High isostatic pressure (HIP) and high-pressure homogenization (HPH) are considered important physical technologies that able to induce changes on enzymes. HIP and HPH are emerging food processing technologies that involve the use of ultra high pressures (up to 1200 MPa for HIP and up to 400 MPa for HPH), where the first process is based on the principle that the maintenance of a product inside vessels at high pressures induces changes in the molecules conformation and, consequently, in the functionality of polysaccharides, proteins and enzymes. To the contrary, for HPH process, the high shear and sudden pressure drop are the responsible phenomena for the changes on the processed product. This chapter aims to evaluate comparatively the effects of HIP and HPH on the activity of enzymes currently applied in food industry and to identify the main structural changes induced by each process. The overall evaluation of the results shows that mild conditions of both processes were recently highlighted as able to improve the activity and the stability of several enzymes, whereas extreme process conditions (pressure, time and temperature) induce enzyme denaturation with consequent reduction of biological activity. Considering the complexity and diversity involved in the enzyme structure and its ability to react, it is not possible to determine specific conditions that each process is able to promote increase or reduction of enzyme activity, being necessary to evaluate HIP and HPH for each enzyme. Finally, in terms of molecular structure, the effect of HIP and HPH on enzymes can be explained by the alterations in the quaternary, tertiary and secondary structures of enzymes, which directly affects its active site configuration.
Part of the book: Enzyme Inhibitors and Activators