In this chapter, a new efficient high-order finite volume method for 3D elastic modelling on unstructured meshes is developed. The stencil for the high-order polynomial reconstruction is generated by subdividing the relative coarse tetrahedrons. The reconstruction on the stencil is performed by using cell-averaged quantities represented by the hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume method, the new method has a very local property like the discontinuous Galerkin method. Furthermore, it can be written as an inner-split computational scheme which is beneficial to reducing computational amount. The reconstruction matrix is invertible and remains unchanged for all tetrahedrons, and thus it can be pre-computed and stored before time evolution. These special advantages facilitate the parallelization and high-order computations. The high-order accuracy in time is obtained by the Runge-Kutta method. Numerical computations including a 3D real model with complex topography demonstrate the effectiveness and good adaptability to complex topography.
Part of the book: Seismic Waves