpg",editedByType:"Edited by",editors:[{id:"112777",title:"Dr.",name:"Rastislav",middleName:null,surname:"Róka",slug:"rastislav-roka",fullName:"Rastislav Róka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7227",title:"Applications of Mobile Robots",subtitle:null,isOpenForSubmission:!1,hash:"b4993517c29aed9abd474e362370e28a",slug:"applications-of-mobile-robots",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/7227.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7400",title:"Multi-Agent Systems",subtitle:"Control Spectrum",isOpenForSubmission:!1,hash:"ba8de13ac5162187fbc7f932a7fb0b34",slug:"multi-agent-systems-control-spectrum",bookSignature:"Vladimir Shikhin",coverURL:"https://cdn.intechopen.com/books/images_new/7400.jpg",editedByType:"Edited by",editors:[{id:"237011",title:"Dr.",name:"Vladimir",middleName:null,surname:"Shikhin",slug:"vladimir-shikhin",fullName:"Vladimir Shikhin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7270",title:"Agricultural Robots",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"404b9128ab371832f2b7f0b6f32b2951",slug:"agricultural-robots-fundamentals-and-applications",bookSignature:"Jun Zhou and Baohua Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/7270.jpg",editedByType:"Edited by",editors:[{id:"242047",title:"Dr.",name:"Jun",middleName:null,surname:"Zhou",slug:"jun-zhou",fullName:"Jun Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6322",title:"Advanced Path Planning for Mobile Entities",subtitle:null,isOpenForSubmission:!1,hash:"438f519ccb7ac4196660ada6b648e15f",slug:"advanced-path-planning-for-mobile-entities",bookSignature:"Rastislav Róka",coverURL:"https://cdn.intechopen.com/books/images_new/6322.jpg",editedByType:"Edited by",editors:[{id:"112777",title:"Dr.",name:"Rastislav",middleName:null,surname:"Róka",slug:"rastislav-roka",fullName:"Rastislav Róka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,mostCitedChapters:[{id:"10088",doi:"10.5772/8835",title:"Intention-Based Walking Support for Paraplegia Patients with Robot Suit HAL",slug:"intention-based-walking-support-for-paraplegia-patients-with-robot-suit-hal",totalDownloads:4593,totalCrossrefCites:15,totalDimensionsCites:166,book:{slug:"climbing-and-walking-robots",title:"Climbing and Walking Robots",fullTitle:"Climbing and Walking Robots"},signatures:"Kenta Suzuki, Gouji Mito, Hiroaki Kawamoto, Yasuhisa Hasegawa and Yoshiyuki Sankai",authors:null},{id:"240",doi:"10.5772/4876",title:"Geminoid: Teleoperated Android of an Existing Person",slug:"geminoid__teleoperated_android_of_an_existing_person",totalDownloads:3800,totalCrossrefCites:61,totalDimensionsCites:108,book:{slug:"humanoid_robots_new_developments",title:"Humanoid Robots",fullTitle:"Humanoid Robots: New Developments"},signatures:"Shuichi Nishio, Hiroshi Ishiguro and Norihiro Hagita",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"172",doi:"10.5772/4808",title:"Limit Cycle Walking",slug:"limit_cycle_walking",totalDownloads:4521,totalCrossrefCites:9,totalDimensionsCites:91,book:{slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Daan G.E. Hobbelen and Martijn Wisse",authors:null}],mostDownloadedChaptersLast30Days:[{id:"62563",title:"Online Mapping-Based Navigation System for Wheeled Mobile Robot in Road Following and Roundabout",slug:"online-mapping-based-navigation-system-for-wheeled-mobile-robot-in-road-following-and-roundabout",totalDownloads:759,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Mohammed A. H. Ali and Musa Mailah",authors:[{id:"32016",title:"Prof.",name:"Musa",middleName:null,surname:"Mailah",slug:"musa-mailah",fullName:"Musa Mailah"},{id:"243606",title:"Dr.",name:"Mohammed A. H",middleName:null,surname:"Ali",slug:"mohammed-a.-h-ali",fullName:"Mohammed A. H Ali"}]},{id:"39430",title:"Novel Yinger Learning Variable Universe Fuzzy Controller",slug:"novel-yinger-learning-variable-universe-fuzzy-controller",totalDownloads:1662,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-controllers-recent-advances-in-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers - Recent Advances in Theory and Applications"},signatures:"Ping Zhang and Guodong Gao",authors:[{id:"141337",title:"Dr.",name:"Ping",middleName:null,surname:"Zhang",slug:"ping-zhang",fullName:"Ping Zhang"},{id:"160791",title:"Dr.",name:"GuoDong",middleName:null,surname:"Gao",slug:"guodong-gao",fullName:"GuoDong Gao"}]},{id:"465",title:"Omnidirectional Mobile Robot - Design and Implementation",slug:"omnidirectional_mobile_robot_-__design_and_implementation",totalDownloads:40971,totalCrossrefCites:31,totalDimensionsCites:40,book:{slug:"bioinspiration_and_robotics_walking_and_climbing_robots",title:"Bioinspiration and Robotics",fullTitle:"Bioinspiration and Robotics Walking and Climbing Robots"},signatures:"Ioan Doroftei, Victor Grosu and Veaceslav Spinu",authors:null},{id:"70496",title:"Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture",slug:"sky-farmers-applications-of-unmanned-aerial-vehicles-uav-in-agriculture",totalDownloads:710,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"autonomous-vehicles",title:"Autonomous Vehicles",fullTitle:"Autonomous Vehicles"},signatures:"Chika Yinka-Banjo and Olasupo Ajayi",authors:null},{id:"73486",title:"Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation",slug:"application-of-artificial-intelligence-ai-in-prosthetic-and-orthotic-rehabilitation",totalDownloads:292,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"service-robotics",title:"Service Robotics",fullTitle:"Service Robotics"},signatures:"Smita Nayak and Rajesh Kumar Das",authors:[{id:"204704",title:"Mrs.",name:"Smita",middleName:null,surname:"Nayak",slug:"smita-nayak",fullName:"Smita Nayak"},{id:"321308",title:"Dr.",name:"Rajesh",middleName:null,surname:"Das",slug:"rajesh-das",fullName:"Rajesh Das"}]},{id:"67705",title:"Advanced UAVs Nonlinear Control Systems and Applications",slug:"advanced-uavs-nonlinear-control-systems-and-applications",totalDownloads:909,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"unmanned-robotic-systems-and-applications",title:"Unmanned Robotic Systems and Applications",fullTitle:"Unmanned Robotic Systems and Applications"},signatures:"Abdulkader Joukhadar, Mohammad Alchehabi and Adnan Jejeh",authors:null},{id:"51224",title:"Series Elastic Actuator: Design, Analysis and Comparison",slug:"series-elastic-actuator-design-analysis-and-comparison",totalDownloads:2498,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"recent-advances-in-robotic-systems",title:"Recent Advances in Robotic Systems",fullTitle:"Recent Advances in Robotic Systems"},signatures:"Arnaldo Gomes Leal Junior, Rafhael Milanezi de Andrade and\nAntônio Bento Filho",authors:[{id:"182082",title:"Dr.",name:"Rafhael",middleName:"Milanezi De",surname:"Andrade",slug:"rafhael-andrade",fullName:"Rafhael Andrade"},{id:"185372",title:"Dr.",name:"Antônio",middleName:null,surname:"Bento Filho",slug:"antonio-bento-filho",fullName:"Antônio Bento Filho"},{id:"185373",title:"MSc.",name:"Arnaldo",middleName:null,surname:"Gomes Leal Junior",slug:"arnaldo-gomes-leal-junior",fullName:"Arnaldo Gomes Leal Junior"}]},{id:"74572",title:"Visibility-Based Technologies and Methodologies for Autonomous Driving",slug:"visibility-based-technologies-and-methodologies-for-autonomous-driving",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Self-driving Vehicles and Enabling Technologies",fullTitle:"Self-driving Vehicles and Enabling Technologies"},signatures:"Said Easa, Yang Ma, Ashraf Elshorbagy, Ahmed Shaker, Songnian Li and Shriniwas Arkatkar",authors:null},{id:"62978",title:"Intelligent Robotic Perception Systems",slug:"intelligent-robotic-perception-systems",totalDownloads:1219,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton",authors:[{id:"203409",title:"Ph.D.",name:"Cristiano",middleName:null,surname:"Premebida",slug:"cristiano-premebida",fullName:"Cristiano Premebida"},{id:"254880",title:"Dr.",name:"Rares",middleName:null,surname:"Ambrus",slug:"rares-ambrus",fullName:"Rares Ambrus"},{id:"254881",title:"Dr.",name:"Zoltan-Csaba",middleName:null,surname:"Marton",slug:"zoltan-csaba-marton",fullName:"Zoltan-Csaba Marton"}]},{id:"150",title:"Sensor-based Global Planning for Mobile Manipulators Navigation Using Voronoi Diagram and Fast Marching",slug:"sensor-based_global_planning_for_mobile_manipulators_navigation_using_voronoi_diagram_and_fast_march",totalDownloads:2690,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile_robots_perception_navigation",title:"Mobile Robots",fullTitle:"Mobile Robots: Perception & Navigation"},signatures:"S. Garrido, D. Blanco, M.L. Munoz, L. Moreno and M. Abderrahim",authors:null}],onlineFirstChaptersFilter:{topicSlug:"physical-sciences-engineering-and-technology-robotics",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74572",title:"Visibility-Based Technologies and Methodologies for Autonomous Driving",slug:"visibility-based-technologies-and-methodologies-for-autonomous-driving",totalDownloads:63,totalDimensionsCites:0,doi:"10.5772/intechopen.95328",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Said Easa, Yang Ma, Ashraf Elshorbagy, Ahmed Shaker, Songnian Li and Shriniwas Arkatkar"},{id:"74396",title:"Design Considerations for Autonomous Cargo Transportation Multirotor UAVs",slug:"design-considerations-for-autonomous-cargo-transportation-multirotor-uavs",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.95060",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Denis Kotarski, Petar Piljek and Josip Kasać"},{id:"74476",title:"Selected Issues and Constraints of Image Matching in Terrain-Aided Navigation: A Comparative Study",slug:"selected-issues-and-constraints-of-image-matching-in-terrain-aided-navigation-a-comparative-study",totalDownloads:58,totalDimensionsCites:0,doi:"10.5772/intechopen.95039",book:{title:"Self-driving Vehicles and Enabling Technologies"},signatures:"Piotr Turek, Stanisław Grzywiński and Witold Bużantowicz"}],onlineFirstChaptersTotal:19},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/179646/luigi-auletta",hash:"",query:{},params:{id:"179646",slug:"luigi-auletta"},fullPath:"/profiles/179646/luigi-auletta",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()