Radiation particle types, their flux, and energies on the lunar surface [72, 73, 74, 75, 76, 77, 78].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"8153",leadTitle:null,fullTitle:"Agronomy - Climate Change & Food Security",title:"Agronomy",subtitle:"Climate Change & Food Security",reviewType:"peer-reviewed",abstract:"Climate change is a serious threat to field crop production and food security. It has negative effects on food, water, and energy security due to change in weather patterns and extreme events such as floods, droughts, and heat waves, all of which reduce crop productivity. Over six chapters, this book presents a comprehensive picture of the importance of agronomy as it relates to the United Nations’ Sustainable Development Goals. With an emphasis on the goals of Zero Hunger and Climate Change, this volume examines sustainable agronomic practices to increase crop productivity and improve environmental health.",isbn:"978-1-83881-223-2",printIsbn:"978-1-83881-222-5",pdfIsbn:"978-1-83881-224-9",doi:"10.5772/intechopen.78102",price:119,priceEur:129,priceUsd:155,slug:"agronomy-climate-change-food-security",numberOfPages:108,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2c01368bbeacbbedeb3681ea0c037dbe",bookSignature:"Amanullah",publishedDate:"July 15th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8153.jpg",numberOfDownloads:8956,numberOfWosCitations:23,numberOfCrossrefCitations:48,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:72,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:143,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 22nd 2019",dateEndSecondStepPublish:"September 25th 2019",dateEndThirdStepPublish:"November 24th 2019",dateEndFourthStepPublish:"February 12th 2020",dateEndFifthStepPublish:"April 12th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah",profilePictureURL:"https://mts.intechopen.com/storage/users/178825/images/system/178825.jfif",biography:"Dr. Amanullah is currently working as a Professor in the Department of Agronomy, Faculty of Crop Production Sciences, the\nUniversity of Agriculture Peshawar, Pakistan. Dr. Amanullah\nobtained a Ph.D. in Agronomy from the University of Agriculture\nPeshawar in 2004 and a post-doctorate from Dryland Agriculture Institute, WTAMU, Canyon Texas, USA, in 2010. He has\npublished more than 25 books and more than 300 research\npapers in peer-reviewed journals, including 100 papers in impact factor journals.\nHe has edited three books: Rice–Technology and Production (2017), Nitrogen in\nAgriculture-Updates (2018), and Corn: Production and Human Health in Changing\nClimate (2018). Dr. Amanullah has been awarded three Research Productivity\nAwards by the Pakistan Council for Science and Technology (PCST), Islamabad.\nHe represented Pakistan in the FAO Intergovernmental technical panel on the soil of\nthe Global Soil Partnership (2015–2018). Dr. Amanullah also won first prize in the\ninnovative research proposal competition arranged by DICE at the University of\nGujarat in 2013–2014.",institutionString:"University of Agriculture",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"29",title:"Agronomy",slug:"agronomy"}],chapters:[{id:"72575",title:"Agronomy-Food Security-Climate Change and the Sustainable Development Goals",doi:"10.5772/intechopen.92690",slug:"agronomy-food-security-climate-change-and-the-sustainable-development-goals",totalDownloads:1169,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Climate change has negative effects on food security, water security, and energy security due to change in extreme events such as floods, droughts, and heat waves, and reduces agricultural productivity. Global demand for food is projected to double by 2050. The rapidly growing population and the increase in demand for food, feed, and fuel will require sustainable agronomic practices to increase crop productivity. To meet the challenge, many advanced agronomic practices have been developed. For example: (1) selection of suitable crops and their varieties that are resistant to biotic stresses, (2) selection of suitable crops and their varieties that are resistant to abiotic stresses (3) selection of suitable cropping system, sustainable intensification. Sustainable agronomic practices are important to improve food security in changing climates. SDG-2 focuses explicitly on food by seeking to “end hunger, achieve food security and promote sustainable agriculture”. SDG-1 focuses on poverty reduction, where agriculture have a key role to play. SDG-13 specifically calls for “urgent actions to combat climate change and its impacts.” About 45 of the 169 targets are related to SDG-13, which highlights the need to tackle climate change and avert its impacts, particularly on food security, water, energy, and economic development.",signatures:"Amanullah and Shah Khalid",downloadPdfUrl:"/chapter/pdf-download/72575",previewPdfUrl:"/chapter/pdf-preview/72575",authors:[{id:"178825",title:"Dr.",name:"Dr.",surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"},{id:"309738",title:"Ph.D. Student",name:"Shaha",surname:"Khalid",slug:"shaha-khalid",fullName:"Shaha Khalid"}],corrections:null},{id:"70658",title:"Factors Affecting Yield of Crops",doi:"10.5772/intechopen.90672",slug:"factors-affecting-yield-of-crops",totalDownloads:4150,totalCrossrefCites:31,totalDimensionsCites:45,hasAltmetrics:0,abstract:"A good understanding of dynamics involved in food production is critical for the improvement of food security. It has been demonstrated that an increase in crop yields significantly reduces poverty. Yield, the mass of harvest crop product in a specific area, is influenced by several factors. These factors are grouped in three basic categories known as technological (agricultural practices, managerial decision, etc.), biological (diseases, insects, pests, weeds) and environmental (climatic condition, soil fertility, topography, water quality, etc.). These factors account for yield differences from one region to another worldwide. The current chapter will discuss each of these three basic factors as well as providing some recommendations for overcoming them. In addition, it will provide the importance of climate-smart agriculture in the increase of crop yields while facilitating the achievement of crop production in safe environment. This goes in line with the second goal of 2030 Agenda for Sustainable Development of United Nations in transforming our world formulated as end hunger, achieve food security, improve nutrition and promote sustainable agriculture.",signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",downloadPdfUrl:"/chapter/pdf-download/70658",previewPdfUrl:"/chapter/pdf-preview/70658",authors:[{id:"313819",title:"Dr.",name:"Liliane",surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}],corrections:null},{id:"70992",title:"Possible Impacts of Climate Change on Sunflower Yield in Turkey",doi:"10.5772/intechopen.91062",slug:"possible-impacts-of-climate-change-on-sunflower-yield-in-turkey",totalDownloads:622,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Sunflower (Helianthus annuus L.) is the main raw material used to produce oil for consumption and oilseed in Turkey; however, its production is not sufficient, even for only domestic consumption. Therefore, studies were needed to determine how to increase both the production area and yield in Turkey. The aim of the study was to evaluate the possible effects of climate changes on future sunflower yield. A total of 29 provinces with intense sunflower cultivation during years of 1985–2014 were evaluated. Sunflower production values and meteorological data, which belong to years of 1985–2014, on climate projections, based on HadGEM2-ES Global Climate Model and RCP8.5 scenario that cover period of 2016–2099, were used as material. In the first part of the study, linear regression analyses were conducted between the observation and production data using the least squares method. In the second part, the possible effects of climate changes on sunflower yield for 2016–2040, 2041–2070, and 2071–2099 were determined using regression equations and climate projection data. Projections indicate that decreases in yield are expected, especially in the second half of this century. In Tekirdag and Konya provinces, where there is intensive sunflower cultivation, severe decreases in yield are expected for all studied periods.",signatures:"Hudaverdi Gurkan, Yasin Ozgen, Nilgun Bayraktar, Huseyin Bulut and Mustafa Yildiz",downloadPdfUrl:"/chapter/pdf-download/70992",previewPdfUrl:"/chapter/pdf-preview/70992",authors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],corrections:null},{id:"70978",title:"Breeding for Biofortification Traits in Rice: Means to Eradicate Hidden Hunger",doi:"10.5772/intechopen.91144",slug:"breeding-for-biofortification-traits-in-rice-means-to-eradicate-hidden-hunger",totalDownloads:864,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Rice (Oryza sativa L.) supplies nourishment to about half of the population of the world’s inhabitants. Of them, more than 2 billion people suffer from ‘hidden hunger’ in which they are unable to meet the recommended nutrients or micronutrients from their daily dietary intake. Biofortification refers to developing micronutrient-rich diet foods using traditional breeding methods and modern biotechnology, a promising approach to nutrition enrichment as part of an integrated strategy for food systems. To improve the profile of rice grain for the biofortification-related traits, understanding the genetics of important biofortification traits is required. Moreover, these attributes are quantitative in nature and are influenced by several genes and environmental variables. In the course of past decades, several endeavours such as finding the important quantitative trait loci (QTLs) for improving the nutrient profile of rice seeds were successfully undertaken. In this review, we have presented the information regarding the QTLs identified for the biofortification traits in the rice.",signatures:"Vinay Sharma, Dinesh Kumar Saini, Ashish Kumar, Hari Kesh and Prashant Kaushik",downloadPdfUrl:"/chapter/pdf-download/70978",previewPdfUrl:"/chapter/pdf-preview/70978",authors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],corrections:null},{id:"70538",title:"Directing for Higher Seed Production in Vegetables",doi:"10.5772/intechopen.90646",slug:"directing-for-higher-seed-production-in-vegetables",totalDownloads:905,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Vegetables are essential for human health and well-being. For sustaining an excellent production of vegetable crops, the seed is a primary input. Moreover, good quality seed is an important requirement for the vegetable industry, and there is a huge demand that has been expanding, considering the fact that seed multiplication is economically pertinent for vegetable cultivars to contend commercially. But the healthy seed production is usually a sumptuous trait and tormented by agricultural tactics, genetics as well as by the environmental factors. Features like seed output of the vegetables, sizeable genetic variation, the prerequisite for advancement and acceptance of a good quality vegetable seed. Here different mechanisms for seed production in vegetable crops has been presented, also vital areas and factors influencing seed production, and eventually discourses regarding the opportunity of plant breeding to sustainably make improvements to vegetable seed production.",signatures:"Navjot Singh Brar, Dinesh Kumar Saini, Prashant Kaushik, Jyoti Chauhan and Navish Kumar Kamboj",downloadPdfUrl:"/chapter/pdf-download/70538",previewPdfUrl:"/chapter/pdf-preview/70538",authors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"},{id:"315785",title:"Dr.",name:"Navjot Singh",surname:"Brar",slug:"navjot-singh-brar",fullName:"Navjot Singh Brar"},{id:"315786",title:"Mr.",name:"Dinesh",surname:"Saini",slug:"dinesh-saini",fullName:"Dinesh Saini"}],corrections:null},{id:"70626",title:"Unmanned Ground Vehicles for Smart Farms",doi:"10.5772/intechopen.90683",slug:"unmanned-ground-vehicles-for-smart-farms",totalDownloads:1246,totalCrossrefCites:11,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Forecasts of world population increases in the coming decades demand new production processes that are more efficient, safer, and less destructive to the environment. Industries are working to fulfill this mission by developing the smart factory concept. The agriculture world should follow industry leadership and develop approaches to implement the smart farm concept. One of the most vital elements that must be configured to meet the requirements of the new smart farms is the unmanned ground vehicles (UGV). Thus, this chapter focuses on the characteristics that the UGVs must have to function efficiently in this type of future farm. Two main approaches are discussed: automating conventional vehicles and developing specifically designed mobile platforms. The latter includes both wheeled and wheel-legged robots and an analysis of their adaptability to terrain and crops.",signatures:"Pablo Gonzalez-De-Santos, Roemi Fernández, Delia Sepúlveda, Eduardo Navas and Manuel Armada",downloadPdfUrl:"/chapter/pdf-download/70626",previewPdfUrl:"/chapter/pdf-preview/70626",authors:[{id:"169913",title:"Prof.",name:"MANUEL",surname:"ARMADA",slug:"manuel-armada",fullName:"MANUEL ARMADA"},{id:"252783",title:"Prof.",name:"Pablo",surname:"Gonzalez-De-Santos",slug:"pablo-gonzalez-de-santos",fullName:"Pablo Gonzalez-De-Santos"},{id:"315925",title:"Dr.",name:"Roemi",surname:"Fernandez",slug:"roemi-fernandez",fullName:"Roemi Fernandez"},{id:"315926",title:"Ms.",name:"Delia",surname:"Sepulveda",slug:"delia-sepulveda",fullName:"Delia Sepulveda"},{id:"315927",title:"Mr.",name:"Eduardo",surname:"Navas",slug:"eduardo-navas",fullName:"Eduardo Navas"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5890",title:"Nitrogen in Agriculture",subtitle:"Updates",isOpenForSubmission:!1,hash:"91f15c6737d0e3dc37b1631f2631f52a",slug:"nitrogen-in-agriculture-updates",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/5890.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7206",title:"Corn",subtitle:"Production and Human Health in Changing Climate",isOpenForSubmission:!1,hash:"0140cb7a425a230a388fcece870e62b2",slug:"corn-production-and-human-health-in-changing-climate",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/7206.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5688",title:"Rice",subtitle:"Technology and Production",isOpenForSubmission:!1,hash:"7d595f7b12ce6b947505477073a29b16",slug:"rice-technology-and-production",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/5688.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6366",title:"Rice Crop",subtitle:"Current Developments",isOpenForSubmission:!1,hash:"628970142dadbc03cfa7f6aca1e19781",slug:"rice-crop-current-developments",bookSignature:"Farooq Shah, Zafar Hayat Khan and Amjad Iqbal",coverURL:"https://cdn.intechopen.com/books/images_new/6366.jpg",editedByType:"Edited by",editors:[{id:"211419",title:"Associate Prof.",name:"Farooq",surname:"Shah",slug:"farooq-shah",fullName:"Farooq Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6776",title:"Global Wheat Production",subtitle:null,isOpenForSubmission:!1,hash:"a4a538078961a10a051b00f639173d52",slug:"global-wheat-production",bookSignature:"Shah Fahad, Abdul Basir and Muhammad Adnan",coverURL:"https://cdn.intechopen.com/books/images_new/6776.jpg",editedByType:"Edited by",editors:[{id:"194771",title:"Dr.",name:"Shah",surname:"Fahad",slug:"shah-fahad",fullName:"Shah Fahad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6796",title:"Grasses as Food and Feed",subtitle:null,isOpenForSubmission:!1,hash:"447c0887d0c1c6c543d44cc4c2eaba29",slug:"grasses-as-food-and-feed",bookSignature:"Zerihun Tadele",coverURL:"https://cdn.intechopen.com/books/images_new/6796.jpg",editedByType:"Edited by",editors:[{id:"176084",title:"Dr.",name:"Zerihun",surname:"Tadele",slug:"zerihun-tadele",fullName:"Zerihun Tadele"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8021",title:"Protecting Rice Grains in the Post-Genomic Era",subtitle:null,isOpenForSubmission:!1,hash:"da2fb173333a52251e111630fc322765",slug:"protecting-rice-grains-in-the-post-genomic-era",bookSignature:"Yulin Jia",coverURL:"https://cdn.intechopen.com/books/images_new/8021.jpg",editedByType:"Edited by",editors:[{id:"168971",title:"Dr.",name:"Yulin",surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editedByType:"Edited by",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7552",title:"Soybean",subtitle:"Biomass, Yield and Productivity",isOpenForSubmission:!1,hash:"9dc4bfbef17ec4e8b46de07238453a23",slug:"soybean-biomass-yield-and-productivity",bookSignature:"Minobu Kasai",coverURL:"https://cdn.intechopen.com/books/images_new/7552.jpg",editedByType:"Edited by",editors:[{id:"29226",title:"Dr.",name:"Minobu",surname:"Kasai",slug:"minobu-kasai",fullName:"Minobu Kasai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6611",title:"Biological Approaches for Controlling Weeds",subtitle:null,isOpenForSubmission:!1,hash:"af536d9838613522ead4e0996c97a08a",slug:"biological-approaches-for-controlling-weeds",bookSignature:"Ramalingam Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/6611.jpg",editedByType:"Edited by",editors:[{id:"219072",title:"Prof.",name:"Ramalingam",surname:"Radhakrishnan",slug:"ramalingam-radhakrishnan",fullName:"Ramalingam Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-analytical-study-of-environmental-impacts-and-their-effects-on-groundwater-hydrology",title:"Corrigendum to: Analytical Study of Environmental Impacts and Their Effects on Groundwater Hydrology",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72413.pdf",downloadPdfUrl:"/chapter/pdf-download/72413",previewPdfUrl:"/chapter/pdf-preview/72413",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72413",risUrl:"/chapter/ris/72413",chapter:{id:"68077",slug:"analytical-study-of-environmental-impacts-and-their-effects-on-groundwater-hydrology",signatures:"Muhammad Salik Javaid, Laila Khalid and Muhammad Zeshan Khalid",dateSubmitted:"April 29th 2019",dateReviewed:"June 12th 2019",datePrePublished:null,datePublished:"March 4th 2020",book:{id:"8602",title:"Groundwater Hydrology",subtitle:null,fullTitle:"Groundwater Hydrology",slug:"groundwater-hydrology",publishedDate:"March 4th 2020",bookSignature:"Muhammad Salik Javaid",coverURL:"https://cdn.intechopen.com/books/images_new/8602.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",middleName:null,surname:"Javaid",slug:"muhammad-salik-javaid",fullName:"Muhammad Salik Javaid"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",middleName:null,surname:"Javaid",fullName:"Muhammad Salik Javaid",slug:"muhammad-salik-javaid",email:"msalikj@hotmail.com",position:null,institution:{name:"Abasyn University",institutionURL:null,country:{name:"Pakistan"}}}]}},chapter:{id:"68077",slug:"analytical-study-of-environmental-impacts-and-their-effects-on-groundwater-hydrology",signatures:"Muhammad Salik Javaid, Laila Khalid and Muhammad Zeshan Khalid",dateSubmitted:"April 29th 2019",dateReviewed:"June 12th 2019",datePrePublished:null,datePublished:"March 4th 2020",book:{id:"8602",title:"Groundwater Hydrology",subtitle:null,fullTitle:"Groundwater Hydrology",slug:"groundwater-hydrology",publishedDate:"March 4th 2020",bookSignature:"Muhammad Salik Javaid",coverURL:"https://cdn.intechopen.com/books/images_new/8602.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",middleName:null,surname:"Javaid",slug:"muhammad-salik-javaid",fullName:"Muhammad Salik Javaid"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",middleName:null,surname:"Javaid",fullName:"Muhammad Salik Javaid",slug:"muhammad-salik-javaid",email:"msalikj@hotmail.com",position:null,institution:{name:"Abasyn University",institutionURL:null,country:{name:"Pakistan"}}}]},book:{id:"8602",title:"Groundwater Hydrology",subtitle:null,fullTitle:"Groundwater Hydrology",slug:"groundwater-hydrology",publishedDate:"March 4th 2020",bookSignature:"Muhammad Salik Javaid",coverURL:"https://cdn.intechopen.com/books/images_new/8602.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",middleName:null,surname:"Javaid",slug:"muhammad-salik-javaid",fullName:"Muhammad Salik Javaid"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12223",leadTitle:null,title:"Sustainable Management of Natural Resources",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tNatural resource management deals with the management and utilization of both renewable and nonrenewable resources such as forests, fisheries, water, minerals, air, and animals for present and future use. Recently, natural resource management is facing major challenges in terms of ecosystem sustainability as a result of many competing uses of the resources. There is a growing awareness of the roles of natural resources as the future of natural resource management is under severe threats which may lead to the malfunction of mankind. Therefore, sustainable management of natural resources is extremely important to ensure the natural balance of the ecosystem is maintained. In addition, effective management of these resources would not only avoid over-consumption of the natural resources but also prevent further destruction of the environment. The book will provide a wealth of information by presenting and analyzing current knowledge on the management, planning, policy, and economics of natural resources such as natural and man-made forests, crop protection, water conservation, sustainable agriculture, wildlife and habitat management. Issues and challenges of climate change towards achieving sustainable management of natural resources will also be highlighted.
",isbn:"978-1-83768-454-0",printIsbn:"978-1-83768-453-3",pdfIsbn:"978-1-83768-455-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",keywords:"Protected Area, National Parks, Biodiversity Conservation, Climate Change, Global Warming, Stand Dynamics, Tropical Rainforests, Community-Based Ecotourism, Ecological Conservation, Agroforestry, Soil Conservation, Water Conservation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 21st 2022",dateEndSecondStepPublish:"July 19th 2022",dateEndThirdStepPublish:"September 17th 2022",dateEndFourthStepPublish:"December 6th 2022",dateEndFifthStepPublish:"February 4th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"22 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A professor of forestry, an editor, author, and co-author of over a dozen books and 200 research publications. Dr. Suratman was awarded his Ph.D. degree from the University of British Columbia and was a recipient of the best researcher and top talent awards from Universiti Teknologi MARA, Malaysia.",coeditorOneBiosketch:"Engku Azlin Rahayu Engku Ariff obtained a first-class degree in Biological Sciences and is a graduate fellowship recipient. Her current research focus is in the area of forest modeling, specifically looking at how predictive models can be helpful in assessing the impacts of climate change on the carbon sequestration potential of vegetations.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",middleName:null,surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman",profilePictureURL:"https://mts.intechopen.com/storage/users/144417/images/system/144417.jpg",biography:"Mohd Nazip Suratman is a Professor of Forestry at the Faculty of Applied Sciences, and a Principal Fellow at the Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Malaysia, He earned a B. Sc in Forestry from Universiti Putra Malaysia (UPM) and an M. S from the University of Nebraska-Lincoln (UNL), USA. He was then honored with a prestigious fellowship from the Canadian Commonwealth to pursue a Ph.D. degree at the University of British Columbia (UBC), Canada, where he worked on the application of remote sensing for forest resources management. He has been involved in numerous collaborative international research projects that led to publications in reputable journals. Altogether, he has published a total of 14 books and more than 200 research publications. His research interests cover several aspects of forestry, mainly forest modeling, forest ecology, and biodiversity. He received the UiTM’s Best Researcher and Top Talent Awards in 2015 and 2021, respectively. He served as the Deputy Vice-Chancellor (Research and Innovation) from 2018 to 2021.",institutionString:"Universiti Teknologi MARA",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Universiti Teknologi MARA",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:{id:"479437",title:"Dr.",name:"Engku Azlin Rahayu",middleName:null,surname:"Engku Ariff",slug:"engku-azlin-rahayu-engku-ariff",fullName:"Engku Azlin Rahayu Engku Ariff",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003SceBMQAZ/Profile_Picture_2022-06-07T14:57:49.PNG",biography:"Engku Azlin Rahayu Engku Ariff is currently a senior lecturer in the Faculty of Applied Sciences, University Teknologi MARA (UiTM) Pahang Branch, and an Associate Fellow of the Institute for Biodiversity and Sustainable Development (IBSD), UiTM, Malaysia. She received an undergraduate degree in Biological Sciences from the Universiti Malaysia Terengganu (UMK) in 2009 with first-class honors. She was then awarded a graduate fellowship by UiTM to pursue a Ph.D. program in forest modeling, specifically, she worked on the development of predictive models to estimate carbon stocks in rubber trees. She has been an active research member at IBSD, participated in many conferences, and delivered oral presentations on topics relevant to her area of expertise. Research findings from her work have been published in chapters in books and journals and have impacted her field of research. Her areas of interest include sustainable development, climate change, environmental issue, biodiversity, and plant physiology.",institutionString:"Universiti Teknologi MARA",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Teknologi MARA",institutionURL:null,country:{name:"Malaysia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"478200",firstName:"Dominik",lastName:"Samardzija",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"dominik@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6386",title:"National Parks",subtitle:"Management and Conservation",isOpenForSubmission:!1,hash:"78bb9f1f37bc8416f72ee2ad7b805c91",slug:"national-parks-management-and-conservation",bookSignature:"Mohd Nazip Suratman",coverURL:"https://cdn.intechopen.com/books/images_new/6386.jpg",editedByType:"Edited by",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7629",title:"Forest Degradation Around the World",subtitle:null,isOpenForSubmission:!1,hash:"29f17114445c20431aaaa24f31c2ef99",slug:"forest-degradation-around-the-world",bookSignature:"Mohd Nazip Suratman, Zulkiflee Abd Latif, Gabriel De Oliveira, Nathaniel Brunsell, Yosio Shimabukuro and Carlos Antonio Costa Dos Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7629.jpg",editedByType:"Edited by",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10844",title:"Protected Area Management",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"7daa4d97e24204483c488a67fcd76a17",slug:"protected-area-management-recent-advances",bookSignature:"Mohd Nazip Suratman",coverURL:"https://cdn.intechopen.com/books/images_new/10844.jpg",editedByType:"Edited by",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68272",title:"Sustainable Machining for Titanium Alloy Ti-6Al-4V",doi:"10.5772/intechopen.82344",slug:"sustainable-machining-for-titanium-alloy-ti-6al-4v",body:'\nIn recent years, attention has made on achieving comprehensive strategy over sustainable manufacturing due to increased emission of CO2 in environment and waste. This ultimately will improve industry’s economy [1]. Machining technology is referring to implement the sustainability, which has potential to improve environmental performance and save money. The problem in implementing sustainability in production companies is due to short-term financial planning. However, long-term strategy is necessary for sustainable manufacturing.
\nThe initiatives for the sustainable development are established at different levels, e.g., UN, OECD and National level, and are well positioned on macro level of production [2] but are lacking in implementation at shop-floor level.
\nConventional machining processes using mineral-based cutting fluids tend to increase environmental problems. Attempts are in focus to attain sustainable products and processes that will eliminate the bad effects of mineral-based cutting fluids. Alternative technique of cooling by using liquid nitrogen is in focus to eliminate the adverse effects of mineral oils. The cost of machining is a major element of a mechanical industry. Cutting tools having long tool life are preferred over those with short tool life in order to reduce overall machining cost and increase productivity.
\nIn aerospace industry, the components are usually made from superalloys. These alloys can withstand the high operating temperatures and extreme physical stresses. Out of these alloys, titanium is the most commonly used alloy. Ti-6Al-4V shows good results in application where high strength-to-weight ratio along with excellent corrosion resistance is required. This alloy is used in aircraft turbine engine components, structural parts of aircrafts, aerospace fasteners, high-performance automotive parts, marine applications, medical devices and sports equipment.
\nMilling is one of the mostly used machining operations in manufacturing industry. The situation becomes very difficult to handle when hard materials are required to go through milling process. The probability of tool wearing and damaging of surface roughness increases when high cutting forces and high temperatures are involved at interface of cutting tool and work material.
\nMuch energy is utilized in a machining operation along with the wastage of chips in material removal process. Operational safety and environmental friendliness of any machining process play a vital role in sustainability of process. It is estimated that machining process contributes to the gross domestic product (GDP) of developed countries by about 5% of total the GDP [3].
\nThe present trend is to create new and smaller products of higher quality in a shorter time and at a lower cost. There are many materials, which can be classified as ‘difficult-to-machine’. Machining of such materials requires special cutting tools. Cutting parameters affect directly on the surface roughness, tool wear and machining time.
\nThe world has now become energy conscious, and every industry is going to follow the health and safety requirements at all levels. The concept of sustainable manufacturing has now become the key focus, which deals with the economic, social, safety and environmental issues. Proper selection of cutting tool, coolant and process type is important for efficient and economic machining. Alternative solutions of dissipating the heat generated at chip-tool interface and cutting tool materials is in exploration since the last few years. Titanium alloys and other materials used in aerospace industry need special attention for their machining as these are difficult-to-machine materials.
\nExperimental data shows that cryogenic cooling is more sustainable than dry and conventional cooling process, and it gives the best results for tool life, surface finish of machined part, productivity with least impact on the environment, least energy cost and machining cost.
\nDifficult-to-machine materials are heat resistant; therefore, in machining of such materials, huge amount of cutting tools and coolants is used. The cost of a machined part mainly involves the cost of tools used, electrical energy and coolant cost.
\nIn conventional methodology, the parts are machined using mineral-based coolants. These coolants have disadvantages in worker’s health and environment where it is disposed of. Titanium alloys and other nickel-based alloys are difficult-to-machine, and therefore a number of cutting tools are wasted in their machining increasing the overall cost of the product. Conventionally used coolants have many problems associated with the health of workers and environmental impact.
\nThe problem becomes more critical when machining the difficult-to-machine materials where high temperatures are built at the tool-chip interface. Using of conventional mineral-based coolant to reduce the temperatures and frictions is creating other environmental problems because disposition of these lubricants is not only harmful for human life but also creating issues for aquatic organisms. Social impact of conventional lubricant and coolants is increasing health and safety problems of workers due to exposure to toxic chemicals. The working environments are being polluted increasing both the mist and noise levels. Industrial setups are required to adopt the sustainability principles in order to avoid increasing cost and environmental and safety issues. Alternative coolants are in exploration phase to replace with the conventional mineral-based coolants.
\nSustainability is defined as the ability to preserve, to keep or to maintain something. When something is sustainable it means that it is able to be kept and continued [4]. The three dimensions of sustainability (Figure 1) are environmental, social and economic, sometimes adding technology as the fourth one [5]. Initially sustainable development defined by Brundtland is reported in 1987 as ‘the way for improving the well-being and quality of life for the present and future generation’. More precisely it was defined as ‘to meet the needs of the present without compromising the ability of future generations to meet their own needs’ [6].
\nSustainability basic dimensions.
Manufacturing contributes by about 22% of Europe’s GDP, while 70% of jobs in Europe are directly related with manufacturing [7]. Energy consumption is a major factor in manufacturing industry which is based on electrical energy and oil. According to the action plan for energy efficiency, industrial production is responsible for about 18% of the total energy consumption of Europe [8].
\nSustainable manufacturing is important for the manufacturing industry as it helps to cope with the increasing environmental regulations, meeting the customer requirements for better environmental performance, lowering the material and energy costs resulting to greener products. Sustainable manufacturing is the creation of products using such processes that minimize the environmental impacts, conserving natural resources and energy, are safe for the communities, employees and customers and are economically sound. It has become a business imperative as companies across the world are facing increased costs of energy and materials coupled with higher expectations of customers, communities and investors.
\nIn sustainable manufacturing, the things are created in such a way (Figure 2) that is economically, environmentally, socially and safety wise feasible for both the manufacturer and user. Greater emphasis is over the environmental issue followed by the safety of workers and then economically. It leads the industry proactively to cleaner products and processes.
\nSustainable manufacturing aspects.
A process is said to be sustainable only when it has the lowest impact to the environment, is beneficial for society and is sound economically [9]. Hallmarks for the sustainable manufacturing are environmental friendly, lower machining costs, minimum energy consumption, personnel health, waste reduction and operational safety [10]. Globally the industries are striving for sustainable manufacturing by adopting advanced lubrication and cooling techniques, using vegetable oils or other environment-friendly cutting oils, selecting advanced tooling and accomplishment of advanced hybrid manufacturing processes, etc. [11]. Manufacturing industries of the USA, EU and other international countries are facing challenges to reduce the emissions of carbon dioxide and improve the efficiency of energy by making revolutions in technologies and processes [12].
\nThe environment, social development, education, natural resources, poverty and inequality are examined for sustainable developments [13]. Sustainability has no destination or limits, but it has continuous improvement making the constant advances in company’s overall sustainable performance. However spectrum of efforts can be followed as given by the United Nations Environment Programme [14] and OECD [15]. Sustainability is implemented by improving the work practices, optimizing processes, reducing resource consumption and minimizing impacts throughout the product life cycle (Figure 3).
\nImplementing sustainable manufacturing.
Industrial trends are shifting from conventional to sustainable manufacturing principles. Such revolutions are outcome of diseases found in workers at shop floor, requirement of cost reduction for manufacturing and Government policies for environmental protection [16]. There is a need to make the machining systems sustainable in which processes are non-polluted, conserving both energy and natural resources, and economically sound and safe for employees [17]. Growing global competition and energy costs demand for such machining processes which are cheaper, using better utilization of resources and efficient usage of energy [18].
\nIn the process of transforming inputs to outputs, the consumption of resources must be reduced to achieve sustainability. Refining the processes and machine tools are major factors for reducing the resources and energy consumption. The production systems are designed to support the continuous waste reduction, elimination or recycling. This can be achieved by less generation of waste; increasing recycling or re-usage; efficient usage of water, materials and energy; avoiding metal working fluids; and improving the management of lubricating oils, swarf and hydraulic oils. Sustainability will be gained by using the alternatives of cooling and lubrication fluids (CLFs) and dry machining using the coated cutting tools [19].
\nIn a sustainable machining process, the tool life, productivity and effective utilization of resources will be increased, while the machining cost, machine cutting power and adverse effect of cooling and lubrication fluids will be decreased. The model of sustainable machining is presented in Figure 4.
\nSustainable machining model.
Alternative cutting oils such as vegetable oils are renewable, environment-friendly and non-toxic in nature [20].
\nPresent investigations show that the cutting fluids are creating severe problems to health and environment [21]. The conventional fluids are considered very dangerous to the health and are rated out of top five hazardous to health [22]. Bulk use of conventional coolant in machining industries is causing increase in environmental damage [23].
\nMachining process contributes to worldwide economy, and it tends to become unsustainable when using such cooling and lubrication fluids which are oil based. These are made from mineral oils extracted from crude oil which is highly non-sustainable. Extract of crude oil is used to formulate the mineral oil which is converted to CLF. Although the vegetable oils are naturally derived, these are not used as CLF due to higher costs and reduced performance [24].
\nCLFs are widely being used in metal cutting industry to counter the heat generated by machining besides that they have disadvantage of hazardous to health and environment. One of the most unsustainable elements in machining process is the use of cooling/lubrication fluid which is extracted from crude oils [25].
\nCutting fluids are dangerous for health. In a report it is stated that about 80% of the skin diseases are due to the use of cutting fluids [26]. The machinists are facing the problem of skin and respiratory diseases due to metal working fluids [27]. Among the machinist over 1 million workers all over the world are facing toxic effects of cutting fluids, and majority of the cases are related to chest bronchitis [28]. According to a report [29], about 640 million gallon of coolant and lubrication fluid is used annually throughout the world. European Union estimated for metal working fluid and found that 3,20,000 tons is annually used and 66% of which is disposed-off after usage [30]. Used coolant in conventional machining has its adverse effects on the environment [31].
\nCryogenic machining is much safer than the conventional lubrication and coolants. Nitrogen gas has no hazards on life as about 79% of this already exist in air. Liquid nitrogen at cooling temperature is effective for cooling the cutting edge during machining of hard materials as cutting temperature exceeds 200°C [32]. It is a new technique of cooling the cutting zone and part during the machining at high speed and temperatures with cryogenic CLF. The coolant is nitrogen which is liquefied at −196°C and is safe, non-corrosive and non-combustible gas. This gas evaporates leaving no contaminates with part, operator, machine tool, and chips; thus disposal cost is eliminated. Mostly cryogenic CLFs are applied in the machining of superalloys.
\nThe cryogenic machining process is more beneficial and more sustainable in terms of safety, clean and environment-friendly machining. Due to minimization in changeover time, productivity also increases. Tool life is increased due to low abrasion rate and chemical wear. Improvement is observed in the surface quality without the degradation in its mechanical/chemical properties.
\nFor implementation of cryogenic machining at industrial level, investigations are required about the tool wear and tool life using cryogenic cooling [33]. Application of cryogenic machining at shop-floor level will be transitioning towards the sustainable machining and will promote the development of optimization for cryogenic fluid delivery with mass flow and controlled pressure.
\nIn cryogenic machining the cryogenic fluid is directly applied on the cutting tip of the tool. This flow is manageable to be controlled against flow and pressure which makes it more economic than conventional fluids. N2 gas is used as a cooling medium in cryogenic machining and is harmless to the health. This process increases the tool life and helps in productivity improvement, surface integrity improvement, chip breakability enhancement, reduction in built-up edge and burr formation [34, 35, 36, 37].
\nIn comparison of cryogenic cooling with conventional cooling and lubrication process, it is clear that the cost of power required for pumping of cooling and lubrication fluid is eliminated. The cost of cleaning CLF from the machined part becomes zero. Alternates of cutting fluid like N2, O2 and CO2 have been used and compared to wet and dry machining and found that fine surface finish obtained with increased flow rates and pressure of gases [38].
\nCompressed air as coolant was used for machining of optical glass and found that low cutting forces are observed as compared with diamond drilling [39].
\nExperiments performed using liquid nitrogen in turning process of titanium alloy with modified tools resulted in improved tool life, surface finish and reduced cutting temperature of 65% and reduced cutting forces [40]. Experiments were also performed to check the machinability by considering the surface roughness. Ti-6Al-4V was machined in dry, wet and cryogenic conditions to observe the surface roughness. Surface finish is found consistently better with cryogenic than with dry and wet [41].
\nDifferent gases have been used as a coolant like CO2, air, argon and nitrogen [42]. Experimental results conducted on Steel AISI 1040 using CO2, O2 and N2 show that best surface finish is achieved using CO2 then oxygen and nitrogen. Cryogenically compressed air was used for investigating the chip temperature, cutting force and the chip formation during the turning of Ti-6Al-4V [43].
\nSustainability in machining can be assured by reduction in energy consumption for machining processes, minimizing waste (less generation of waste and increasing the recycling of waste).
\nBenefits of using the sustainable machining cover increasing MRR without increasing wear rate of the cutting tool, decreasing the tool changeover time increasing productivity and improving the machined surface without degradation which results in the presence of chemical coolants.
\nThe most commonly used materials in aerospace industry are nickel alloys, titanium alloys and Co-Cr alloys [44]. Thermal conductivity of such materials is low, and therefore temperature observed at the cutting zone is extremely high. These facts have called for sustainability in machining and finding the alternate to conventional oil-based CLF as cooling and lubrication [45, 46, 47, 48].
\nHigher temperatures are observed in the high-speed machining (HSM) that result in high temperatures at cutting tool and part interface. In the reports it is given that tooling cost is about 4% of the total machining costs and coolant/lubrication cost is about 15% of total machining cost [49]; therefore huge sustainability gain is possible by avoiding CLF and using high-performance coated cutting tools [50]. Titanium alloy (Ti-6Al-4V) is referred to as difficult-to-machine material. It has low thermal conductivity due to which very high temperatures occur during the machining at the cutting point. Its mechanical properties are very good for load-carrying applications due to which it is mostly used in the commercial and military aircrafts. Figure 5 shows the comparison of machining difficulty level with other common materials.
\nMachining difficulty level of Ti-6Al-4V.
This alloy, also called Grade 5 titanium, shows good results when used in applications where good mechanical and thermal properties along with good strength-to-weight ratio are the primary objectives. Due to its good results in strong environments and resistance to corrosion, it is also used in petroleum industries, nuclear reactors, turbine blades, marine applications and medical implants. Demand of titanium parts is extensively increasing for industry of aircrafts such as Boeing 787. Preparation of titanium parts requires much cost for machining operations.
\nDue to low thermal conductivity, titanium has poor machinability. Titanium alloys can be used at temperature of 600°C. Titanium is related to a group of hard materials like nickel alloys, ceramics and cobalt-chromium alloys. It is important to cool down the cutting tool temperature in order to improve the cutting tool life, especially in the case when machining the materials with low thermal conductivity like Ti-6Al-4V alloy [51].
\nCoolant in conventional machining is harmful to aquatic organism and may cause long-term adverse effects in the aquatic environment. It is harmful to the respiratory system and can cause slight irritation making the environment contaminant. Repeated exposure may cause skin dryness. Nitrogen gas is harmless to environment and worker’s health. Therefore, cryogenic machining nullifies the exposure to toxic chemicals making it safer for both workers and environment.
\nIn machining of difficult-to-machine materials like Ti-6Al-4V, excessive tool wear and heat are produced making the surface quality poor [52]. Alternative solutions of dissipating the heat generated at chip-tool interface and cutting tool materials are in exploration since the last few years. The main reasons for rapid tool wear are building of high cutting temperatures. In machining of hard and difficult-to-machine materials, the conventional CLF (oil-based) does not effectively decrease the cutting temperatures, and therefore tool life is not increased. It is due to the fact that the coolants do not access the chip-tool interface which is under high cutting temperature and vaporize close to the cutting edge. Due to this phenomenon, the conventional CLF becomes ineffective for machining the materials with low thermal conductivity and high shear strength.
\nDry machining is not recommended at high-speed machining of difficult-to-machine materials. Such materials are used in aerospace industry and are capable of bearing high operating temperature like in jet engines.
\nThe quality of machined parts can be ensured by measuring the surface roughness. The quality of a surface with low roughness value is good over the surface having greater value of roughness. Surface finish is the important characteristic of precise devices as poor surface finish results in the problems of malfunctioning, geometric inaccuracy and excessive wear [53]. Surface finish and dimensional accuracy of a part greatly affect during its useful service life. Obtaining better surface finish of microstructures is in focus nowadays [54]. Failure of components commonly occurs as a result of poor surface of parts; therefore getting good surface finish is too much important. Researchers paid much attention towards getting good surface-finished parts using optimization techniques.
\nSurface roughness is mostly influenced by the feed rate, tool geometry, tool wear, chatter, tool deflection, cutting fluids and properties of working material. Other different kinds of factors (Figure 6) can affect the surface roughness.
\nParameters that affect surface roughness.
Most of the researchers have used the machining parameters in their work to find the response over the surface roughness. For example, the large nose radius of cutting tool will produce better surface finish than the small nose radius [55]. The feed rate plays also its role in surface finish that the smaller feed rate yields better surface finish.
\nCost of a machined part mainly involves the cost of cutting tools, electrical energy and labour and coolant cost. High machining cost of titanium alloy Ti-6Al-4V has made it important to ensure longer tool life by selecting the favourable cutting conditions [56]. Present competitive trends of manufacturing are focused on generating the products with low cost and high quality. The cost of machining was computed based on the machining time, while total cost was calculated adding the machine cost, setup cost, material cost and non-productive costs [57].
\nA cost estimation model has been proposed in [58] for optimization of machining cost which includes material cost, tool cost and overhead and labour cost. In this proposed model, if the desired cost-effective results are not achieved, then the feedback is given to a designer for modifications. The feasible process parameters including cutting speed, feed rate and depth of cut are selected to attain optimum results. Constraints of cutting tool specification, tolerances, cost, time, machining sequence and required surface finish are taken into consideration.
\nSustainability of a machining process refers to the impact on environment, power consumption and safe for operator, which were satisfied in the experimental works as the cost of tool was reduced in the cryogenic cooling and it also impact on time saving for tool changing and setup time, which result in increasing productivity. An advantage of cutting in cryogenic process is evaporating back of cooling gas (Nitrogen) into air, which ensures the healthy environment for workers.
\nIn experimental work [59], face milling of hardened Ti-6Al-4V at 55 HRC was carried for dry, conventional and cryogenic cooling conditions. Experiment model was designed using software design expert and technique of central composite design (CCD) was selected. Surface finish as response was checked and compared for each scenario of cooling. Resulting values of surface finish were compared based on iso-response technique, and the cutting power, cutting time, material removal rate, machining cost and cutting tool life were calculated as given in following sustainability parameters:
\nC
From the experimental results, it is concluded that cryogenic machining is recommended for Ti-6Al-4V. Results are satisfying sustainability for eco-friendly impact on the environment, reducing tooling and energy cost. Efforts can be made to switch from conventional machining to cryogenic machining which would be beneficial in reducing machining costs, health risks along with fine surface surface.
\nThe minimum value of surface finish can be obtained by the cryogenic machining using the coated carbide cutting tools. The cutting tool will not be damaged by cryogenic cooling ensuring both the sustainability and cost saving. Comparison of cutting power, cutting time, electricity cost, coolant cost, machine operating cost and material removal rate (Figure 7) for nearly identical response of surface finish shows that the cryogenic machining is more sustainable than others.
\nAverage response values calculated for nearly identical surface finish.
The results of tool life describe that cutting tool will survive for longer time in cryogenic cutting conditions than dry and conventional, resulting low cost of tool for the machining processes. Similarly, the cost evaluation resulted in low machining cost for cryogenic cooling as compared to dry and conventional. Cryogenic machining is more affordable and economic as there is no cost of pumping coolant, very low cost for cutting tool inserts and labour.
\nCutting tool inserts were found damaged in dry machining, whereas very low wear was found in conventional, and no wear was found in cryogenic machining. The coolant used in conventional machining has its adverse effects on worker’s health and environment, while the nitrogen gas is harmless. The tool wear rates are also high for dry and conventional. Summarizing all findings, it can be stated that cryogenic machining supports the sustainable machining.
\nPreparing for life on another planet or a planetary object requires an enormous effort from scientists and engineers [1]. The first steps toward extraterrestrial life are the crewed missions to the Moon, aiming to build the basis for the future long-term presence of humans beyond Earth. A remarkable amount of research and feasibility studies are being done by the European Space Agency (ESA) in Europe [2] and the National Aeronautics and Space Administration (NASA) in the USA [3, 4] on how to construct a “new home in space,” in a manner to eliminate the need for supply materials from Earth.
In this context, the use of space resources is one of the key directions in preparation for future human missions to the Moon. The so-called
In space and on the lunar surface, there are many factors potentially leading to damage in materials, such as exposure to vacuum, extreme thermal conditions, impact collisions with micrometeoroids, and radiation [14]. Among these, radiation is considered particularly harmful for different functional components and instruments of spacecraft and lunar surface missions. Radiation can induce structural defects that evolve from nanoscale to micro- and macro-damage, causing degradation of the mechanical, thermal, and electrical properties of materials or can even lead to direct failure in electronic signals before interacting with the very structural composition of the material. Therefore, improving the radiation resistance of materials to be used in space missions and searching for more radiation-resistant materials is of utmost importance. The research effort is directed toward finding composite materials that can better withstand radiation and other challenges faced by mission components in space and on space bodies and exhibit self-healing capabilities [15].
In this chapter, we first introduce some relevant materials for two of the most critical applications on the Moon, i.e., habitat construction and energy production. Then, we provide an overview of the radiation environment on the lunar surface and different radiation effects that can be induced in materials by such an environment. We then discuss the ways of combining traditional methods commonly used to study radiation effects with recent advanced approaches in materials modeling and provide examples of radiation-effects modeling studies on different materials. Additionally, we discuss the possibilities of using novel promising materials with exceptional properties relevant for space exploration, with an emphasis on their radiation resistance.
NASA has identified the most important components of the lunar mission as (i) design and construction of habitats and (ii) resource and power management [16]. In particular, the emphasis is on lightweight materials that will be critical for mass reduction and thus increase the science return of the mission. Both components mentioned above will strongly rely on ISRU, i.e.,
Constructing a habitat on the Moon can be done in two ways, by delivering materials from Earth and by using local resources. Although the latter option is more sustainable, the first one cannot be completely avoided. An important consideration that needs to be made when choosing materials is the type of habitat. NASA considers several types of habitat for different use, namely rigid (metals, alloys, and concrete) [18], inflatable (e.g., inflatable concrete [19]), or hybrid structures, as well as underground construction [20]. Depending on the type of habitat, different materials will be used [16, 21]. For example, unprocessed lunar regolith may be used for radiation shielding of habitat (e.g., lunar regolith geopolymer) [22, 23, 24, 25], as well as for construction when converted into concrete [26, 27], 3D-printed [28, 29, 30], or processed into other construction material (e.g., bricks and glass) [16, 21]. For materials delivered from Earth, it is crucial to ensure their low weight, as well as resistance to very high and very low temperatures (which change from 127°C in the daytime to −173°C at night on the Moon surface) and radiation, durability, reusability, and structural reliability [16].
Metals and alloys are essential structural materials for construction given their compressive strength and good tensile properties and for other applications, such as energy carrier/storage (wires) [31] or equipment (e.g., excavation tools, molds, and rovers) [32]. Al, Ca, Fe, Ti, and Mg are the most abundant metals in the lunar regolith, which also contains smaller amounts of Ni, Cr, Mn, Zr, and V [5, 20]. These metals—together with Si, also abundant on the Moon—can be used to produce alloys. However, only Fe can be easily separated from regolith (using magnets). Other metals are present in the form of oxides and thus have to be obtained by manufacturing. Metal and alloy manufacturing will be extremely important for the exploration of the Moon as they represent an essential part of the construction and are critical ingredients for most technologies.
One of the crucial steps toward the Moon exploration and settlement is a reliable energy technology for electricity generation and power storage [33, 34] that would withstand the temperature gradients, high levels of radiation, and impact. The primary energy sources considered for future crewed lunar missions are solar power [35, 36], nuclear power [37], and fuel cells [38, 39]. Other ways may include the production of electricity from the excess heat from the sunlight collected by an “evergreen” inflatable dome [40]. In this chapter, we focus on solar cells, a safe and reliable source of electricity in space.
In the past decades, solar cells for space applications have evolved from single-crystalline Si-based cells to multi-junction (MJ) ones based on GaInP, GaAs, and Ge [41, 42, 43]. A promising class of materials for next-generation lightweight and high-power-conversion efficiency [44] solar cells are hybrid organic-inorganic perovskites (HOIPs) [45, 46, 47], which are considered as potential candidates for use on future lunar bases [34].
HOIPs possess a unique combination of properties, such as enhanced charge carrier mobility [48, 49, 50, 51], diffusion length, and lifetime [48, 52, 53], high optical absorption [54, 55], and low production costs [56], representing a paradigm shift in solar cell technology [57] on Earth [58] and for space applications [59, 60, 61, 62]. Given their flexibility [63], low weight, small dimensions (0.5 μm as compared to 200 μm for Si solar cells), the possibility of
The radiation environment on the Moon is constituted, apart from solar electromagnetic radiation, by three radiation “populations”—the constant solar wind, the intense but sporadic Solar Energetic Particles (SEPs), and the constant background of Galactic Cosmic Rays (GCRs). A summary of the radiation environment on the lunar surface is given in Table 1.
Source | Particles | Energy, MeV/nuc | Flux, nuc/cm2/s |
---|---|---|---|
Solar Wind | Protons & electrons | ||
SEPs | Protons | 0 – | |
GCRs | Protons | 2–4 |
The solar wind is a constant flux of plasma from the upper atmosphere of the Sun. It consists mainly of ionized hydrogen (protons and electrons), a small percentage of
SEPs originate from solar transient events, such as coronal mass ejections or flares, and consist in a sudden intense flux of high-energy protons and electrons (and a small amount of
GCRs constitute the slowly varying, low-intensity (few particles/cm2(m2) per second), highly-energetic radiation background in space. They are mainly associated with supernova explosions in the galaxy, but extra-galactic contributions also exist. GCRs are constituted by
The annual exposure caused by GCRs on the lunar surface is
The effects of radiation on materials and devices can be cumulative (long term) and noncumulative (caused even by a single particle). The so-called Single Event Effects (SEEs) can occur when an ionizing particle passing through an electronic device carries a charge large enough to affect the device’s performance. SEEs in aerospace technology can lead to errors, corrupt the data, create noise, reset the device, or even cause fatal part failure [92, 93, 94, 95]. Cumulative radiation damage, on the other hand, occurs through continuous radiation exposure or exposure to intense flux due to SEPs events and can lead to the degradation of optical components and solar cells, eventually causing permanent damage. The total ionizing dose experienced by an electronic device can cause variations in threshold voltage or leakage current.
Cumulative non-ionizing damage in materials due to protons, electrons, and neutrons (originating from the interaction of energetic protons and electrons with the lunar surface) leads to defect formation (displacement damage) [94]. The types and sources of radiation, as well as the effects it can cause in materials, are summarized in Table 2.
Particle type | Energy | Sources | Radiation effects |
---|---|---|---|
Electrons | SEPs | Ionization radiation damage | |
Protons | SEPs | Surface damage to materials | |
Protons | SEPs accelerated in shocks | Displacement damage in solar cells | |
Protons | SEPs and GCRs | Ionization and displacement damage, background counting in sensors | |
Protons | SEPs and GCRs | Single event effects | |
Ions | SEPs and GCRs | Single event effects |
Sources and types of radiation and the effects it causes in materials and devices [96].
Cumulative radiation damage is a multiscale process in terms of time and length. A schematic representation of the so-called displacement damage cascade is shown in Figure 1. At first, an energetic external particle approaches (Figure 1(1)) and enters the target (Figure 1(2)). As the particle passes through the material, it first transfers its kinetic energy to electronic degrees of freedom of the target (electronic stopping) (Figure 1(3)). Electronic excitations happen at a very short time scale (
Schematic representation of different stages of the damage cascade in a crystalline material under irradiation.
Atomic displacements described above lead to defect clustering and eventual amorphization in crystalline materials. Consequently, mechanical, physical, and other properties of the irradiated material can be significantly altered. The scale of the changes depends on the energy of incoming particles and the actual number and spatial distribution of survived defects after eventual self-healing [98].
The radiation-induced effects after atomic displacements strongly depend on the type of material. For metals and metallic alloys, the main effect of radiation is the generation of dislocation loops and point defects which cause significant radiation-induced strengthening or hardening. As a result, the ductility and fracture toughness of the metals (alloys) can be reduced, leading to brittle behavior [99]. Ductile-to-brittle transition is especially pronounced at low temperatures at which the defect mobility, and consequently the annealing of defects, is reduced.
As to other materials, such as semiconductors in solar cells, cumulative exposure to space radiation or high SEPs fluxes can strongly affect the performance of MJ solar cells [100]. Moreover, the impacting radiation can reduce the transmittance of the protective SiO2 cover-glass on top of MJ cells by inducing color centers in the oxide material. The color centers appear when electrons excited by radiation become trapped by impurities in the oxide to form stable defect complexes. On the other hand, the radiation which is not blocked by the cover-glass causes damage in the functional layers of MJ solar cells by displacing atoms. Different energy levels can be created within the bandgap as a consequence of such structural defects. Such electronic defect levels affect the electrical performance of MJ solar cells acting as traps, recombination centers, or carrier removal sites which reduce free carrier concentration [100, 101].
Below, we will present different methods used to describe radiation-induced effects in materials focusing on the description of cumulative effects related to atomic displacements.
High-energy charged particles undergo a daunting number of interactions with target materials. Such interactions include:
electronic collisions leading to ionization and excitation;
multiple Coulomb scattering at small angles (elastic deflection without energy loss, or minimal inelastic loss);
inelastic nuclear reactions, that is, high-energy reactions in which a nucleus in the target struck by an incident particle (with energy
elastic nuclear interactions (
The most commonly used approach to study radiation-induced effects in materials is the Monte Carlo (MC) particle transport method [102, 103]. In MC particle transport, the interactions of individual primary ions and their secondaries are sampled to build a history of charged particle passage and energy deposition in the target [104], with a large enough statistical sample of trajectories. The energy- and angle-dependent cross sections for different interactions are provided by theoretical models of the elementary interactions and/or experimental data, depending on the energy window. Codes, such as Geant4 [105], MCNP6 [106, 107, 108], FLUKA [109], PHITS [110], and HETC-HEDS [111], have been successfully applied to study the radiation at a hemispherical dome made of lunar regolith used to simulate a lunar habitat [112, 113] and the radiation environment around the Moon [114, 115].
Several relevant radiation-induced effects in materials are due to particles with an energy of a few MeV to a few tenths of MeV, as can be seen in Table 2. In this regime, below hadronic interactions causing fragmentation/spallation, atomic displacements are induced in the target by elastic nuclear interactions. Two concepts describe the slowing down of the impacting particles (and the induced secondaries), (i) the
A displacement cascade in MC particle transport simulations is generally modeled within the Binary Collision Approximation (BCA) [119] which assumes a series of independent two-body collisions. Between collisions, particles travel in a straight line. The BCA is valid when (i) the projectile energy is higher than 1 keV per nucleon, which, for PKAs, could be relevant energy, and (ii) the target material has low density, in which case the collisions between the incoming particle and the target atoms occur rarely. BCA allows reducing the computational complexity of the ion-matter interactions compared to a full many-body simulation (e.g., molecular dynamics, discussed in Section 5) and allows for reaching large dimensions with reduced computational needs. However, this method is valid for linear collisions only and describes only primary damage, that is, it does not account for the dynamic evolution of induced defects at later times (Figure 2).
Time and length scales and corresponding methods can be applied to study different stages of radiation damage.
One of the most popular tools in which the BCA is implemented is the Stopping and Range of Ions in Matter (SRIM) code [120]. Besides containing semiempirical data for the electronic stopping power of a variety of targets, SRIM can be applied to model the linear cascades and estimate the number of defects in any material and any ion energy up to 1 GeV. Nuclear stopping in very low-energy intervals uses the so-called ZBL (Ziegler-Biersack-Littmark) universal potential that combines classical Coulomb potential with a semiempirical screening function [120]. The electronic and nuclear degrees of freedom are completely separated in SRIM as well as in other MC particle transport tools used by the particle physics community and the space radiation effects community. Finally, it is important to remark that materials are static in MC particle transport methods—there is no dynamics induced in them by the impact of primaries and the generation and passage of secondaries. Thus, more accurate methods are needed to get access to the processes missing in MC particle transport calculations. Such methods are described in the next section.
There is a large variety of methods used in condensed matter physics and materials science to study radiation effects in materials, each of them describing a particular aspect of the damage process. Figure 2 shows a schematic representation of the different time and length scales with the corresponding computational methods that can be applied to study different stages of radiation damage [97, 121, 122]. The very first stage, at the smallest time-length scale, is the electronic stopping regime. For decades, the semiempirical SRIM code discussed in the previous section has been the most widely used tool to calculate electronic stopping power. Nowadays, the electronic stopping power (and the induced electronic excitations in the target) can be described by
For a complete and accurate description of every aspect of radiation damage, as well as the interplay between them, one has to adopt a combined approach. In recent years, researchers have realized the importance of a multiscale approach to studying radiation damage, as follows from many publications and reviews [121, 122, 130, 131, 132, 133, 134]. Each of the methods presented in Figure 2, as well the ways of combining them, will be discussed below in the order of increasing complexity. The main focus will be on classical MD, AIMD, and TDDFT, which are fundamental for the description of primary radiation damage at the atomic scale.
The most widely used approach in materials science to study the interaction of ions with matter (collision cascades) is MD [135]. MD offers a picture of the ion–ion interaction beyond the linear cascade of the pure BCA by including many-body effects. In MD, atoms are treated as classical particles, and their motion is described by Newtonian dynamics. No electronic effects are thus included.
Cascade simulations need large samples consisting of up to a million atoms (depending on the PKA’s energy), which prohibits using parameter-free methods (such as DFT, see Section 5.2) to compute the interatomic forces. Instead, in MD, the forces on atoms are calculated from empirical or semiempirical interatomic potentials (also called force fields) [136, 137, 138]. MD with empirical potentials proved to work well for large systems and long time scales [139].
In an MD cascade simulation, the system is usually modeled using periodic boundary conditions, that is, by replicating a small unit cell in all directions. Typically, prior to the cascade simulation itself, a regular MD simulation is done to thermally equilibrate the target system at the desired initial temperature. Then, with the equilibrated configuration, the cascade simulation is initiated by changing the velocity of one of the atoms (the PKA), giving it the desired amount of kinetic energy in the intended direction. The system is then evolved in time as in regular MD, that is, by integrating Newton’s equations along with a series of time-steps, which involves computing the atomic forces, velocities, and positions at each time-step (see Refs. [140, 141] for classical texts on MD). At the end of the cascade simulation, the number of defects is obtained by evaluating the final geometry of the system. Usually, cascade simulations are repeated several times, choosing a different PKA and/or a different direction of the PKA’s movement to obtain a statistical average of the number of final defects.
MD has been successfully applied to simulate radiation cascades in a variety of materials [139], from simple metals [142, 143] and compounds [144, 145, 146] to complex nanostructures [147], 2D materials [148], and novel multicomponent alloys [149, 150]. MD simulations can afford to access the processes taking place on a relatively long time scale up to ps or even ns which is enough to describe the damage cascade until the thermal spike of the collision has dissipated. Most of the MD codes, however, describe only elastic collisions between atoms and disregard the energy loss mechanisms such as electronic excitation and ionization. The possibility of including electronic excitations is discussed in Section 5.3.
After the primary damage has been formed, defects may continue diffusing, thus annihilating or forming defect clusters. Such processes occur on a much longer time scale, reaching at least seconds, not accessible via regular MD. The problem of simulating a process not accessible in a feasible amount of computational time has motivated the development of several enhanced sampling techniques [151], which in the case of MD simulations of materials have allowed to observe otherwise challenging processes, such as phase transitions.
KMC [127] simulations are commonly used to access long-time effects of radiation in materials [152, 153, 154, 155]. KMC is designed to model the time evolution of an atomic system. However, instead of solving the equations of motion, as it is done in MD, the KMC method is based on the assumption that the long-time dynamics of a system consists of diffusive jumps from state to state. Each of the states is treated independently, which makes KMC a very efficient method. The dynamics of the system, that is, the probability of transition from one state to another does not depend on the history of the system. The probability of a state-to-state transition is assigned randomly and the most probable transition is statistically chosen. This allows avoiding the complications related to the choice of interatomic potentials, thus overcoming the time limitations of MD simulations (usually
To further extend the problem into the macro-domain, the DD [128] and FEM [129, 156] methods, based on dividing a geometrical space on a number of finite (non-overlapping) segments, are usually applied. FEM has been used to study the response of a macro-object to external stress in engineering and has also been applied to study the behavior of solids under irradiation by extrapolating the known displacements and evaluating the geometry of a 3D object. DD method allows for calculating the motion of dislocations as well as evaluating the plastic deformation in the material induced by the collective motion of dislocations.
AIMD is one of the most important tools in quantum physics and chemistry [157]. In a typical AIMD simulation, it is assumed that the system consists of
Practical DFT calculations are based on the Kohn-Sham (KS) formalism [126], which replaces the complex problem of interacting electrons in the standard Schrödinger equation by a problem of non-interacting electrons moving in an effective potential
where
AIMD is used to simulate any physicochemical process where the electronic structure of the system changes significantly or when a detailed description of the structure is needed. A typical example would be the simulation of chemical reactions, where chemical bonds are formed or broken, which cannot be described via classical force fields.
Although the adiabatic BO approximation is the usual approximation in the methods described above, its applicability is only justified in near-equilibrium situations. However, under ion impact, the electronic subsystem is rapidly driven out of equilibrium.
A realistic description of the dynamics of the electrons in the target during the passage of fast ions can be obtained in the framework of TDDFT which gives access to the electron dynamics out of the electronic ground state. In particular, real-time TDDFT [160] provides a non-perturbative description of the electronic excitations upon an external perturbation and can be combined with the Ehrenfest MD scheme [161], which allows for coupling between electron and ion motion, contrary to the BO picture.
TDDFT consists in solving the time-dependent KS equations [123]:
where
where
The solution of the time-dependent KS equations in real time can be obtained by applying the so-called time-evolution operator, evolving the KS states in time [123]. The time-step of this propagation must be of the order of attoseconds to describe the fast dynamics of the electrons, in contrast to what occurs in AIMD and MD where the time-step is of the order of femtoseconds. The time-dependent electron density is calculated at each step, from which the total energy of the system is obtained. Knowing the total energy as a function of time, the electronic stopping power can be calculated as
Many examples of accurate first-principles calculations of the electronic stopping power are available in the literature [117, 118, 163, 164, 165, 166, 167, 168]. Recent studies have demonstrated that electronic excitations (induced by both the primary impacting ion and especially by PKAs and further displaced atoms) affect the cascade evolution [118, 169, 170, 171] and thus, they need to be accounted for. The electronic stopping effects can be included in MD cascade simulations through the so-called two-temperature (2T) model [118, 172]. In 2 T-MD, the electrons are included as a thermal bath. Each particle is subject to a friction force representing the electronic stopping and a stochastic force representing the coupling between the vibrational degrees of freedom of the lattice and the electrons. This model considers constant electronic density in the entire system and thus, the electronic stopping power is independent of the crystal direction. Recent studies have extended the 2T model by coupling the electronic and nuclear effects via many-body forces that act in a correlated way. This allowed for the construction of a unified model for ion-electron interactions [170, 171, 173, 174] with a complex energy-exchange process between the ionic and electronic subsystems [174].
The previous section provided an overview of computational methods that can be applied to study radiation damage in materials and discussed the advantages of combining such methods into a multiscale approach. This section mainly focuses on the effects of radiation on materials of practical use on the Moon, including several novel and promising materials. We overview the existing radiation damage studies for these novel materials, emphasizing multiscale modeling when available.
Generally, degradation of solar cells is modeled via the non-ionizing energy loss (NIEL) approach, the NIEL being the portion of energy loss per unit path length of the projectile converted into displacement damage. According to Akkerman et al. [175] (the definition used in most simulation tools), the NIEL is defined as:
where
On the basis of a large set of experimental observations, it is assumed that the degradation of a semiconductor device under irradiation can be linearly correlated with the NIEL [176]. In practice, this means that the number of defects should give a measure of the damage irrespective of their distribution, whether clustered in high density in small regions (as in the case of neutron damage) or homogeneously scattered over a relatively wide volume (as in the case of the low-energy proton or
Generally, the NIEL is calculated via MC particle transport codes, assuming amorphous target materials, a static
NIEL for protons and electrons in GaAs for different values of the threshold displacement energy
Another example of possible improvement in the NIEL model is a more precise calculation of the number of radiation-induced defects and of the “quality” of radiation-induced damage (which type of defects are induced). It has been observed that point-like and clustered defects contribute differently to some degradation parameters [191]. Recent MD studies [192, 193, 194] and experimental works [181, 195, 196] have proposed an effective or
On a parallel research stream, multiscale studies in a number of materials combining MD simulations of collision cascades with the electronic stopping from TDDFT offer a more accurate description of both the number and the nature of defects created under realistic conditions. The electronic degrees of freedom and their coupling to the phonons of the target affect the cascade evolution and morphology [170, 171, 173, 174]. This is of relevance for the NIEL which includes a part of energy dissipated to phonons. This fraction depends on the energy of the impinging particle but also on the properties of the material. Some studies have shown that the direction-dependence of the electronic stopping can influence the collision cascades [118]. Other studies have demonstrated that the formation of thermal spikes and therefore of amorphous pockets is sensitive to the electronic specific heat [199] and others that the choice of the model employed for the inclusion of the electronic effects and in particular the overestimation (or underestimation) of electron-phonon coupling can have a significant influence on the number of defects created [171].
As discussed in Section 2, HOIPs have a unique combination of properties particularly interesting for lunar exploration. The general chemical formula for perovskites is ABX3, where A and B are two metal ions with different ionic radii and X is an anion that is six coordinated to the B-site [200]. HOIPs, in particular, comprise a negatively charged lead-halide inorganic skeleton where B is a metal cation (Sn2+ or Pb2+), X is a halide anion (I−, Br−, and/or Cl−) and A is a monovalent positively charged organic cation, such as methylammonium (MA+ = CH3NH3X+, where X = I, Br, Cl) or formamidinium (
Structure of a HOIP: methylammonium cation (
Despite many advantages, several external factors, such as air, moisture [202], UV light [47, 203], heat, light soaking [204], and partially also radiation [205, 206], induce considerable structural instabilities in HOIPs. An intrinsic instability is also present, caused by a relatively weak cohesion between the organic cation and the inorganic octahedra and predominantly by the low-energy barriers for the migration of halide anions and organic cations, with halide migration being the most prevalent [201, 207, 208, 209, 210]. Phase segregation can be induced by large-scale ion migration [211]. However, some of the challenges that HOIPs-based solar cells face on Earth, such as degradation caused by moisture, are not relevant for space applications [212]. Thermal and vacuum stability, high power-conversion efficiency, and radiation resistance are the main challenges in the space context. A sensible choice of the chemical composition, of eventual use in tandem devices [212] (which also helps to reach an efficiency of up to 30%) or incorporation of a functionalized 2D metal-organic frameworks (MOFs) [213], can improve the long-term operational stability of HOIPs.
A relevant collection of DFT studies for HOIPs can be found in Ref. [214]. A recent study based on DFT + compressed sensing-symbolic regression has shown that mitigation of the propensity of halogens to migrate could be achieved by selectively strengthening specific bonds [215]. The study also unveiled the reasons for improved stability given by specific halogens, the origin of the higher stability offered by certain organic cations compared to others, and highlighted in a quantitative and first-principles manner how weak interactions have a significant role in binding the halogens more strongly.
The study of the radiation tolerance of perovskite solar cells is an extremely active field of research. Solar cells based on HOIPs as active layers have been recently sent to space via first campaigns [60, 216]. Several ground-testing experiments have been performed mostly using protons, either with an energy of several tenths of MeV [69, 211, 217] or with an energy of 150 keV, 100 keV, and 50 keV [70, 218, 219], of less relevance for realistic space conditions.
Superior radiation resistance of perovskite solar cells in comparison to commercially available crystalline Si-based cells has been demonstrated [69]. Moreover, experiments have shown that perovskite solar cells have remarkable self-healing capabilities (at room temperature) that lower the number of defects caused by proton irradiation [69]. Another experimental study has shown that the proton irradiation effects on the physical properties of HOIPs are strongly dependent on the synthesis method [220] which appeared to affect the strength of specific chemical bonds. In particular, HOIPs, produced by mechano-chemical synthesis, have shown practically no change in their physical properties after irradiation with a high-energy 10 MeV proton beam with doses of up to 1013 protons/cm2.
Recently, multi-junction tandem solar cells (combining HOIPs with previous technologies or technologies investigated in parallel) have also been studied under ion irradiation [217]. Lang et al. [217] carried out SRIM simulations of energy loss of high-energy protons as well as the energy transferred to the recoiling nuclei—a measure of the degradation of PV parameters—in tandem solar cells (Figure 5). The study [217] has shown that HOIP/CIGS tandem solar cells possess a high radiation hardness and retain over 85% of their initial performance even after 68 MeV proton irradiation and a dose of
3D scatter plots of the straggling of 68 MeV protons within the (A) HOIP/CIGS(Cu(In,Ga)Se
First-principles calculations of the atomic knock-on displacement events in HOIPs have shown that such displacements are significant and highly energy-dependent [221]. The work has shown that only certain types of atoms are prone to displacements suggesting that mitigation strategies should be directed toward some chemical species more than others. Overall, further studies are necessary, but existing research proves that HOIPs-based solar cells have a remarkable potential for power generation on missions to low Earth orbit, the Moon, and beyond [62].
Another promising class of novel materials for space applications is multi-principal element alloys (MPEAs) [222, 223], which combine superior mechanical properties and enhanced radiation resistance [224]. Also known as high-entropy alloys (HEAs) or concentrated solid-solution alloys (CSSAs), MPEAs consist of at least five principal elements with the concentration of each element from 5 to 35% [222]. Despite the complex composition, MPEAs often form single-phase solid solutions (Figure 6). The interest of researchers in MPEAs has been growing exponentially in recent years, as they exhibit a paradigm shift in alloy development. MPEAs indeed combine a set of outstanding properties, such as high strength, hardness, fracture toughness, corrosion resistance, strength retention at high temperature [226], good low-temperature performance [227], and recently discovered enhanced radiation resistance, superior to conventional alloys and pure metals [149, 222, 223, 228, 229, 230, 231, 232, 233]. Moreover, MPEAs have great potential as 3D printing materials [234]. MPEAs can be printed from a powder, providing manufacturing freedom for lightweight and customizable products of complex geometries for applications in the aerospace, energy, molding, tooling, and other industries, all of the great relevance for the exploration of the Moon.
Atomic structure of a body-centered cubic (BCC) AlCoCrCuFeNi HEA. The Al, Fe, Co, Cr, Ni, and Cu atoms are shown in red, magenta, green, blue, cyan, and gray colors, respectively [
Recent experiments have shown that MPEAs have a higher resistance to defect formation due to high atomic-level stress and chemical heterogeneity [235]. MPEAs also possess lower void swelling and higher phase stability [236, 237] as compared to conventional alloys. Self-healing capability is another remarkable property of MPEAs [227, 236, 238].
The subclass of lightweight (LW) MPEAs have a great potential for space applications due to their high strength-to-weight ratio [239, 240, 241]. The main components of LWMPEAs are low-density elements, such as Al, Mg, Si, and Ti [240]. The latter is of extreme importance for ISRU since 99% of the lunar soil consists of Si, Al, Ca, Fe, Mg, and Ti oxides [5, 242].
Currently, the main focus of computational studies has been on the single-phase random solid-solution (SS) alloys based on transition metals with high densities (Co, Cr, Fe, Ni) for application in radiation environments, in particular in nuclear reactors [148, 149, 232, 236, 243, 244, 245]. MD simulations of displacement cascades applied to pure metals and multicomponent alloys [150, 244, 245, 246, 247, 248] confirm the experimentally observed reduction of the number of defects and defect clusters in MPEAs compared to pure metals (Figure 7).
The number of defects in Ni, NiFe, and NiCoCr from experiments and MD simulations [
The electronic stopping power for a proton in binary alloys has recently been calculated using real-time TDDFT [249]. The study has shown that the electronic stopping power of binary alloys is higher than that of pure Ni, suggesting that alloys more effectively stop the incoming particles. Moreover, the inclusion of the electronic stopping into MD simulations of defect formation significantly reduces the final number of surviving defects, as shown in Figure 8. The inclusion of both the electron-phonon coupling and the electronic stopping in the 2T-MD model not only reduces the actual number of defects but also notably impacts their final arrangement, namely leading to more isolated point defects and reducing the size of defect clusters in binary and ternary alloys [250, 251, 252, 253, 254].
Average number of surviving defects in the classical MD cascade, MD cascade including electronic stopping force, and the 2 T-MD cascade at the end of the simulation for 50 keV Ni cascade in Ni, Ni80Fe20, and NiFe [
The majority of MD studies focus on binary and ternary MPEAs due to the lack of force fields for alloys with more than three elements. However, some studies exist [233] on defect formation in NiCoFeCr alloy in which fewer defects have been found at the end of the displacement cascade with PKA energies from 10 to 50 keV, as compared with pure Ni. The limitations of the classical MD with force fields and the ways of solving this problem are discussed in the following.
Classical MD with empirical potentials is the method that proved to work well for large systems and long time scales [139] for the modeling of collision cascades. However, classical interatomic potentials cannot accurately reproduce interactions between the atoms in MPEAs due to their complex structure and lattice distortions leading to internal strain [149, 255, 256]. On the other hand,
Recent developments in machine learning (ML) approaches can provide a solution to this problem. ML-enhanced materials discovery is an emerging and extremely rapidly growing field. The combination of a precise model based on quantum mechanics and ML algorithms have the potential for an efficient and accurate description of materials properties [257, 258, 259]. Much progress has been made in recent years in the development of ML-based interatomic potentials with the input from electronic structure calculations. First applications have shown that accurate potentials can be obtained for many relevant systems [260, 261, 262, 263, 264, 265]. ML-assisted calculations have been applied to pure metals, binary, ternary alloys [266, 267], and MPEAs [268, 269, 270].
ML and artificial intelligence (AI) may become powerful tools for more accurate multiscale modeling of materials properties. Artificial Neural Networks (ANN) [271] combined with atomistic KMC have already been used to describe the microstructural changes in metals and alloys induced by irradiation [272]. Machine-learned interatomic potentials have been used to study defect formation in refractory MPEAs [273]. The results confirm experimental findings, showing that the 3D migration and increased mobility of defects in MPEAs promote defect recombination leading to more efficient healing. AI, thus, can provide a bridge between different methods, such as DFT, MD, and KMC, and allow for large-scale atomistic simulations of high accuracy, which will accelerate the discovery of new advanced materials.
Fiber-reinforced polymers (FRPs) are composite materials made of a polymer matrix reinforced with fibers. Typical polymers that are often used include epoxy, vinyl ester, polyester thermosetting plastic, and phenol-formaldehyde resins. Typical fibers include, but are not limited to, glass, carbon, and aramid. In a composite FRP material, the polymer and fiber often have significantly different physical and/or chemical properties, which remain separate and distinct within the finished structure but are complementary for tailored properties [274]. Because of their low density (lightweight), great moldability, specific strength, stiffness [275], excellent mechanical stability, and good thermal properties, FRPs are being increasingly used as structural materials in aerospace, automotive, marine industries, and civil infrastructures. Hence, FRPs are of great interest for many applications for lunar missions as potential structural materials [276]. Glass fibers (also “fiberglass”) can be directly produced from the lunar soil as well as from by-products of metal extraction and can be used to reinforce lunar concrete [277].
The radiation environment on the Moon presents challenges for FRPs with concerns on both the immediate reactions taking place in the materials (short-term effects) and continued post-exposure degradation processes (long-term effects) [276, 278]. In the past decades, many selected FRPs have been ground-tested at different kinds of radiation and particle accelerator facilities for their potential use in space-related radiation environments, including UV-light [279, 280],
Carbon-fiber composites have been widely used in aerospace industries due to their high-temperature stability and low density along with high strength, as well as superior beam-induced shock absorption [285, 286]. A combined modeling and experimental study of the radiation effect on carbon-fiber-reinforced molybdenum-graphite compound (MoGRCF) [285], including MC simulations of the energy deposited into a realistic structure by a 200-MeV proton beam (Figure 9) has show that carbon-fiber-reinforced composites have superior beam-induced shock absorption ability compared to that of graphite.
MC modeling of the energy deposition for a 200-MeV proton beam interacting with an irradiation target array (MoGRCF) in tandem with the isotope production array downstream [
In the 1980s, the degradation behavior of carbon-fiber-reinforced plastic (CFRP) under electron beam irradiation in various conditions simulating experiments in space has been studied by Sonoda et al. [283]. It has been observed that there is no change in mechanical properties of CFRP when irradiated by up to a dose of 50 MGy. MC simulations of radiation effects in FRPs have shown that by adding lead nanoparticles it is possible to increase their radiation resistance [287]. According to the study, the addition of 15 wt% of lead nanoparticles to FRPs led to a mass reduction of
An alternative to glass fiber for polymer reinforcement is basalt fiber which offers advantages, such as high specific mechanical and physicochemical properties, biodegradability, non-abrasive qualities, and cost-effectiveness [288]. Arnhof et al. [289] have recently studied mechanical properties of fiber-reinforced geopolymer (FRG) with basalt fiber (i.e., inorganic alumino-silicate polymer) made from lunar regolith simulant as potential shielding and structural material. As basalt fibers can be produced
The additive-manufacturing (AM) techniques for lunar construction from regolith, including FRP materials, and their suitability for ISRU has recently been reviewed in Refs. [292, 293]. The AM techniques for lunar construction include Cement Contour Crafting (CCC), Binder Jetting (BJ), Selective Solar Light Sintering (SSLS) and Selective Laser Sintering/Melting (SLS/SLM) for 3D printing and metal melting, Stereolithography/Digital Light Processing (SLA/DLP), among others. CCC and BJ technologies could be used for outdoor lunar civil engineering. SSLS could be applied to both direct compacting of lunar regolith to ceramic parts and 3D printing. SLA/DLP-based methods could be used for the indoor manufacturing of ceramic instruments, providing higher precision and printing quality and lower defect rate of the printed parts than other AM methods. In the last decade, studies have clearly shown that the 3D-printing technologies will become one of the cornerstones of lunar exploration, providing future astronauts with all the necessary infrastructure [293].
Lunar concrete consisting of mined regolith with the addition of glass fibers (also made
It is worth mentioning that the 4D printing of a “smart material” with FRPs that responds to radiation-induced damages and aging in a programmable way could be realized in near future [296, 297]. In addition to experiments on the radiation environment in a lab, multiscale computational simulations as mentioned above could be helpful for gaining further insights into the radiation-induced molecular changes occurring in polymers.
In this chapter, we introduced some relevant materials for lunar habitat construction and power generation. We discussed the radiation environment on the Moon and the effects that radiation can cause in such materials. We provided an overview of computational methods used to study different stages of radiation damage in materials, focusing on the methods that allow simulating the behavior of materials with extreme accuracy down to the atomic scale. We emphasized that by coupling different methods, it is possible to account for different time and length scales in the evolution of the radiation-induced effects and to combine the electronic effects with atomic displacements.
Several particular examples of radiation damage studies have been discussed with the focus on novel materials with enhanced radiation resistance and other remarkable properties for use on the Moon that can revolutionize space exploration. Such materials include HOIPs for energy production and MPEAs and FRP composite materials for construction. The primary materials considered for lunar construction are FRGs with basalt or glass fibers, which have excellent mechanical properties, can benefit from ISRU, and provide necessary radiation shielding. We emphasized that researchers’ effort is mainly directed toward the development of additive manufacturing techniques, such as 3D printing for habitat construction from lunar regolith. 3D printing will allow producing complex and customizable products in a shorter time and with a lower cost and material consumption.
Nowadays, the radiation-induced effects in materials for space missions are mainly studied by MC particle transport modeling, inheriting the remarkable modeling and computational efforts by the high-energy physics community. However, with the development of first-principles methods and multiscale simulations, a more accurate understanding of radiation effects in materials can be achieved for the regime below hadronic interactions, with details down to atomic scale. It can be expected that the combination of first-principles methods, MC particle transport, and ML will contribute further to the investigation of materials to unravel their full potential for the application in harsh space radiation environments, in particular for what concerns the resistance and resilience to cumulative displacements effects.
The authors are grateful for the funding provided by the project ESC2RAD within the Horizon 2020 Research and Innovation program (grant agreement ID: 776410) and by the project PROIRICE within the program H2020-MSCA-IF 2016 of the Horizon 2020 program of the European Union (grant agreement ID: 748673).
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:268},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"83",title:"Inorganic Chemistry",slug:"chemistry-inorganic-chemistry",parent:{id:"8",title:"Chemistry",slug:"chemistry"},numberOfBooks:27,numberOfSeries:0,numberOfAuthorsAndEditors:504,numberOfWosCitations:859,numberOfCrossrefCitations:426,numberOfDimensionsCitations:996,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"83",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!1,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:"alkaline-chemistry-and-applications",bookSignature:"Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:"Edited by",editors:[{id:"300527",title:"Dr.",name:"Riadh",middleName:null,surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7760",title:"Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides",subtitle:null,isOpenForSubmission:!1,hash:"e41f9a3546e36dbf70a36974f74e9845",slug:"structure-processing-properties-relationships-in-stoichiometric-and-nonstoichiometric-oxides",bookSignature:"Speranta Tanasescu",coverURL:"https://cdn.intechopen.com/books/images_new/7760.jpg",editedByType:"Edited by",editors:[{id:"24934",title:"Dr.",name:"Speranta",middleName:null,surname:"Tanasescu",slug:"speranta-tanasescu",fullName:"Speranta Tanasescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9206",title:"Importance of Selenium in the Environment and Human Health",subtitle:null,isOpenForSubmission:!1,hash:"e21bd2a386a2d078fe53a4d1658e44bf",slug:"importance-of-selenium-in-the-environment-and-human-health",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohamed Asiri, Anish Khan and Inamuddin",coverURL:"https://cdn.intechopen.com/books/images_new/9206.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6797",title:"Chalcogen Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"721946bc223c90085bafaf501d5b7329",slug:"chalcogen-chemistry",bookSignature:"Peter Papoh Ndibewu",coverURL:"https://cdn.intechopen.com/books/images_new/6797.jpg",editedByType:"Edited by",editors:[{id:"87629",title:"Prof.",name:"Peter",middleName:"Papoh",surname:"Ndibewu",slug:"peter-ndibewu",fullName:"Peter Ndibewu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7358",title:"Cerium Oxide",subtitle:"Applications and Attributes",isOpenForSubmission:!1,hash:"7d1cd9a9ecf46270e344d15f94bc66ef",slug:"cerium-oxide-applications-and-attributes",bookSignature:"Sher Bahadar Khan and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/7358.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",middleName:null,surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7549",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"7bbd9beaeefecb9ec112a0a09432d241",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",bookSignature:"Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/7549.jpg",editedByType:"Edited by",editors:[{id:"147861",title:"Dr.",name:"Takashiro",middleName:null,surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6690",title:"Arsenic",subtitle:"Analytical and Toxicological Studies",isOpenForSubmission:!1,hash:"5d829bc54fef4d7062ab1d4c403a0895",slug:"arsenic-analytical-and-toxicological-studies",bookSignature:"Margarita Stoytcheva and Roumen Zlatev",coverURL:"https://cdn.intechopen.com/books/images_new/6690.jpg",editedByType:"Edited by",editors:[{id:"170080",title:"Dr.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6190",title:"Symmetry (Group Theory) and Mathematical Treatment in Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"3e429d96a01f4a95d3918d671f776dfc",slug:"symmetry-group-theory-and-mathematical-treatment-in-chemistry",bookSignature:"Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/6190.jpg",editedByType:"Edited by",editors:[{id:"147861",title:"Dr.",name:"Takashiro",middleName:null,surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6255",title:"Ozone in Nature and Practice",subtitle:null,isOpenForSubmission:!1,hash:"0b160c6c458f2da2a2780bb1974faf64",slug:"ozone-in-nature-and-practice",bookSignature:"Ján Derco and Marian Koman",coverURL:"https://cdn.intechopen.com/books/images_new/6255.jpg",editedByType:"Edited by",editors:[{id:"80852",title:"Prof.",name:"Jan",middleName:null,surname:"Derco",slug:"jan-derco",fullName:"Jan Derco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5879",title:"Chemical Reactions in Inorganic Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"2bcf0f925171dfef401e934443e0d296",slug:"chemical-reactions-in-inorganic-chemistry",bookSignature:"Saravanan Chandraleka",coverURL:"https://cdn.intechopen.com/books/images_new/5879.jpg",editedByType:"Edited by",editors:[{id:"196005",title:"Dr.",name:"Chandraleka",middleName:null,surname:"Saravanan",slug:"chandraleka-saravanan",fullName:"Chandraleka Saravanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6176",title:"Ligand",subtitle:null,isOpenForSubmission:!1,hash:"6898acb82ecb8861ebf01d7c8b043062",slug:"ligand",bookSignature:"Chandraleka Saravanan and Bhaskar Biswas",coverURL:"https://cdn.intechopen.com/books/images_new/6176.jpg",editedByType:"Edited by",editors:[{id:"196005",title:"Dr.",name:"Chandraleka",middleName:null,surname:"Saravanan",slug:"chandraleka-saravanan",fullName:"Chandraleka Saravanan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6242",title:"Hydroxyapatite",subtitle:"Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets",isOpenForSubmission:!1,hash:"6a18a9b6617ae6d943649ea7ad9655cc",slug:"hydroxyapatite-advances-in-composite-nanomaterials-biomedical-applications-and-its-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6242.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:27,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"39143",doi:"10.5772/35844",title:"Thin Film Growth Through Sputtering Technique and Its Applications",slug:"thin-film-growth-through-sputtering-technique-and-its-applications",totalDownloads:8009,totalCrossrefCites:18,totalDimensionsCites:66,abstract:null,book:{id:"1980",slug:"crystallization-science-and-technology",title:"Crystallization",fullTitle:"Crystallization - Science and Technology"},signatures:"Edgar Alfonso, Jairo Olaya and Gloria Cubillos",authors:[{id:"106069",title:"Dr.",name:"Jose Edgar Alfonso",middleName:null,surname:"Orjuela",slug:"jose-edgar-alfonso-orjuela",fullName:"Jose Edgar Alfonso Orjuela"},{id:"108488",title:"Dr.",name:"Jairo",middleName:null,surname:"Olaya",slug:"jairo-olaya",fullName:"Jairo Olaya"},{id:"108490",title:"MSc.",name:"Gloria",middleName:null,surname:"Cubillos",slug:"gloria-cubillos",fullName:"Gloria Cubillos"}]},{id:"36355",doi:"10.5772/35347",title:"Crystallization Kinetics of Amorphous Materials",slug:"crystallization-kinetics-of-amorphous-materials",totalDownloads:9309,totalCrossrefCites:14,totalDimensionsCites:41,abstract:null,book:{id:"2283",slug:"advances-in-crystallization-processes",title:"Advances in Crystallization Processes",fullTitle:"Advances in Crystallization Processes"},signatures:"Miray Çelikbilek, Ali Erçin Ersundu and Süheyla Aydın",authors:[{id:"104015",title:"Dr.",name:"Miray",middleName:null,surname:"Çelikbilek Ersundu",slug:"miray-celikbilek-ersundu",fullName:"Miray Çelikbilek Ersundu"},{id:"112542",title:"Dr.",name:"Ali Erçin",middleName:null,surname:"Ersundu",slug:"ali-ercin-ersundu",fullName:"Ali Erçin Ersundu"},{id:"112543",title:"Prof.",name:"Suheyla",middleName:null,surname:"Aydin",slug:"suheyla-aydin",fullName:"Suheyla Aydin"}]},{id:"55345",doi:"10.5772/intechopen.68883",title:"Titanium Dioxide as Food Additive",slug:"titanium-dioxide-as-food-additive",totalDownloads:2441,totalCrossrefCites:14,totalDimensionsCites:30,abstract:"Titanium dioxide is a white metal oxide used in many food categories as food additives to provide a whitening effect. If its use complies with the five specifications including synthesis pathway, crystallographic phase, purity, amount and innocuousness, all other parameters are not defined and were hardly documented. However, in the last 3 years, two studies have deeply characterized food-grade TiO2 and converged to the fact that the size distribution of food-grade TiO2 spans over the nanoparticle range (<100 nm) and the surface is not pure TiO2 but covered by phosphate and eventually silicon species or aluminium species, which modify the surface chemistry of these particles. Until now, this material was considered as safe. However, the toxicological studies later to the last re-evaluation by the European Food Safety Agency reveal some concerns due to the ability of TiO2 particles to alter the intestinal barrier. This reinforces the idea to go on reinforcing the risk assessment about food-grade TiO2.",book:{id:"6407",slug:"application-of-titanium-dioxide",title:"Application of Titanium Dioxide",fullTitle:"Application of Titanium Dioxide"},signatures:"Marie-Hélène Ropers, Hélène Terrisse, Muriel Mercier-Bonin and\nBernard Humbert",authors:[{id:"203603",title:"Dr.",name:"Marie-Hélène",middleName:null,surname:"Ropers",slug:"marie-helene-ropers",fullName:"Marie-Hélène Ropers"},{id:"206434",title:"Dr.",name:"Hélène",middleName:null,surname:"Terrisse",slug:"helene-terrisse",fullName:"Hélène Terrisse"},{id:"206435",title:"Dr.",name:"Muriel",middleName:null,surname:"Mercier-Bonin",slug:"muriel-mercier-bonin",fullName:"Muriel Mercier-Bonin"},{id:"206436",title:"Prof.",name:"Bernard",middleName:null,surname:"Humbert",slug:"bernard-humbert",fullName:"Bernard Humbert"}]},{id:"51808",doi:"10.5772/64654",title:"Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future",slug:"plasma-enhanced-chemical-vapor-deposition-where-we-are-and-the-outlook-for-the-future",totalDownloads:7761,totalCrossrefCites:8,totalDimensionsCites:29,abstract:"Chemical vapor deposition (CVD) is a technique for the fabrication of thin films of polymeric materials, which has successfully overcome some of the issues faced by wet chemical fabrication and other deposition methods. There are many hybrid techniques, which arise from CVD and are constantly evolving in order to modify the properties of the fabricated thin films. Amongst them, plasma enhanced chemical vapor deposition (PECVD) is a technique that can extend the applicability of the method for various precursors, reactive organic and inorganic materials as well as inert materials. Organic/inorganic monomers, which are used as precursors in the PECVD technique, undergo disintegration and radical polymerization while exposed to a high-energy plasma stream, followed by thin film deposition. In this chapter, we have provided a summary of the history, various characteristics as well as the main applications of PECVD. By demonstrating the advantages and disadvantages of PECVD, we have provided a comparison of this technique with other techniques. PECVD, like any other techniques, still suffers from some restrictions, such as selection of appropriate monomers, or suitable inlet instrument. However, the remarkable properties of this technique and variety of possible applications make it an area of interest for researchers, and offers potential for many future developments.",book:{id:"5211",slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",title:"Chemical Vapor Deposition",fullTitle:"Chemical Vapor Deposition - Recent Advances and Applications in Optical, Solar Cells and Solid State Devices"},signatures:"Yasaman Hamedani, Prathyushakrishna Macha, Timothy J. Bunning,\nRajesh R. Naik and Milana C. Vasudev",authors:[{id:"181604",title:"Dr.",name:"Milana",middleName:null,surname:"Vasudev",slug:"milana-vasudev",fullName:"Milana Vasudev"}]},{id:"55301",doi:"10.5772/intechopen.68802",title:"Recent Overview on the Abatement of Pesticide Residues in Water by Photocatalytic Treatment Using TiO2",slug:"recent-overview-on-the-abatement-of-pesticide-residues-in-water-by-photocatalytic-treatment-using-ti",totalDownloads:1990,totalCrossrefCites:9,totalDimensionsCites:26,abstract:"The water bodies’ pollution with phytosanitary products can pose a serious threat to aquatic ecosystems and drinking water resources. The usual appearance of pesticides in surface water, waste water and groundwater has driven the search for proper methods to remove persistent pesticides. Although typical biological treatments of water offer some advantages such as low cost and operability, many investigations referring to the removal of pesticides have suggested that in many cases they have low effectiveness due to the limited biodegradability of many agrochemicals. In recent years, research for new techniques for water detoxification to avoid these disadvantages has led to processes that involve light, which are called advanced oxidation processes (AOPs). Among the different semiconductor (SC) materials tested as potential photocatalysts, titanium dioxide (TiO2) is the most popular because of its photochemical stability, commercial availability, non-toxic nature and low cost, high photoactivity, ease of preparation in the laboratory, possibility of doping with metals and non-metals and coating on solid support. Thus, in the present review, we provide an overview of the recent research being developed to photodegrade pesticide residues in water using TiO2 as photocatalyst.",book:{id:"6407",slug:"application-of-titanium-dioxide",title:"Application of Titanium Dioxide",fullTitle:"Application of Titanium Dioxide"},signatures:"Nuria Vela, Gabriel Pérez-Lucas, José Fenoll and Simón Navarro",authors:[{id:"202983",title:"Dr.",name:"Simón",middleName:null,surname:"Navarro",slug:"simon-navarro",fullName:"Simón Navarro"},{id:"202988",title:"Dr.",name:"Nuria",middleName:null,surname:"Vela",slug:"nuria-vela",fullName:"Nuria Vela"},{id:"202989",title:"Dr.",name:"José",middleName:null,surname:"Fenoll",slug:"jose-fenoll",fullName:"José Fenoll"},{id:"206059",title:"Dr.",name:"Gabriel",middleName:null,surname:"Pérez-Lucas",slug:"gabriel-perez-lucas",fullName:"Gabriel Pérez-Lucas"}]}],mostDownloadedChaptersLast30Days:[{id:"55440",title:"Solubility Products and Solubility Concepts",slug:"solubility-products-and-solubility-concepts",totalDownloads:3090,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"The chapter refers to a general concept of solubility product Ksp of sparingly soluble hydroxides and different salts and calculation of solubility of some hydroxides, oxides, and different salts in aqueous media. A (criticized) conventional approach, based on stoichiometry of a reaction notation and the solubility product of a precipitate, is compared with the unconventional/correct approach based on charge and concentration balances and a detailed physicochemical knowledge on the system considered, and calculations realized according to generalized approach to electrolytic systems (GATES) principles. An indisputable advantage of the latter approach is proved in simulation of static or dynamic, two-phase nonredox or redox systems.",book:{id:"5891",slug:"descriptive-inorganic-chemistry-researches-of-metal-compounds",title:"Descriptive Inorganic Chemistry Researches of Metal Compounds",fullTitle:"Descriptive Inorganic Chemistry Researches of Metal Compounds"},signatures:"Anna Maria Michałowska-Kaczmarczyk, Aneta Spórna-Kucab and\nTadeusz Michałowski",authors:[{id:"35273",title:"Prof.",name:"Tadeusz",middleName:null,surname:"Michalowski",slug:"tadeusz-michalowski",fullName:"Tadeusz Michalowski"},{id:"203867",title:"Dr.",name:"Anna Maria",middleName:null,surname:"Michałowska-Kaczmarczyk",slug:"anna-maria-michalowska-kaczmarczyk",fullName:"Anna Maria Michałowska-Kaczmarczyk"},{id:"203868",title:"Dr.",name:"Aneta",middleName:null,surname:"Spórna-Kucab",slug:"aneta-sporna-kucab",fullName:"Aneta Spórna-Kucab"}]},{id:"56162",title:"Phosphoric Acid Industry: Problems and Solutions",slug:"phosphoric-acid-industry-problems-and-solutions",totalDownloads:5273,totalCrossrefCites:3,totalDimensionsCites:10,abstract:"Phosphoric acid (PA) is an important industrial chemical used as an intermediate in the fertilizer industry, for metal surface treatment in the metallurgical industry and as an additive in the food industry. The PA industry is spread out worldwide in Europe, Asia and America, including countries that operate phosphate rock (PR) mines and produce PA, phosphatic fertilizers and phosphate-based products.",book:{id:"5595",slug:"phosphoric-acid-industry-problems-and-solutions",title:"Phosphoric Acid Industry",fullTitle:"Phosphoric Acid Industry - Problems and Solutions"},signatures:"Benjamín Valdez Salas, Michael Schorr Wiener and Juan Ricardo\nSalinas Martinez",authors:[{id:"16436",title:"Dr.",name:"Michael",middleName:null,surname:"Schorr",slug:"michael-schorr",fullName:"Michael Schorr"}]},{id:"62941",title:"Inorganic Coordination Chemistry: Where We Stand in Cancer Treatment?",slug:"inorganic-coordination-chemistry-where-we-stand-in-cancer-treatment-",totalDownloads:2160,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Metals have unique characteristics such as variable coordination modes, redox activity, and reactivity being indispensable for several biochemical processes in cells. Due to their reactivity, their concentration is tightly regulated inside the cells, and abnormal concentrations are associated with many disorders, such as cancer. As such metal complexes turned out to be very attractive as potential anticancer agents. The discovery of cisplatin was a crucial moment, which prompted the interest in Pt(II) and other metal complexes as potential anticancer agents. This chapter highlights the state of the art on metal complexes in cancer therapy, highlighting their uptake mechanisms, biological targets, toxicity, and drug resistance. Finally, based on the importance of selective target of cancer cells, drug delivery systems will also be discussed.",book:{id:"7549",slug:"basic-concepts-viewed-from-frontier-in-inorganic-coordination-chemistry",title:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry",fullTitle:"Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry"},signatures:"Pedro Pedrosa, Andreia Carvalho, Pedro V. Baptista and Alexandra R. Fernandes",authors:[{id:"253664",title:"Prof.",name:"Alexandra R",middleName:null,surname:"Fernandes",slug:"alexandra-r-fernandes",fullName:"Alexandra R Fernandes"}]},{id:"57464",title:"General Aspects of the Cobalt Chemistry",slug:"general-aspects-of-the-cobalt-chemistry",totalDownloads:2305,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This chapter aims to collect and summarize the chemical properties of cobalt and some new cobalt compounds. It deals with the progress of cobalt chemistry. Cobalt has been substantial in both chemical reactions and within many compounds. Some of them are heterocyclic reactions, cobalt-based catalyst and cobalamin. Also, it discusses variety of applications of cobalt in a wide range of areas and toxicity of cobalt. The studies carried out in this area so far have enabled and will be continued to be responsible for producing unknown and difficult reactions. This survey of the recent literature illustrates the fact that many different approaches on cobalt and new cobalt compounds are being used in many different areas.",book:{id:"6133",slug:"cobalt",title:"Cobalt",fullTitle:"Cobalt"},signatures:"Yasemin Yildiz",authors:[{id:"208129",title:"Dr.",name:"Yasemin",middleName:null,surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}]},{id:"55301",title:"Recent Overview on the Abatement of Pesticide Residues in Water by Photocatalytic Treatment Using TiO2",slug:"recent-overview-on-the-abatement-of-pesticide-residues-in-water-by-photocatalytic-treatment-using-ti",totalDownloads:1994,totalCrossrefCites:9,totalDimensionsCites:26,abstract:"The water bodies’ pollution with phytosanitary products can pose a serious threat to aquatic ecosystems and drinking water resources. The usual appearance of pesticides in surface water, waste water and groundwater has driven the search for proper methods to remove persistent pesticides. Although typical biological treatments of water offer some advantages such as low cost and operability, many investigations referring to the removal of pesticides have suggested that in many cases they have low effectiveness due to the limited biodegradability of many agrochemicals. In recent years, research for new techniques for water detoxification to avoid these disadvantages has led to processes that involve light, which are called advanced oxidation processes (AOPs). Among the different semiconductor (SC) materials tested as potential photocatalysts, titanium dioxide (TiO2) is the most popular because of its photochemical stability, commercial availability, non-toxic nature and low cost, high photoactivity, ease of preparation in the laboratory, possibility of doping with metals and non-metals and coating on solid support. Thus, in the present review, we provide an overview of the recent research being developed to photodegrade pesticide residues in water using TiO2 as photocatalyst.",book:{id:"6407",slug:"application-of-titanium-dioxide",title:"Application of Titanium Dioxide",fullTitle:"Application of Titanium Dioxide"},signatures:"Nuria Vela, Gabriel Pérez-Lucas, José Fenoll and Simón Navarro",authors:[{id:"202983",title:"Dr.",name:"Simón",middleName:null,surname:"Navarro",slug:"simon-navarro",fullName:"Simón Navarro"},{id:"202988",title:"Dr.",name:"Nuria",middleName:null,surname:"Vela",slug:"nuria-vela",fullName:"Nuria Vela"},{id:"202989",title:"Dr.",name:"José",middleName:null,surname:"Fenoll",slug:"jose-fenoll",fullName:"José Fenoll"},{id:"206059",title:"Dr.",name:"Gabriel",middleName:null,surname:"Pérez-Lucas",slug:"gabriel-perez-lucas",fullName:"Gabriel Pérez-Lucas"}]}],onlineFirstChaptersFilter:{topicId:"83",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 4th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain.Dr. Satué is accredited as a Private University Doctor Professor, Doctor Assistant, and Contracted Doctor by AVAP (Agència Valenciana d'Avaluació i Prospectiva) and currently, as a full professor by ANECA (since January 2022). To date, Katy has taught 22 years in the Department of Animal Medicine and Surgery at the CEU-Cardenal Herrera University in undergraduate courses in Veterinary Medicine (General Pathology, integrated into the Applied Basis of Veterinary Medicine module of the 2nd year, Clinical Equine I of 3rd year, and Equine Clinic II of 4th year). Dr. Satué research activity is in the field of Endocrinology, Hematology, Biochemistry, and Immunology in the Spanish Purebred mare. She has directed 5 Doctoral Theses and 5 Diplomas of Advanced Studies, and participated in 11 research projects as a collaborating researcher. She has written 2 books and 14 book chapters in international publishers related to the area, and 68 scientific publications in international journals. Dr. Satué has attended 63 congresses, participating with 132 communications in international congresses and 19 in national congresses related to the area. Dr. Satué is a scientific reviewer for various prestigious international journals such as Animals, American Journal of Obstetrics and Gynecology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology, among others. Since 2014 she has been responsible for the Clinical Analysis Laboratory of the CEU-Cardenal Herrera University Veterinary Clinical Hospital.",institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},publishedBooks:{paginationCount:14,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:{name:"University of Macau",institutionURL:null,country:{name:"Macau"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/179136",hash:"",query:{},params:{id:"179136"},fullPath:"/profiles/179136",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()