Comparison of different transmission media. Characteristics between very bad (−−) and particularly good (++) [1].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"5428",leadTitle:null,fullTitle:"Designing Strategies for Cleft Lip and Palate Care",title:"Designing Strategies for Cleft Lip and Palate Care",subtitle:null,reviewType:"peer-reviewed",abstract:"In Designing Strategies for Cleft Lip and Palate Care it was aimed to link the epidemiology from different areas in the world with the interspecialty surgical care and the future genetic research projects. The objective is to concisely discuss the methodology of interspecialty care and stimulate future ideas for prophylactically managing or preventing such deformities. I am confident that one day the surgical interventions that bombard the patients from the day of newborn delivery and throughout the years of youth should be significantly decreased based on the genetic prophylactic intervention, probably.",isbn:"978-953-51-3028-4",printIsbn:"978-953-51-3027-7",pdfIsbn:"978-953-51-7353-3",doi:"10.5772/62857",price:119,priceEur:129,priceUsd:155,slug:"designing-strategies-for-cleft-lip-and-palate-care",numberOfPages:176,isOpenForSubmission:!1,isInWos:1,hash:"20bcf2aa877c04447d31d6e0db2e437e",bookSignature:"Mazen Ahmad Almasri",publishedDate:"March 22nd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5428.jpg",numberOfDownloads:18348,numberOfWosCitations:2,numberOfCrossrefCitations:11,numberOfDimensionsCitations:14,hasAltmetrics:1,numberOfTotalCitations:27,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 5th 2016",dateEndSecondStepPublish:"April 26th 2016",dateEndThirdStepPublish:"July 31st 2016",dateEndFourthStepPublish:"October 29th 2016",dateEndFifthStepPublish:"November 28th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri",profilePictureURL:"https://mts.intechopen.com/storage/users/150413/images/system/150413.jpeg",biography:"Dr Mazen AJ Almasri is an Associate Professor of Oral Maxillofacial Surgery at the King Abdulaiz University, Faculty of Dentistry, Saudi Arabia. He graduated from KAU in 2002 with an honors degree, then pursued his clinical training of OMFS at McGill University, (Montreal, Quebec, Canada) where he became an active fellow of the Royal College of Canada in 2009, achieved his Masters degree (2010), the Implantology and Reconstruction Fellowship (2010), and was an active diplomate of the American Board of OMFS (2011). Dr Almasri\\'s passion toward advancing the health care and medical education continued through teaching undergraduate and postgraduate trainees, and pursuing publication of papers and text books.",institutionString:"King Abdulaziz University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"King Abdulaziz University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1152",title:"Reconstructive Surgery",slug:"reconstructive-surgery"}],chapters:[{id:"53918",title:"Epidemiology of Cleft Lip and Palate",doi:"10.5772/67165",slug:"epidemiology-of-cleft-lip-and-palate",totalDownloads:2094,totalCrossrefCites:5,totalDimensionsCites:5,signatures:"Mairaj K. Ahmed, Anthony H. Bui and Emanuela Taioli",downloadPdfUrl:"/chapter/pdf-download/53918",previewPdfUrl:"/chapter/pdf-preview/53918",authors:[{id:"188212",title:"Dr.",name:"Mairaj K.",surname:"Ahmed",slug:"mairaj-k.-ahmed",fullName:"Mairaj K. Ahmed"},{id:"194367",title:"Dr.",name:"Emanuela",surname:"Taioli",slug:"emanuela-taioli",fullName:"Emanuela Taioli"},{id:"203416",title:"Dr.",name:"Anthony",surname:"Bui",slug:"anthony-bui",fullName:"Anthony Bui"}],corrections:null},{id:"54055",title:"Cleft Lip and Palate Patients: Diagnosis and Treatment",doi:"10.5772/67328",slug:"cleft-lip-and-palate-patients-diagnosis-and-treatment",totalDownloads:1927,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Letizia Perillo, Fabrizia d’Apuzzo, Sara Eslami and Abdolreza\nJamilian",downloadPdfUrl:"/chapter/pdf-download/54055",previewPdfUrl:"/chapter/pdf-preview/54055",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"173044",title:"Prof.",name:"Letizia",surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"197679",title:"Dr.",name:"Sara",surname:"Eslami",slug:"sara-eslami",fullName:"Sara Eslami"},{id:"198961",title:"MSc.",name:"Fabrizia",surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"}],corrections:null},{id:"53986",title:"Strategies to Optimize Global Cleft Care",doi:"10.5772/67186",slug:"strategies-to-optimize-global-cleft-care",totalDownloads:1083,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mairaj Ahmed, Yunfeng Xue and Ayisha Ayub",downloadPdfUrl:"/chapter/pdf-download/53986",previewPdfUrl:"/chapter/pdf-preview/53986",authors:[{id:"188212",title:"Dr.",name:"Mairaj K.",surname:"Ahmed",slug:"mairaj-k.-ahmed",fullName:"Mairaj K. Ahmed"},{id:"203543",title:"Dr.",name:"Yunfeng",surname:"Xue",slug:"yunfeng-xue",fullName:"Yunfeng Xue"},{id:"203544",title:"Dr.",name:"Ayisha",surname:"Ayub",slug:"ayisha-ayub",fullName:"Ayisha Ayub"}],corrections:null},{id:"53858",title:"Surgical Strategy of Cleft Palate Repair and Nasometric Results",doi:"10.5772/67093",slug:"surgical-strategy-of-cleft-palate-repair-and-nasometric-results",totalDownloads:1300,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Norifumi Nakamura and Masahiro Tezuka",downloadPdfUrl:"/chapter/pdf-download/53858",previewPdfUrl:"/chapter/pdf-preview/53858",authors:[{id:"72560",title:"Prof.",name:"Norifumi",surname:"Nakamura",slug:"norifumi-nakamura",fullName:"Norifumi Nakamura"},{id:"189479",title:"Dr.",name:"Masahiro",surname:"Tezuka",slug:"masahiro-tezuka",fullName:"Masahiro Tezuka"}],corrections:null},{id:"53788",title:"Surgical Techniques for Treatment of Unilateral Cleft Lip",doi:"10.5772/67124",slug:"surgical-techniques-for-treatment-of-unilateral-cleft-lip",totalDownloads:3150,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mustafa Chopan, Lohrasb Sayadi and Donald R. Laub",downloadPdfUrl:"/chapter/pdf-download/53788",previewPdfUrl:"/chapter/pdf-preview/53788",authors:[{id:"67264",title:"Dr.",name:"Donald",surname:"Laub Jr.",slug:"donald-laub-jr.",fullName:"Donald Laub Jr."},{id:"189368",title:"Mr.",name:"Mustafa",surname:"Chopan",slug:"mustafa-chopan",fullName:"Mustafa Chopan"},{id:"189370",title:"Mr.",name:"Lorasb",surname:"Sayadi",slug:"lorasb-sayadi",fullName:"Lorasb Sayadi"}],corrections:null},{id:"53846",title:"Tympanostomy Tube Placement for Otitis Media with Effusion in Children with Cleft Lip and Palate",doi:"10.5772/67122",slug:"tympanostomy-tube-placement-for-otitis-media-with-effusion-in-children-with-cleft-lip-and-palate",totalDownloads:1281,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chin‐Lung Kuo and An‐Suey Shiao",downloadPdfUrl:"/chapter/pdf-download/53846",previewPdfUrl:"/chapter/pdf-preview/53846",authors:[{id:"188400",title:"Dr.",name:"An-Suey",surname:"Shiao",slug:"an-suey-shiao",fullName:"An-Suey Shiao"},{id:"188401",title:"Dr.",name:"Chin-Lung",surname:"Kuo",slug:"chin-lung-kuo",fullName:"Chin-Lung Kuo"}],corrections:null},{id:"53696",title:"A Review of Orofacial Clefting and Current Genetic Mouse Models",doi:"10.5772/67052",slug:"a-review-of-orofacial-clefting-and-current-genetic-mouse-models",totalDownloads:1012,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Aram J. Keteyian and Yuji Mishina",downloadPdfUrl:"/chapter/pdf-download/53696",previewPdfUrl:"/chapter/pdf-preview/53696",authors:[{id:"189803",title:"Mr.",name:"Aram",surname:"Keteyian",slug:"aram-keteyian",fullName:"Aram Keteyian"},{id:"190011",title:"Dr.",name:"Yuji",surname:"Mishina",slug:"yuji-mishina",fullName:"Yuji Mishina"}],corrections:null},{id:"53715",title:"Cleft Lip and Palate in the Dog: Medical and Genetic Aspects",doi:"10.5772/67049",slug:"cleft-lip-and-palate-in-the-dog-medical-and-genetic-aspects",totalDownloads:6514,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Enio Moura and Cláudia Turra Pimpão",downloadPdfUrl:"/chapter/pdf-download/53715",previewPdfUrl:"/chapter/pdf-preview/53715",authors:[{id:"91097",title:"Prof.",name:"Enio",surname:"Moura",slug:"enio-moura",fullName:"Enio Moura"},{id:"194711",title:"Dr.",name:"Cláudia",surname:"Pimpão",slug:"claudia-pimpao",fullName:"Cláudia Pimpão"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5185",title:"Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"9b6bdd65b23207e491dd8a3c1edc41dc",slug:"dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Jawad Amin Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5185.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7056",title:"An Update of Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"fab27916553ca6427ec1be823a6d81f2",slug:"an-update-of-dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/7056.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7928",title:"Maxillofacial Surgery and Craniofacial Deformity",subtitle:"Practices and Updates",isOpenForSubmission:!1,hash:"734c4a37da9817d5c3aa68c8f15a0d93",slug:"maxillofacial-surgery-and-craniofacial-deformity-practices-and-updates",bookSignature:"Mazen Ahmad Almasri and Raja Kummoona",coverURL:"https://cdn.intechopen.com/books/images_new/7928.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1305",title:"Advances in Endoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"84236c28c671a83f6cd1cd8bb84d873f",slug:"advances-in-endoscopic-surgery",bookSignature:"Cornel Iancu",coverURL:"https://cdn.intechopen.com/books/images_new/1305.jpg",editedByType:"Edited by",editors:[{id:"33183",title:"Prof.",name:"Cornel",surname:"Iancu",slug:"cornel-iancu",fullName:"Cornel Iancu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"943",title:"Bone Grafting",subtitle:null,isOpenForSubmission:!1,hash:"9afab8beeb4879b2751907783a3de842",slug:"bone-grafting",bookSignature:"Alessandro Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/943.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1007",title:"Xenotransplantation",subtitle:null,isOpenForSubmission:!1,hash:"45fde91777f91583197a5b5dfecb207a",slug:"xenotransplantation",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/1007.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"984",title:"Current Concepts in Plastic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"46fb663adfdfb9ceeb2df2013b08038f",slug:"current-concepts-in-plastic-surgery",bookSignature:"Francisco J. Agullo",coverURL:"https://cdn.intechopen.com/books/images_new/984.jpg",editedByType:"Edited by",editors:[{id:"49319",title:"Dr.",name:"Frank",surname:"Agullo",slug:"frank-agullo",fullName:"Frank Agullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3283",title:"Skin Grafts",subtitle:null,isOpenForSubmission:!1,hash:"51201608d5c5d7ff6f47e5afd2abdb9f",slug:"skin-grafts",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/3283.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8853",title:"Breast Cancer and Breast Reconstruction",subtitle:null,isOpenForSubmission:!1,hash:"5947d4ba7ac1e9c39c9083e89201275c",slug:"breast-cancer-and-breast-reconstruction",bookSignature:"Luis Tejedor, Susana Gómez Modet, Lachezar Manchev and Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/8853.jpg",editedByType:"Edited by",editors:[{id:"81170",title:"Dr.",name:"Luis",surname:"Tejedor",slug:"luis-tejedor",fullName:"Luis Tejedor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6184",leadTitle:null,title:"Applications in Water Systems Management and Modeling",subtitle:null,reviewType:"peer-reviewed",abstract:"With the growth of urbanization, industrialization, and intensive agricultural practices, all superficial, inland, and marine water bodies have become the repository for large quantities of every type of substance extraneous to the natural aquatic environment. The knowledge of hydrodynamics becomes crucial in this context, as it is the driving mechanism for the movement and transport of these matters and of sediments that become collectors of these substances, in a surface water system. The best way to understand these natural processes is via examples and case studies. This book deals with practical studies of hydrodynamic processes through physical and numerical models. Researchers, together with practicing engineers, will find this book useful in making a rapid assessment of different environmental water body problems.",isbn:"978-1-78923-045-1",printIsbn:"978-1-78923-044-4",pdfIsbn:"978-1-83881-321-5",doi:"10.5772/intechopen.68457",price:119,priceEur:129,priceUsd:155,slug:"applications-in-water-systems-management-and-modeling",numberOfPages:140,isOpenForSubmission:!1,hash:"fba712d6246fe9d253e35b1cdb8cd972",bookSignature:"Daniela Malcangio",publishedDate:"May 2nd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6184.jpg",keywords:null,numberOfDownloads:5107,numberOfWosCitations:4,numberOfCrossrefCitations:7,numberOfDimensionsCitations:14,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2017",dateEndSecondStepPublish:"May 4th 2017",dateEndThirdStepPublish:"July 31st 2017",dateEndFourthStepPublish:"October 29th 2017",dateEndFifthStepPublish:"December 28th 2017",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"205577",title:"Dr.",name:"Daniela",middleName:null,surname:"Malcangio",slug:"daniela-malcangio",fullName:"Daniela Malcangio",profilePictureURL:"https://mts.intechopen.com/storage/users/205577/images/7230_n.jpg",biography:"Daniela Malcangio is an academic researcher (assistant professor with tenure) in Hydraulics at the Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Italy, since May 2012.\nShe graduated in Civil Engineering at the same university in April 2000 with highest grade (110/110). \nIn 2004, she obtained her PhD degree in Waste Disposal and Environmental Protection from the same university.\nHer main research interests include:\nTurbulent jets and plumes\nHydrodynamic interaction between jets and plumes and vegetation\nCirculation of marine currents offshore and onshore\nDiffusion and dilution of discharges in the sea\nShe is the author or coauthor of publications on these topics published in international, peer-reviewed ISI-JCR journals, book chapters, and conference proceedings and reviewer for some ISI-JCR journals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Polytechnic University of Bari",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"872",title:"Water Resources",slug:"water-resources"}],chapters:[{id:"60379",title:"Introductory Chapter: Applications in Water Systems",slug:"introductory-chapter-applications-in-water-systems",totalDownloads:475,totalCrossrefCites:0,authors:[{id:"205577",title:"Dr.",name:"Daniela",surname:"Malcangio",slug:"daniela-malcangio",fullName:"Daniela Malcangio"}]},{id:"58856",title:"The Effects of Climate Change on Rural-Urban Migration in Sub-Saharan Africa (SSA)—The Cases of Democratic Republic of Congo, Kenya and Niger",slug:"the-effects-of-climate-change-on-rural-urban-migration-in-sub-saharan-africa-ssa-the-cases-of-democr",totalDownloads:1195,totalCrossrefCites:2,authors:[{id:"148090",title:"Dr.",name:"Gurudeo",surname:"Tularam",slug:"gurudeo-tularam",fullName:"Gurudeo Tularam"},{id:"208956",title:"Mr.",name:"Omar",surname:"Moalin Hassan",slug:"omar-moalin-hassan",fullName:"Omar Moalin Hassan"}]},{id:"57637",title:"Identifying Water Network Anomalies Using Multi Parameters Random Walk: Theory and Practice",slug:"identifying-water-network-anomalies-using-multi-parameters-random-walk-theory-and-practice",totalDownloads:469,totalCrossrefCites:0,authors:[{id:"208877",title:"Dr.",name:"Eyal",surname:"Brill",slug:"eyal-brill",fullName:"Eyal Brill"},{id:"209006",title:"MSc.",name:"Barak",surname:"Brill",slug:"barak-brill",fullName:"Barak Brill"}]},{id:"58415",title:"Segmentation of Water Body and Lakeshore Changes behind an Island Owing to Wind Waves",slug:"segmentation-of-water-body-and-lakeshore-changes-behind-an-island-owing-to-wind-waves",totalDownloads:667,totalCrossrefCites:1,authors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"},{id:"122917",title:"Dr.",name:"Masumi",surname:"Serizawa",slug:"masumi-serizawa",fullName:"Masumi Serizawa"},{id:"208350",title:"Ms.",name:"Shiho",surname:"Miyahara",slug:"shiho-miyahara",fullName:"Shiho Miyahara"}]},{id:"59309",title:"Assessing the Hydrodynamic Pattern in Different Lakes of Malaysia",slug:"assessing-the-hydrodynamic-pattern-in-different-lakes-of-malaysia",totalDownloads:509,totalCrossrefCites:2,authors:[{id:"186369",title:"Dr.",name:"Zati",surname:"Sharip",slug:"zati-sharip",fullName:"Zati Sharip"},{id:"220302",title:"Mr.",name:"Shahirwan",surname:"Aman Shah",slug:"shahirwan-aman-shah",fullName:"Shahirwan Aman Shah"},{id:"220303",title:"Mr.",name:"Aminuddin",surname:"Jamin",slug:"aminuddin-jamin",fullName:"Aminuddin Jamin"},{id:"220304",title:"Mr.",name:"Juhaimi",surname:"Jusoh",slug:"juhaimi-jusoh",fullName:"Juhaimi Jusoh"}]},{id:"60177",title:"Application of a Hydrodynamic and Water Quality Model for Inland Surface Water Systems",slug:"application-of-a-hydrodynamic-and-water-quality-model-for-inland-surface-water-systems",totalDownloads:1245,totalCrossrefCites:2,authors:[{id:"169118",title:"Dr.",name:"Lubo",surname:"Liu",slug:"lubo-liu",fullName:"Lubo Liu"}]},{id:"58244",title:"Optical Methods Applied to Hydrodynamics of Cohesive Sediments",slug:"optical-methods-applied-to-hydrodynamics-of-cohesive-sediments",totalDownloads:551,totalCrossrefCites:0,authors:[{id:"207783",title:"Dr.",name:"Juan Antonio",surname:"Garcia Aragon",slug:"juan-antonio-garcia-aragon",fullName:"Juan Antonio Garcia Aragon"},{id:"207868",title:"Dr.",name:"Humberto",surname:"Salinas Tapia",slug:"humberto-salinas-tapia",fullName:"Humberto Salinas Tapia"},{id:"207869",title:"Dr.",name:"Victor",surname:"Diaz Palomarez",slug:"victor-diaz-palomarez",fullName:"Victor Diaz Palomarez"},{id:"216620",title:"MSc.",name:"Klever",surname:"Izquierdo-Ayala",slug:"klever-izquierdo-ayala",fullName:"Klever Izquierdo-Ayala"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220806",firstName:"Julian",lastName:"Virag",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/220806/images/6089_n.jpg",email:"julian@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6886",title:"Water and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"f01b34abf4b3d3329dda4921c461fcf4",slug:"water-and-sustainability",bookSignature:"Prathna Thanjavur Chandrasekaran",coverURL:"https://cdn.intechopen.com/books/images_new/6886.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67440",title:"Optoelectronic Key Elements for Polymeric Fiber Transmission Systems",doi:"10.5772/intechopen.86423",slug:"optoelectronic-key-elements-for-polymeric-fiber-transmission-systems",body:'Having its origin in the 1960s as well as the silica glass fiber, the polymer optical fiber (POF) stayed long in the shadow of the huge development and success of glass fiber communications. However, the advances in POF technology and the growing need for high-speed short-range communication networks make POF nowadays gain more and more importance. The key advantage of POF is a large core diameter. It makes POF tolerant to the fiber facet damages and relaxes the alignment tolerances, thus also reducing the installation costs. Furthermore, POF is pliable, durable, and inexpensive; offers small weight and short bend radius; allows easy installation, simple termination, and quick troubleshooting; and also provides the immunity to electromagnetic interference. Due to its diverse advantages, in short-range applications POF established itself as a reasonable alternative to the traditional data communication media such as glass fibers, copper cables, and wireless systems (see Table 1).
Transmission medium | Data rate | Distance | Safety | Cost | Handling | Installation | Total |
---|---|---|---|---|---|---|---|
Twisted pair cable | + | 0 | 0 | ++ | — | 0 | 2+ |
Coaxial cable | 0 | 0 | 0 | + | 0 | 0 | 1+ |
Glass fiber | ++ | ++ | ++ | — | — | — | 1+ |
Polymer fiber | 0 | — | ++ | + | + | + | 4+ |
Wireless | — | — | — | ++ | ++ | ++ | 1+ |
Powerline | — | — | — | + | + | ++ | 0 |
Comparison of different transmission media. Characteristics between very bad (−−) and particularly good (++) [1].
Today, POF is produced with different core materials, core diameters, and index profiles. A comprehensive overview on various POFs is given in [1]. Two major POF types are made of polymethyl methacrylate (PMMA) and perfluorinated (PF) materials. The parameters of the common PMMA and PF POFs are specified in the IEC Standard 60793-2-40, which defines eight different POF classes [2]. The PMMA POF is produced with both step-index (SI) and graded-index (GI) profile, whereas the PF POF offers only GI profile. The GI profile of the core ensures high modal bandwidth exceeding 1.5 GHz × 100 m for the PMMA POF and 300 MHz × 1 km for the PF POF. However, the implementation of the PMMA GI-POF is confined to 500–680 nm wavelength range due to the high optical attenuation at other wavelengths (>400 dB/km). In contrast, the PMMA SI-POF suffers from intermodal dispersion limiting the bandwidth-length product to around 50 MHz × 100 m but also provides several attenuation windows in the visible spectrum (400–700 nm). Due to its advantages over the other POF types such as technological maturity, ease and cost of production, and high numerical aperture (NA), the standard 1 mm PMMA SI-POF (POF class A4a.2 according to IEC 60793-2-40) is the best known and by far the most widely employed type of POF. This is also the fiber this work concentrates on.
In vehicles SI-POF displaces copper in the network structure of a passenger cabin for multimedia data services. The infotainment communication system known as Media Oriented System Transport (MOST) connects different multimedia components in the SI-POF-based ring topology [3], as illustrated in Figure 1. The current (third) version of the MOST system (MOST150) supports the data transfer at 150 Mb/s over link lengths of about 10 m.
SI-POF-based ring topology of a MOST system in a car.
Another sector where SI-POF displaces traditional communication media are short-range networks in houses and offices. As an in-house extension of a broadband access network (e.g., VDSL, HFC, FTTB), the typical application of POF technology is the delivery of triple-play services (combination of broadcasting, telecommunication, and the Internet) to the end user. The Fast Ethernet transceivers (100 Mb/s) and since 2013 also the Gigabit Ethernet transceivers (1 Gb/s) are available on the market enabling the transmission of broadband services over 50 m SI-POF. The Gigabit solutions from KD-POF employing the multilevel signaling and from Teleconnect based on the multicarrier modulation are accompanied by the technical standards ETSI TS 105175-1-2 [4] and ITU-T G.9960, Annex F [5], respectively.
The commercial communication systems with SI-POF use a single channel for data transmission. However, the transmission performances of SI-POF are impaired by strong intermodal dispersion and high optical attenuation. Stimulated by the growing bandwidth demands (e.g., 10–40–100 Gb/s Ethernet speed), various concepts to overcome the low-pass characteristic of SI-POF have been successfully demonstrated over the last few years. The simplest solutions utilized passive equalization implemented as an analog high-pass filter that increased the electrical −3 dB bandwidth of a channel [6]. A major focus was also placed on the digital signal processing techniques, which were mostly implemented offline due to the lack of commercial components. Both the non-return-to-zero (NRZ) and the spectrally efficient multilevel signaling were combined with the digital receiver equalization to increase the data rates over SI-POF [7, 8]. The sophisticated spectrally efficient multicarrier modulation formats were also successfully implemented to combat the highly dispersive SI-POF channel [9, 10].
Complying with any of the hitherto developments, utilization of several optical carriers for parallel transmission of data channels over a single fiber represents another alternative to increase the transmission capacity of SI-POF. The technique is well-known as wavelength division multiplexing (WDM). The principle of WDM is shown in Figure 2. Since different wavelengths λ1–λN do not interfere with each other in a linear medium, they can be used to simultaneously carry the data signals over a single fiber. Thereby, the capacity of a fiber, i.e., of an optical communication system, increases almost proportionally with the number of wavelength channels.
Principle of WDM: MUX, multiplexer; DEMUX, demultiplexer.
Two components are essential for WDM, a wavelength multiplexer and demultiplexer. The multiplexer combines the signals at different wavelengths, coming from different transmitters, onto a single fiber. On the opposite side of the optical link, the demultiplexer performs an inverse function, separating the wavelength channels to be detected by separate receivers.
The existing WDM components developed for single-mode glass fibers in the infrared region, such as Mach-Zehnder interferometers, arrayed waveguide gratings or fiber Bragg gratings, cannot be reused for a highly multimode SI-POF. On the other hand, the operating principles of demultiplexers based on thin-film interference filters and on a diffraction grating can be applied for POF. In spite of some other demultiplexing solutions (e.g., employing dispersion prisms), these two demultiplexing techniques have been recognized as the most promising for SI-POF. However, because of the difference in the operating wavelength range, fiber diameter, NA, etc., compared to the glass fibers, such demultiplexers must be newly designed for SI-POF communication. An overview of the state-of the-art thin-film interference filter-SI-POF demultiplexers will be given. The first aim of this work is to further investigate experimentally these demultiplexing techniques for SI-POF. Accordingly, the aim of this work is to demonstrate experimentally high-speed POF WDM data transmission offering capacity increase compared to the single-channel systems.
The 1 mm PMMA SI-POF is the best known and by far the most widely employed type of POF. It is made of 980 μm diameter PMMA core surrounded by a thin cladding (10 μm) made of fluorinated polymer. The typical spectral attenuation of SI-POF is shown in Figure 3. The fiber supports operation in the visible spectrum from 400 to 700 nm. The lower wavelength bound is determined by the degradation of the PMMA compound with prolonged exposure to the ultraviolet (UV) wavelengths shown in [11] and in [12]. The attenuation value of around 400–450 dB/km, which still allows operation over shorter link lengths (<20 m), sets the upper wavelength bound.
Typical spectral attenuation of 1 mm PMMA SI-POF [
Two intrinsic loss mechanisms contribute to the raise of attenuation at shorter and particularly UV wavelengths. The electronic transitions due to the absorption of light in the polymer compound cause absorption peaks in the UV region. However, their absorption tails extend through the visible spectrum affecting the POF attenuation [13]. The dependence of the attenuation coefficient of electronic transitions
The second loss mechanism is the Rayleigh scattering. It is caused by the structural irregularities in the polymer compound that are much smaller than the wavelength of light (order of one tenth of wavelength or less). The effect of scattering becomes more pronounced as the wavelength decreases since the scattering attenuation coefficient
In the infrared region, the attenuation significantly increases due to the intrinsic absorption losses caused by vibrations of the molecular C-H bonds (total of eight per MMA monomer). The higher overtones of the C-H bond vibrations also extend in the visible spectrum. The seventh overtone at 549 nm and particularly the sixth and the fifth overtone at 627 and 736 nm, respectively, cause pronounced absorption peaks and wide absorption bands, predominantly determining the level of attenuation in the red spectral range shown by Emslie [16] and by Groh [17].
The contributions of the intrinsic loss mechanisms to the overall attenuation of SI-POF are also shown in Figure 3. The wavelength regions where the fiber exhibits low attenuation are called attenuation windows. The SI-POF has four attenuation windows. Those are blue, green, yellow, and red windows, with the absolute attenuation minimum of approx. 62 dB/km at around 568 nm (yellow window). The parameters of the attenuation windows are listed in Table 2.
Attenuation window | Blue | Green | Yellow | Red |
---|---|---|---|---|
Attenuation minimum [dB/km] | 85 | 70 | 62 | 125 |
Wavelength of the attenuation minimum [nm] | 476 | 522 | 568 | 650 |
Approximate 3 dB width of the window [nm] | 19 | 24 | 8 | 4 |
Attenuation windows of SI-POF (based on the attenuation curve from Figure 2).
The mean refractive index of SI-POF core material in the visible spectrum is
has the value of 0.482 (usually rounded to 0.5). The corresponding maximum acceptance angle of the fiber is 30°. The large core radius
of 2698 at 550 nm, which is far above the limit
corresponding to 3.64 million modes at 550 nm. Due to the significant path difference between lower- and higher-order modes, propagating respectively at smaller and larger angles relative to the optical axis, the strong intermodal dispersion is inherent to SI-POF. In the time domain, it is manifested as pulse broadening, thus introducing the inter-symbol interference (ISI). In the frequency domain, the intermodal dispersion results in a low-pass frequency response, constraining the bandwidth-length product of SI-POF to around 50 MHz × 100 m shown by Ziemann et al. [18].
The technology based on thin-film interference filters is mature and one of the most commonly applied technologies for realization of WDM demultiplexers in single-mode glass fiber communication. The demultiplexers for coarse WDM applications cascade the interference filters to provide up to 16 flattop channels between 1271 and 1611 nm, with 20 nm minimum channel spacing [19]. The typical parameters of commercial 4-, 8-, and 16-channel demultiplexers with IL <1.6, 2.7, and 3.7 dB, respectively, can be found in [20]. The thin-film filter-based demultiplexers for dense WDM applications are commercially available with up to 40 channels in 1550 nm region and <8 dB IL. Instead of simply cascading the filters, those devices usually employ a modular configuration described in by Dutta et al. [21]. The same reference provides a typical transfer function of the 40-channel demultiplexer with 3–6 dB IL and 100 GHz (0.8 nm) channel spacing.
In the visible spectrum, and thus within the application range of SI-POF, a vast variety of thin-film interference filters is available from various manufacturers. Even though not particularly intended for POF applications, the visible interference filters represent an attractive solution for POF demultiplexers, where wavelength selectivity, low IL, and high isolation are required.
A dichroic mirror is a special type of interference filter intended for the spatial separation or combination of light at different wavelengths. It is designed to operate at 45° AOI, such that a certain spectral range is transmitted, whereas the rejected wavelength range is reflected at 90° angle with respect to the incident optical axis. A commercial visible spectrum dichroic mirror has a transition slope between the transmission and reflection band of typically 30–40 nm (see Figures 3 and 4). This is significantly less steep compared to the standard interference filters designed for the normal incidence. Unlike an interference filter, e.g., a long-pass mirror must be not only highly transmissive above the cutoff wavelength but also highly reflective below it. Therefore, producing steeper slopes would require increased complexity of the coating and, accordingly, a significant rise in production costs.
Principle of separation of two collimated wavelength channels employing thin-film interference filters: (1) dichroic mirror (45° AOI); (2) interference filter (0° AOI).
The interference filters show significant angular dependence of their transmission characteristic measured by Lee et al. [22]. To be applicable for SI-POF, the highly divergent beam from the fiber must be transformed into a bundle of parallel rays prior to the incidence. To increase the channel isolation, an additional band-pass filtering in each of the output channels should be implemented prior to the focusing of light. As an example, a selection of the dichroic mirror and interference filters for demultiplexing two wavelength channels centered around λ1 = 450 nm and λ2 = 525 nm is shown in Figure 4.
Two data transmission techniques were used to overcome the bandwidth limitation of a POF WDM channel, which is primarily caused by the intermodal dispersion of SI-POF. Those were:
Non-return-to-zero (NRZ) modulation in combination with electronic dispersion compensation, in particular feed-forward equalization (FFE)
Discrete multitone (DMT) modulation
In the single-channel POF systems with intensity modulation and direct detection (IM/DD), those are well-known techniques for increasing the channel capacity. The next two subsections briefly introduce the two techniques: non-return-to-zero modulation and feed-forward equalization.
According to the Nyquist theorem for two-level signaling, the maximum bit rate (in bits per second) for a noiseless channel of the bandwidth
The equalization techniques are used to open the eye diagram at the receiver for clock and data recovery (CDR). In its principle, the equalizer compensates for ISI, which is deterministic (unlike the random noise) and determined by the low-pass frequency response of a POF channel. In the work a simple linear FFE equalization technique was employed to correct the distorted signal waveforms at the receiver.
An FFE equalizer is realized as a discrete-time finite impulse response filter with adjustable coefficients. The output of the equalizer is obtained as the weighted sum of the delayed samples of the input signal as
where
Basic structure of an FFE equalizer.
Through its coefficients the equalizer may synthesize a transfer function corresponding to the inverted channel frequency response, thus eliminating the ISI. In a noisy POF channel, and due to inverting the channel frequency response, this would lead to great noise amplification at higher frequencies where the channel frequency response is small in magnitude. Typically, to minimize the probability of the decision error, the weighting factors are calculated to minimize the noise power at the cost of a certain amount of residual ISI after equalization. The descriptions of different algorithms for optimizing the equalizer coefficients can be found in Loquai et al. [23].
The BER performance of the system was estimated based on the Q-factor of the equalized eye diagram (Figure 6)
Calculation of the Qy-factor from the eye diagram:
where
Principle of DMT transmission over an optical IM/DD channel:
where
To provide high spectral efficiency of the signals transmitted within POF WDM channels, a DMT modulation technique was used. The DMT is a multicarrier modulation format and represents a baseband version of a better-known orthogonal frequency division multiplexing (OFDM). Unlike the OFDM, which is used in wireless communication systems such as wireless local area networks (WLAN), the DMT is widely employed as enabling technology for digital subscriber lines (DSL), e.g., asymmetric DSL (ADSL) and very high DSL (VDSL). The DMT-based transmission was also shown to be very beneficial for SI-POF communication by Joncic et al. [24], Diaz et al. [25], and Vinogradov et al. [10].
The DMT technique slices the frequency-selective channel into a large number of subchannels that can be considered to have a flat frequency response. Each subchannel is then used for transmission of a passband signal with quadrature amplitude modulation (QAM). The simultaneous transmission of the low-speed parallel streams reduces the influence of the ISI. Another important property of DMT is that it adapts the signal parameters (QAM size and power in each subchannel) to the characteristic of the communication channel.
The principle of the DMT transmission over an optical IM/DD channel is shown in Figure 7. A high-speed serial data stream is first divided into
At the receiver, the DMT waveform is direct-detected, analog-to-digital and serial-to-parallel converted, and demodulated using
This chapter focuses on the experimental realization of a thin-film interference filter-based SI-POF demultiplexer using a modular and precisely adjustable setup. In a step-by-step approach, the intermediate solutions with two and three channels were first established. In addition, two different configurations of the target demultiplexer setup with four channels were realized. The principle of operation and the approach for experimental realization are explained for the simplest case of a two-channel demultiplexer. The same basic principles also apply to the demultiplexers with higher channel count.
By extending the channel count to four, it was possible to investigate two different demultiplexer configurations. Those were:
Serial configuration
Two-stage configuration
The principle of operation of a four-channel demultiplexer with serial configuration is shown in Figure 8. In this configuration the dichroic mirrors were cascaded such that each mirror (except the last one) demultiplexed a single-wavelength channel while passing all other wavelengths.
Principle of operation of a four-channel SI-POF demultiplexer with serial configuration (see enumeration in
For practical realization 425, 505, and 567 nm cutoff long-pass dichroic mirrors were cascaded so that the interference filters centered at 405, 450, 525, and 650 nm could be implemented in the output ports 1–4, respectively. The corresponding transfer function and the basic parameters of the demultiplexer are shown in Figure 9 and Table 3, respectively. The factors contributing to high IL in the output ports 3 and 4 are discussed in the next subchapter.
Transfer function of the four-channel demultiplexer with serial configuration and the channels centered at 404.9, 450.1, 529.1, and 646.4 nm.
Output port | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Center wavelength [nm] | 404.9 | 450.1 | 529.1 | 646.4 |
3 dB passband bandwidth [nm] | 9.4 | 9.2 | 39.6 | 47.8 |
Minimum IL [dB] | 4.24 | 4.86 | 9.21 | 8.63 |
IL uniformity [dB] | 4.97 | |||
(Non)adjacent channel isolation [dB] | >30 |
Basic parameters of the four-channel demultiplexer with serial configuration.
The principle of operation of a four-channel demultiplexer with two-stage configuration is shown in Figure 10. The first stage of the demultiplexer, represented by a dichroic mirror that follows directly after the collimating lens, splits the incident spectrum into two spectral bands. The separation of the individual wavelength channels was then performed within the second stage of the demultiplexer. The corresponding laboratory setup is shown in Figure 11.
Principle of operation of a four-channel SI-POF demultiplexer with two-stage configuration (see enumeration in
Laboratory setup of the four-channel demultiplexer with two-stage configuration.
The practical realization was carried out with 505 nm cutoff long-pass dichroic mirror in the first stage of the demultiplexer. It reflected the lower spectral band so that 425 nm cutoff dichroic mirror was used in the second stage to demultiplex the signals for the output ports 1 and 2 in which 405 and 450 nm filters were employed, respectively. The upper spectral band transmitted by 505 nm mirror was demultiplexed in the second stage by 567 nm dichroic mirror. The filters centered at 525 and 650 nm were used in the output ports 3 and 4, respectively.
The corresponding transfer function is shown in Figure 12. The basic parameters of the demultiplexer are given in Table 4. The measurement results for the four-channel demultiplexer with two-stage configuration were presented at the International Conference on Plastic Optical Fibers (ICPOF) 2013 [26]. To comply with all other measurements shown in this chapter, which were performed 2 years thereafter, the demultiplexer setup was assembled and characterized again. While preserving the same principal behavior of the spectral response, the minimum IL in the output ports 1 to 4 was 6.15, 5.44, 4.21, and 3.85 dB, respectively. Those were by 0.49, 0.89, 0.74, and 0.66 dB higher values than those reported by Appelt et al. [26].
Transfer function of the four-channel demultiplexer with two-stage configuration and the channels centered at 404.9, 450.1, 528.3, and 646.4 nm [
Output port | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Center wavelength [nm] | 404.9 | 450.1 | 528.3 | 646.4 |
3 dB passband bandwidth [nm] | 9.4 | 9.3 | 41.6 | 47.6 |
Minimum IL [dB] | 5.66 | 4.55 | 3.47 | 3.19 |
IL uniformity [dB] | 2.47 | |||
(Non)adjacent channel isolation [dB] | >30 |
Basic parameters of the four-channel demultiplexer with two-stage configuration [26].
The transfer functions shown in Figures 9 and 12 comprised for each demultiplexer channel:
Loss of the connector interface at the demultiplexer input
Attenuation of 1 m ingoing and 1 m outgoing SI-POF
Propagation losses through the setup between the fiber end faces
The loss of the connector interface was minimized by applying the index-matching gel. This loss downscaled the transfer function of the demultiplexer by approx. 0.5 dB. To obtain the performance of the optomechanical setup itself, the value of 0.5 dB should be added to the measured transmittance values. The propagation losses included the Fresnel loss at the end face of the ingoing and the outgoing fiber, the losses introduced by the optical components (including reflections on the anti-reflection coatings), and the coupling losses due to the setup misalignments, optical aberrations, and clear aperture of components. For the perfectly aligned components and for given distances between them (obtained, e.g., from the CAD model), the minimum loss of the demultiplexer could be estimated by means of an optical ray tracing software. However, that work was beyond the scope of this work.
The shape of the spectral response of each demultiplexer channel was predominantly determined by an interference filter that was used. Those filters provided flattop response, steep transition slopes, and high isolation between the channels due to an optical density greater than 4 (transmission of <0.01%) in the rejection bands within 400–700 nm region. The deviations of the channels from the nominal central wavelengths and bandwidths of interference filters comply with the center wavelength and passband bandwidth tolerances of ±2 and ±5 nm for 10 and 50 nm filters, respectively. An exception is the green channel where the spectral response curve was truncated by 505 nm cutoff dichroic mirror with the transmission band starting at 520 nm.
The four-channel demultiplexer introduced an additional channel in the short wavelength region. That allowed simultaneous operation at the violet and blue wavelengths, which are both very attractive for POF communication due to the availability of commercial laser diodes. Two different demultiplexer configurations offered significantly different performance.
In the serial configuration, the longer wavelength channels corresponded to the higher output ports. Because of the longer optical path than the shorter wavelength channels, the longer wavelength channels:
Were more sensitive to alignment inaccuracies
Encountered more optical components (dichroic mirrors)
Suffered from stronger optical aberrations
Experienced increased beam radius due to the beam divergence caused by the finite size of the source fiber [27]
The influence of those effects can be observed in the transfer function from Figure 12, where the green and red channels experienced significantly higher IL than the violet and blue ones. If the effect of alignment inaccuracy, which is a parameter related to the particular setup adjustment, would be disregarded, all other effects that are inherent to the serial configuration would lead to the same principal behavior of the transfer function.
The Appelt et al. [26] demultiplexer outperformed the four-channel solution from [28] in terms of IL and especially crosstalk. An exceptional performance of that demultiplexer with IL between 3.19 and 5.66 dB (overall minimum IL of 16.87 dB) may be explained by a very precise alignment of the components. However, all other measurements (performed 2 years thereafter) with two-, three-, and four-channel setups, which had to be each time newly aligned, showed somewhat higher IL but also very consistent behavior to one another. Therefore, it cannot be excluded that some other factors such as accumulated dust on the optical surfaces or coating damages due to improper handling could have introduced additional attenuation compared to [26] measurement, which was performed with brand new components. In spite of that, all subsequent measurement results, including the IL of 3.85–6.15 dB for the reassembled two-stage demultiplexer, can be considered as excellent achievements.
The significance of these and of the other previously realized interference filter-based SI-POF demultiplexers is that they enable realization of POF WDM systems and investigation on their data-carrying capacity. For these reasons it is important to further optimize the realized demultiplexer setup and extend the channel count.
This subchapter shows the initial experimental setup and gives the measurement results prior and after the first optimization step. Even though performed measurements cannot be considered as real WDM, the setup with multiplexer and demultiplexer along the optical path was assembled, and its functionality was demonstrated.
The data transmission setup is shown in Figure 13. It comprised an Agilent N4903A bit error rate tester (BERT), four butt-coupled edge-emitting laser diodes, multiplexing POF coupler, 10 m SI-POF link, interference-based POF demultiplexer, optical receivers, and Agilent 86100B sampling oscilloscope.
Experimental setup for the measurements employing NRZ modulation: LD, laser diode; MUX, multiplexer; DEMUX, demultiplexer; PD, photodiode; TIA, transimpedance amplifier.
To provide precise temperature control, prevent possible damage from overheating, and extend the lifetime, the laser diodes were mounted in Thorlabs TCLDM temperature-controlled laser diode mounts. The temperature of an integrated temperature control (TEC) element of the mount was adjusted to +15°C. Only for OSRAM samples the cooling at +10°C was used to provide better stability of the optical output power. Both the temperature of the TEC element and the bias current were controlled over a Thorlabs ITC8022 module. Four of those modules were installed in a Thorlabs PRO8000 modular chassis for the simultaneous control of four operating diodes (see Figure 15). To maximize the coupling efficiency from the laser diode into the fiber, a butt-coupling unit based on an
Eye diagrams for 10 m SI-POF link at an aggregate bit rate of 2.5 Gb/s (note: The full time scale was automatically set by the oscilloscope and is smaller than two unit intervals of the signal).
Operating wavelength [nm] | 405 | 450 | 515 | 639 |
Laser diode-to-coupler port launching loss [dB] | 1.5 | 1.3 | 1.3 | 1.5 |
IL of 4 × 1 fused POF coupler [dB] | 7.9 | 8.9 | 8.1 | 8.6 |
Connector loss (with index-matching gel) [dB] | 0.5 | |||
Total loss [dB] | 9.9 | 10.7 | 9.9 | 10.6 |
Optical power loss at the transmitter side when using 4 × 1 fused POF coupler.
The laser diodes providing the signals at four different wavelengths operated at 405 (DL-5146-101S), 450, 515, and 660 nm. Each diode was inserted into a laser socket of the TCLDM mount, which was also equipped with an internal 500 MHz bandwidth bias tee and had separate inputs for the bias and modulating current. The respective data rates achieved in the individual WDM channels were 0.5, 0.5, 0.7, and 0.8 Gb/s. The corresponding eye diagrams are represented in Figure 14. The effect of pulse shaping due to the low-pass characteristic of the fiber can clearly be recognized, e.g., in 405 nm channel.
TO-56 diode mounted in a retainer ring; (c) TCLDM9 mount with a butt-coupling unit.
The irregular signal trajectories, e.g., in the eye diagrams of 515 and 660 nm channels, indicate the presence of nonlinearities in the electrical domain (presumably introduced by the bias tee circuit). No BER measurement data were saved. However, due to the eye diagrams still opened wide enough, it can be reasonably assumed that the corresponding BERs were below the FEC threshold of 10–3, allowing for the error correction.
High optical isolation of the demultiplexer provided very low optical crosstalk between the WDM channels. The crosstalk of ≤35 dB, coming from 450 nm channel, was detected in 515 nm channel. In all other channels, the crosstalk lower than −45 dB was detected with a Melles Griot 13 PDH 005 integrating sphere. Considering the amplitude levels of the recorded eye diagrams and low interchannel crosstalk, no reduction in the SNR of the received signals could be assumed if the laser diodes were modulated simultaneously. Therefore, it can be stated that an aggregate bit rate of 2.5 Gb/s could be transmitted over 10 m SI-POF with four simultaneously active channels and no interchannel errors. The corresponding information rate after deduction of 7% FEC overhead would be 2.33 Gb/s.
In the next experiment, 405 (DL-5146-101S), 450, 515, and 639 nm laser diodes were used as WDM optical sources. To directly modulate the diodes with a higher modulation bandwidth, each diode was soldered to a 50 ohm SMA formable coax cable (Figure 14), which was connected to the output of an external bias tee with 6 GHz bandwidth and 0.1 MHz low cutoff frequency.
Due to the low impedance of the laser diodes (typically 2–5 ohms), a severe impedance mismatch was present. However, by using higher power of the modulating signals, the mismatch could be compensated. For mounting the diodes into the mounts, copper retainer rings for both TO-56 and TO-38 packages were fabricated (Figure 15). For better thermal conductivity between the TEC element of the mount, the retainer ring, and the laser diode housing, a heat-conductive paste was applied on the contact surfaces.
The bit rates in the individual channels were 1.25 Gb/s (405 nm channel), 1.05 Gb/s (450 nm channel), 1.25 Gb/s (515 nm channel), and 1.45 Gb/s (639 nm channel). The transmission parameters for the individual channels are listed in Table 6. In contrast to the previous measurement, no signal nonlinearities were present, and the maximum achievable data rates were limited by the ISI.
Operating wavelength [nm] | 405 | 450 | 515 | 639 |
Bit rate [Gb/s] | 1.25 | 1.05 | 1.25 | 1.45 |
BER | 6⋅10−5 | 7⋅10−5 | 1.1⋅10−6 | 9⋅10−7 |
Transmission parameters for 10 m SI-POF link at an aggregate bit rate of 5 Gb/s.
Taking into account the amplitude levels of the recorded eye diagrams and low interchannel crosstalk, like in the previous experiment, no power penalty due to crosstalk could be assumed if the laser diodes were modulated simultaneously. Therefore, it can be stated that 5 Gb/s transmission could be realized over 10 m SI-POF link at the BER <10–4 with four simultaneously active channels and no interchannel errors. Using a standard Reed-Solomon (255,247) FEC with 3.2% redundancy, 4.84 Gb/s transmission could be achieved at the BER<10–9 [28].
This subchapter shows the improved experimental setup and gives the measurement results of the simultaneous four-channel NRZ transmission over 50 m SI-POF. To mitigate the effects of ISI, the FFE equalization was implemented at the receiver side. The experimental setup is shown in Figure 16. It comprised a four-channel Agilent M8190A arbitrary waveform generator (AWG), four butt-coupled edge-emitting laser diodes, four-legged multiplexing POF bundle, SI-POF link of two different lengths, interference-based POF demultiplexer, Graviton SPD-2 receiver, and four-channel Agilent DSA91604A real-time oscilloscope with built-in software for digital signal processing. A photo of the general setup for investigating four-channel high-speed POF WDM transmission is shown in Figure 17.
Experimental setup for the measurements employing NRZ modulation and offline-processed FFE: ATT, attenuator; AMP, amplifier; DC, direct current.
Experimental setup for investigating four-channel high-speed POF WDM transmission: (1) Agilent M8190A AWG; (2) attenuator and MERA-556+ wideband amplifier; (3) bias tee; (4) Thorlabs TCLDM temperature-controlled laser diode mount, (5) Thorlabs ITC8022 module; (6) Thorlabs PRO8000 modular chassis; (7) four-legged multiplexing POF bundle; (8) SI-POF link; (9) four-channel interference filter-based demultiplexer; (10) graviton SPD-2 receiver; (11) Agilent DSA91604A real-time oscilloscope; (12) Melles Griot universal optical power meter with 13 PDH 005 integrating sphere; (13) Thorlabs PM100D power meter with S140C integrating sphere.
To multiplex the signals from four laser diodes onto the SI-POF link, a four-legged POF bundle was used. A multiplexing interface is formed by positioning the fiber bundle against 1 mm SI-POF.
For realization of the bundle, an Asahi KASEI DB-400 PMMA SI-POF with 400 μm cladding diameter and NA = 0.5 was used. Four 60-cm-long fibers were terminated at the input side with 400 μm FC connectors. The opposite ends of the fibers were joined together and glued inside 970 μm FC connector to form the fiber bundle (Figure 18). As illustrated in Figure 18, an FC connector-mating sleeve was used to bring together and align the bundle and the input of the SI-POF link, thereby forming the multiplexing interface. An index-matching gel was applied between the connectors to reduce the losses.
Four-legged multiplexing POF bundle: (a) cross sections of four 400 μm cladding diameter fibers arranged within a circle with 970 μm diameter (left) and of 980/1000 μm SI-POF (right); (b) principle of operation of the POF bundle as a multiplexer; (c) four 400 μm fibers glued within 970 μm FC connector; (d) formation of a multiplexing interface with the POF bundle aligned against the SI-POF link using an FC connector-mating sleeve.
The described multiplexing solution was first shown in [29]. Shortly before, the patent application for an optical POF multiplexer based on a multi-legged POF bundle, which referred to arbitrary channel counts and fiber diameters, was submitted to the German Patent and Trade Mark Office (DPMA) under number DE 102013 020236.1. A similar approach was later adopted in [30, 31] to realize the low loss seven-legged and three-legged multiplexers, respectively.
The AWG simultaneously generated four independent NRZ data streams (Figures 16 and 19) based on 27-1 PRBS with the maximum sampling rate. The received electrical signals were acquired by the real-time oscilloscope with 8-bit vertical resolution and oversampling. The digital receiver equalization was carried out in the offline mode. For that purpose the oscilloscope’s built-in Serial Data Equalization software was used [32].
Eye diagrams for 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s.
To prevent the equalizer from amplifying the noise components at higher frequencies where the energy content of useful signal was low, the bandwidth of the oscilloscope was set to the value in GHz corresponding to one half of the data rate in Gb/s. A phase-locked loop was used to extract the clock from the equalized data.
The eye diagram of an equalized waveform was displayed on the oscilloscope’s screen for further analysis. The oscilloscope’s built-in software EZJIT Complete was used to estimate the corresponding Q-factor [33]. Thereby, only a small time window (2% of the unit interval) in the middle of the equalized eye diagram was taken into consideration. The BER value was then calculated using Eq. (5). Table 7 shows the optical power losses of the four used WDM channels.
Operating wavelength [nm] | 405 | 450 | 520 | 639 |
Laser diode-to-400 μm fiber launching loss + attenuation of a bundle leg [dB] | 4.06 | 2.63 | 2.82 | 4.76 |
Connector loss (with index-matching gel) [dB] | 0.87 | 0.98 | 0.52 | 0.77 |
Total loss [dB] | 4.93 | 3.61 | 3.34 | 5.53 |
Optical power loss at the transmitter side when using four-legged POF bundle.
The WDM channels based on 405 nm (DL-7146-101S), 450, 515, and 639 nm laser diodes were employed in this transmission experiment. To maximize the modulating signal amplitude and thereby improve the SNR of the received signal, the optical output power of each laser diode was adjusted to its maximal possible value. For 405, 450, and 515 nm devices, the operating point was set to comply with the upper limit of the receiver’s dynamic range. The 639 nm device was driven with the maximum recommended forward current. The respective used bias currents were 70, 40, 61, and 43 mA. The optical powers coupled into the SI-POF link and the received optical powers measured after the demultiplexer are given in Table 7. All diodes were driven in their linear lasing region. The 1 Vpp output amplitude of the AWG was sufficient to modulate 450, 515, and 639 nm laser diodes with the modulation index of approx. 0.9. The signal in 405 nm channel was additionally amplified to achieve the same modulation index. For the amplification, a MERA-556+ wideband amplifier (20.5 dB gain at 0.1 GHz) was used in combination with 10 dB attenuator to avoid amplifier nonlinearities (18 dBm output power at 1 dB compression point at 0.1 GHz).
The maximum transmission rates achieved in the individual channels were 1.7 Gb/s (405 nm channel), 1.9 Gb/s (450 nm channel), 2.2 Gb/s (515 nm channel), and 2 Gb/s (639 nm channel). Thereby, six FFE taps with the tap delay equal to one half of the corresponding bit period were used in each of the channels. The transmission parameters for the individual channels are listed in Table 8. The resulting eye diagrams are represented in Figure 19. A total of 7.8 Gb/s were transmitted over 50 m SI-POF at the BER < 10–5. After deduction of 3.2% redundant bits required for Reed-Solomon (255,247) FEC, a net bit rate of 7.56 Gb/s was obtained. Compared to the record capacity of a single-channel system over the same fiber length used by Vinogradov et al. [10], an improvement of 1.67 Gb/s was achieved.
Operating wavelength [nm] | 405 | 450 | 515 | 639 |
Bit rate [Gb/s] | 1.7 | 1.9 | 2.2 | 2 |
Q-factor | 5.06 | 4.67 | 4.96 | 4.76 |
BER | 2.10⋅10−7 | 1.51⋅10−6 | 3.52⋅10−7 | 9.68⋅10−7 |
Transmission parameters for 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s.
We experimentally demonstrated the feasibility and potential of a high-speed POF WDM concept; a four-channel data transmission setup was realized. A four-legged multiplexing POF bundle was developed to combine the signals from four visible laser diodes onto SI-POF link. For the separation of wavelength channels, the interference filter-based demultiplexer with two-stage configuration was used. It was shown that POF WDM with lower channel rates and simple transmission technique (NRZ + FFE) could provide aggregate bit rates comparable to those achieved with the single-wavelength systems that used advanced modulation formats (DMT or PAM + DFE) and required significant signal processing. In addition, the 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s was demonstrated over 50 m SI-POF, respectively, at the BER = 10–3.
We gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF) under grant number 16V0009 (HS Harz)/16V0010 (TU BS). All injection molded parts are done with the support of the Institute of Micro and Sensor Systems at the Otto von Guericke University Magdeburg and Prof. Bertram Schmidt.
Congenital malformations involving the gastrointestinal tract (GIT) can be broadly divided into upper and lower gut abnormalities (Table 1). Upper pathology involves the foregut tubes, which are proximal to the ligament of Treitz: the esophagus, stomach, duodenum, pancreas and hepatobiliary tract. Lower GIT anomalies include the mid and hindgut structures: the jejunum and ileum, which constitute the small bowel, the colon and anorectal malformations. Congenital anomalies can further be classified based on whether the defect is structural or functional. Structural anomalies result from either defective embryogenesis or intrauterine complications, such as ischemia. Functional defects have normal anatomy but disrupted flow of GIT contents. In most cases, structural defects adversely impact functional capability. This chapter reviews the clinical presentation, diagnostic work up and surgical management of upper and lower GIT congenital anomalies.
Anatomic relation | Embryonic source | Blood supply | Viscera | |
---|---|---|---|---|
Upper gastrointestinal tract | Proximal to ligament of Treitz | Foregut | Celiac axis | Esophagus Stomach Duodenum Biliary ducts Liver Pancreas |
Lower gastrointestinal tract | Distal to ligament of Treitz | Midgut | SMA | Jejunum Ileum Cecum Ascending colon Proximal 2/3 transverse colon |
Hindgut | IMA | Distal 1/3 transverse colon Descending colon Sigmoid colon Rectum Anal canal |
Embryologic derivates of the gastrointestinal tract.
SMA: superior mesenteric artery; IMA: inferior mesenteric artery.
During the fourth week of gestation, the embryonic ventral foregut differentiates into the esophagus and trachea. Muscular and neurovascular development of the esophagus is complete by the end of ninth week of gestation. It is likely that esophageal malformations result from errors during this developmental time period.
EA/TEF is categorized into five types and clinical presentation varies depending on the type of pathology (Figure 1). Type A is the most common (90% cases) and consists of proximal EA with a distal TEF. Type B consists solely of proximal EA (no fistula) whereas type C only has a TEF (no atresia). Type D has both a proximal and distal TEF in the setting of atresia. Type E consists of proximal EA with TEF and a distal esophageal pouch. Types D and E are exceedingly rare.
Types of tracheoesophageal fistulae depicted as figures A-E.
The infant will exhibit drooling and attempts at feeding will result in coughing, choking and regurgitation. Since types B and E have a proximal obstruction without distal fistulization, the infant will have a scaphoid abdomen and gas will not be seen in the bowel distally on radiograph. Type C may present with recurrent aspiration pneumonia and may not be diagnosed until later in life.
Prenatal ultrasound will demonstrate polyhydramnios and the blind end of the esophageal pouch may be visualized. After birth, unsuccessful attempt at passage of an oro- or nasogastric tube is diagnostic. The tip of the tube will be seen in the esophageal pouch on radiography.
Because of the VACTERL phenomenon (vertebral, anal, cardiac, tracheoesophageal, renal and limb deformities), renal and cardiac ultrasounds as well as plains films of the spine and limbs must be obtained to determine the presence of any other anomalies. An echocardiogram is particularly essential to ensure that the aortic arch is in its normal left-sided anatomic location because this impacts operative planning. Ventricular septal defect is the most common anomaly associated with EA/TEF.
Ideally, EA/TEF is corrected in a single procedure. Staged procedure, beginning with decompressive gastrostomy and fistula takedown, followed by esophageal reconstruction at a later date, is reserved for those too unstable to tolerate general anesthesia due to respiratory or cardiac defects. Infants with long gap atresia also undergo delayed repair to allow elongation of the proximal and distal esophageal ends.
In current practice, the minimally invasive approach using video assisted thoracoscopy is preferred to open thoracotomy. If the open approach is employed, a right posterolateral thoracotomy incision is made at the fourth intercostal space, sparing the serratus anterior and latissimus dorsi muscles. Extrapleural dissection is carried until the azygous vein is encountered, which is then divided. In the case of type A, the lower esophageal pouch and its associated fistula are identified. The fistula is resected. The proximal esophageal pouch is then mobilized to establish tension free continuity between the two ends. If a proximal fistula is present, this is ligated prior to mobilization. The esophagus is reconstructed via a single layer end-to-end anastomosis. A chest tube is placed and remains until post-operative esophogram confirms patency of the anastomosis. Anastomotic leaks tend to heal without intervention and are managed by continuation of chest tube and antibiotics.
Thoracoscopic approach has led to improved outcomes and most infants grow to lead fairly normal lives, given the lack of concurrent anomalies such as cardiac defects. Most commonly, gastroesophageal reflux (GER) and esophageal strictures are lifelong issues endured by the patient. GER may be asymptomatic or lead to persistent cough, respiratory problems or esophageal stricturing. Primary management is medical with anti-reflux medications and prokinetics. Surgical correction of GER with fundoplication is last resort. Esophageal strictures may form many years after repair and are best managed by endoscopic dilation. Recurrent or refractory esophageal strictures require surgical resection and re-anastomosis.
It results due to the failure of duodenal recanalization and most commonly occurs in the second portion of the duodenum distal to ampulla of Vater but any segment can be affected.
Emesis and feeding intolerance occurs in the first 24–48 h of life. The type of emesis—bilious versus non—depends on the location of atresia relative to the major duodenal papilla. If obstruction is distal to it, infant will exhibit bilious emesis. Obstruction proximal to the ampulla causes non-bilious emesis. Abdomen will not be distended due to proximal nature of obstruction. A palpable mass in the epigastrium may be appreciated on physical exam.
The “double bubble” on abdominal x-ray indicates air in stomach and duodenum but not in distal small bowel and colon. An UGI series must be obtained to rule out malrotation, which can also present with bilious emesis early in life and is a surgical emergency. UGI may reveal a duodenal web, which is an intraluminal diverticulum that appears as an elongated, conical silhouette resembling a “windsock”. Echocardiogram and renal ultrasound are performed to rule out any other defects as there is an association with trisomy 21 and its related complications.
“The diamond D”, Diamond Duodenoduodenostomy—A transverse incision is made in the proximal widened duodenum and a longitudinal incision in the distal tapered portion of the duodenum (Figure 2). The anastomosis is created in a diamond shape to facilitate mucosal abutment between the two incongruent duodenal diameters. During repair, evaluation for duodenal web must be performed because they are not always identified on pre-operative UGI and can cause persistent obstruction if not corrected. If present, a longitudinal duodenotomy is performed over the area of the web and it is excised. Careful attention must be paid to its location relative to the major duodenal papilla so as to not disrupt the integrity of the ampulla of Vater. The duodenotomy is closed in a transverse fashion to avoid narrowing of the lumen.
Diamond duodenoduodenostomy for duodenal atresia repair.
There tend to be few, if any, long term complications following correction of duodenal atresia. Persistent obstruction may indicate missed duodenal web and requires re-operation. Delayed gastric emptying may occur in the early postoperative period and does not warrant any intervention; most cases resolve with time and enteral feedings can be advanced in small volumes as tolerated.
The exact etiology is unknown. Exposure to erythromycin has been implicated as a risk factor [1].
It is characterized with feeding intolerance and non-bilious emesis that becomes projectile over time; usually presenting around 2–4 weeks of life, however, may not present up until 6–12 weeks. Emesis is non-bilious because the site of obstruction, the pylorus, is proximal to the ampulla of Vater. It tends to occur in first born Caucasian males.
On physical exam, may be able to palpate an “olive like” firm, mobile mass in the right upper quadrant or epigastrium, however this is often difficult to appreciate on a restless infant. Abdomen is otherwise soft and non-distended. Ultrasound is diagnostic and demonstrates a pyloric channel length ≥ 16 mm, wall ≥4 mm in thickness.
Repeated vomiting of gastric acid (HCl) leads to hypochloremia, alkalosis and dehydration. Hypovolemia stimulates aldosterone secretion with resultant sodium resorption and potassium secretion. Thus, the infant’s laboratory panel will reveal hypochloremic, hypokalemic metabolic alkalosis. Hydrogen is shifted extracellularly in exchange for potassium to correct the acid–base imbalance, exacerbating hypokalemia. Eventually, worsening hypokalemia stimulates the renal hydrogen-potassium pump to resorb potassium and secrete hydrogen, resulting in acidic urine. This is termed “paradoxical aciduria” because bicarbonate secretion should take precedence in an alkalotic state, but the nephrons prioritize correction of potassium at the expense of hydrogen loss instead.
Pyloric stenosis is not a surgical emergency and operative intervention is deferred until electrolytes have normalized, ideally, chloride >95, bicarbonate <30. As the primary metabolic derangements are caused by volume and gastric juice loss, resuscitation should be initiated with 10-20 cc/kg normal saline boluses. Once volume status has been adequately restored and urine output robust, potassium containing fluids (D5 1/2NS + 10 K/L) are administered at maintenance rate.
The Ramstedt pyloromytomy was historically carried out through a right subcostal transverse incision however the laparoscopic approach is becoming preferred in current practice. A longitudinal incision along the anterior surface of the pylorus is carried down through the serosa and hypertrophied muscle until the submucosa protrudes, much like slicing the tough outer skin of a grape until the smooth inner flesh is encountered. The length of the myotomy extends from the antrum of the stomach proximally to the pyloric vein of Mayo distally, which designates the junction of the pylorus and proximal duodenum. Oral feeding may be initiated 6–8 h post-operatively and advanced as tolerated.
Long term results from pyloromyotomy are excellent and few infants, if any, have residual complications. Incomplete myotomy can present with persistent feeding intolerance in the peri-operative period and requires re-operation.
The pathophysiology is unknown. Between 4 and 10 weeks of gestation, the extrahepatic biliary tract develops from the hepatic diverticulum. This occurs normally. In the post-natal period, there appears to be an inflammatory process that causes fibrosis of the extrahepatic biliary ducts [2].
Worsening jaundice unamenable to phototherapy during the first 2 weeks of life, subsequently demonstrating unrelenting direct hyperbilirubinemia are characteristic. Laboratory values are consistent with biliary obstruction and demonstrate direct hyperbilirubinemia and elevated alkaline phosphatase. Signs of cholestasis, dark urine and light or gray colored stools are present.
Hepatobiliary technetium-99 iminodiacetic acid scan (99-Tc IDA) has highest sensitivity and specificity [2]. Normally, the radiotracer is taken up by hepatocytes and readily excreted into the intestines via the biliary ducts. In biliary atresia, technetium will be taken up by the liver normally, but obstruction of the extrahepatic ducts prevents outflow of radiotracer into the duodenum. Abdominal ultrasound may reveal a small or obliterated gallbladder. Magnetic resonance cholangiopancreatography (MRCP) is also be helpful in ruling out intrahepatic atresia or choledocal cysts.
Expeditious operative intervention is imperative as liver damage can be attenuated, even reversed, and chance of survival improved with early biliary decompression. Beyond 3–4 months, irreversible liver damage may preclude successful outcome. The Kasai portoenterostomy is the procedure of choice. First, an intraoperative cholangiogram is performed to delineate the anatomy of the biliary tree and confirm the diagnosis. A liver biopsy is obtained to document degree of liver damage. Next, the fibrotic common bile duct is dissected from the hepatoduodenal ligament up to the level of the porta hepatis and excised. An approximately 20 cm limb of jejunum is brought up in a retrocolic fashion and a Roux-en-Y hepaticojejunostomy is created.
Successful, long term establishment of bile flow correlates with earlier surgical intervention. Infants aged <60 days at time of surgery have best results. Approximately one-third of children undergoing portoenterostomy have a 10-year or greater survival, while the rest will ultimately succumb to liver failure and require transplant. Other indications for liver transplant include presence of intrahepatic atresia, fat soluble vitamin deficiencies causing failure to thrive and variceal bleeding secondary to portal hypertension. 5-year survival following liver transplant ranges from 75 to 95% [2].
Apart from progressive liver failure, cholangitis is another major post-operative complication occurring in as much as 50% of patients who undergo portoenterostomy [2]. Decreased bile flow indicated by elevated total bilirubin in the setting of fever and leukocytosis is essentially diagnostic of cholangitis until proven otherwise. It is managed with IV antibiotics and fluid resuscitation.
Etiology is unknown. Aberrant pancreaticobiliary junction near the duodenal wall has been suggested [3].
Infants present with symptoms of biliary obstruction: progressive jaundice, dark urine, light colored stools. A tender abdominal mass may be palpated in the right upper quadrant. Laboratory values will be consistent with biliary obstruction and demonstrate elevated direct bilirubin and alkaline phosphatase. Patients may also present with cholangitis or pancreatitis.
While abdominal ultrasound and hepatobiliary 99-Tc IDA scan are useful, MRCP best delineates the anatomy of the biliary tree and is the diagnostic test of choice. There are five types (Figure 3). Type 1 is the most common and presents as saccular or fusiform dilation of the common bile duct (CBD; Figure 3A). Intrahepatic ducts are normal. Type 2 is an isolated CBD diverticulum (Figure 3B). Type 3 is a choledochocele, in which there is cystic dilation of the supra-duodenal CBD, prior to its junction with the pancreatic duct (Figure 3C). In type 4 disease, intra- and extra-hepatic bile ducts are dilated whereas in type 5 disease only intra-hepatic ducts are dilated (Figures 3D,E).
Normal anatomy of the hepatobiliary tree and its relationship to the pancreas and duodenum. (A) Choledocal cyst type 1: fusiform dilation of the extrahepatic duct common bile duct. (B) Choledocal cyst type 2: isolated diverticulum off the common bile duct. (C) Choledocal cyst type 3: supraduodenal choledococele. (D) Choledocal cyst type 4: cystic dilation of intra- and extra-hepatic bile ducts. (E) Choledocal cyst type 5, dilation of intra-hepatic ducts only.
Given the risk of cholangiocarcinoma, highest in types I and IV, surgical intervention is indicated at the time of diagnosis of any type of choledochal cyst. The approach depends on type of lesion. For type 1 cysts, primary cyst excision with cholecystectomy and roux-en-Y hepaticojejunostomy reconstruction is procedure of choice. Type 2 disease is managed by simple diverticulectomy. Type 3 is managed by transduodenal cyst excision or marsupialization and sphincteroplasty. Types 4 and 5 may be treated by anatomic hepatic resection based on the extent and location of disease, however, liver transplantation is ultimately required in most cases.
Excision of choledocal cysts result in excellent long-term outcomes with few major complications. Biliary tract malignancy, the most feared complication, may occur with incomplete excision. Cholangitis, stricture formation and choledocolithiasis are lesser significant complications that are managed medically and endoscopically, respectively.
Midgut development begins around the fifth week of gestation. The midgut starts as a vertical tube and has two connections: a ventral connection to the yolk sac via the omphalomesenteric (vitelline) duct and a dorsal attachment to the posterior abdominal wall, the mesentery [4, 5, 6]. The dorsal mesentery is the conduit for the superior mesenteric artery (SMA), which buds from the aorta, and delivers blood to the midgut. The lengthening gut tube outgrows the confines of the abdominal cavity and consequently herniates into the umbilical cord. As it elongates, it rotates 90° in a clockwise direction relative to the embryo (counterclockwise if visualized from the front). The midgut tube continues to grow extra-abdominally during gestational weeks 6–10. Around week 10, it retracts back into the abdominal cavity, rotating another 180° while doing so. Final intra-abdominal growth and fixation ensue, placing the cecum in the right lower quadrant and the duodeno-jejunal junction to the left of the upper midline, inferior to the SMA. The mesentery broadens, fanning out from its root in the posterior abdominal wall, to support the blood vessels and lymphatics that serve the jejunum, ileum, cecum/appendix, ascending colon and proximal 2/3 of the transverse colon. It is believed that ischemic events during this period cause jejunoileal atresia.
Atresia causes a structural obstruction that prevents passage of meconium in the first 24–48 h of life and results in bilious emesis. On physical exam, the abdomen will be distended.
Jejunoileal atresia is classified into four types (Figures 4A–E). Type 1 is an intraluminal web with intact mesentery (Figure 4A). The seromuscular layers of bowel remain in continuity. Type 2 also has an intact mesentery, but the two ends of bowel are disconnected by a fibrous cord (Figure 4B). Type 3a has a small v-shaped mesenteric defect that separates two blind ends of bowel (Figure 4C). In type 3b disease, known as an “apple-peel” or “Christmas-tree” deformity, a large mesenteric defect separates the proximal and distal ends of bowel. The proximal pouch is very dilated, and the distal collapsed bowel is supplied by a small vessel around which it repeatedly winds (Figure 4D). Type 4 consists of numerous blind ended segments of bowel with discontinuous mesentery, appearing as a “string of sausages” (Figure 4E).
(A) Type 1 jejunoileal atresia. (B) Type 2 jejunoileal atresia. (C) Type 3a jejunoileal atresia. (D) Type 3b jejunoileal atresia. (E) Type 4 jejunoileal atresia.
Abdominal x-ray will reveal dilated portions of bowel proximal to the site of obstruction with collapsed loops and paucity of air in the distal bowel. Contrast enema will demonstrate an abrupt transition from the filling to non-filling segments of small bowel and the colon will be appear small, <1 cm diameter, due to lack of use. In all cases of bilious emesis, an UGI series is warranted to rule out malrotation, a surgical emergency. UGI will reveal contrast filling in the stomach and proximal bowel, with abrupt cessation of contrast filling at the point of atresia.
Initial management begins with insertion of an oro- or nasogastric tube for bowel decompression and fluid resuscitation. Resection of atretic segments with end-to-end anastomoses is the procedure of choice; however, this can prove quite difficult in cases where ends of bowel are greatly mismatched in diameter. In such circumstances, the anastomosis is created in a fashion similar to duodenoduodenostomy in which the smaller end of bowel is incised longitudinally along its anti-mesenteric border to fit the end of the larger caliber bowel. Prior to completing the anastomosis, the entire length of the bowel must be inspected to ensure there are no intraluminal webs or fenestrations that may cause persistent obstruction. The goal is to resect all defunct bowel segments while maintaining enough length to ensure adequate resorptive capacity. If the ileocecal valve is spared, enteral nutrition can be tolerated with as little as 15–20 cm of small bowel. Otherwise, a length of approximately 40 cm is required [4]. Mesenteric defects are closed, taking care not to disrupt the feeding blood vessels.
Intestinal dysmotility, even in infants that have adequate remaining bowel length, may occur for many weeks following repair. Infants with short bowel syndrome, those with less than 40 cm, often require long term parenteral nutrition, which itself carries risks of sepsis and liver damage. Nonetheless, overall mortality is low and related to co-morbidities, such as low birth weight and/or cardiac defects.
As described above, normal 270° rotation and fixation of the midgut fails to occur [4, 5, 6, 7]. This lack of rotation positions the duodenum and small bowel to the right of the midline and the large bowel to the left. The cecum remains anterior to the duodenum and is tethered to the abdominal wall by lateral peritoneal attachments. These lateral peritoneal attachments, known as Ladd’s bands, compress the duodenum, thereby causing obstruction and resultant bilious emesis. The root of the mesentery is narrowed and may potentially act as fulcrum around which the bowel can twist (“volvulize”), thereby kinking the SMA and causing ischemia (Figure 5).
Intestinal malrotation showing abnormal position of cecum and Ladd’s bands
Acute malrotation with midgut volvulus presents with feeding intolerance and bilious emesis, usually around the first week of life. Abdominal rigidity, overlying erythema are signs of peritonitis and indicate ischemic bowel. Abdominal distention will not be present given the very proximal nature of pathology. As feeding intolerance and bilious emesis are symptoms of multiple pathologies, a high index of suspicion is required to make this diagnosis.
An abdominal X-ray is typically first obtained, though rarely helpful in establishing the diagnosis. Any concern for malrotation mandates a prompt UGI. A normal study will reveal contrast exiting the pylorus, descending through the second portion of the duodenum and crossing the midline through the third portion of the duodenum into the small bowel. Thus, a normal “C-loop” will be visualized. An abnormal study will demonstrate contrast exiting the pylorus and descending straight down to the right of the midline into the small bowel.
Once the diagnosis of acute malrotation is made, the patient is taken emergently to the operating room for detorsion and evaluation of bowel viability. Fluid resuscitation, insertion of oro- or nasogastric tube for decompression and administration of intravenous antibiotics have ideally been implemented prior to surgical intervention. The bowel is eviscerated and detorsed in a counterclockwise direction, fanning out its mesentery. Ladd’s bands are incised to release the obstruction. Any frankly necrotic appearing bowel is resected, while dusky bowel can be re-evaluated and usually salvaged in a second look operation 24–48 h later. Ends of healthy, viable bowel can be anastomosed, otherwise stomas are placed. A prophylactic appendectomy is performed to eliminate the possibility of appendicitis in the future. If a second look operation is required, the abdomen is left open and covered with a temporary sterile dressing; if not, it is closed.
Without significant intestinal necrosis requiring resection, outcomes following correction of malrotation are quite favorable. Infants grow normally and do not have any major adverse sequelae. Rarely, adhesive small bowel obstruction may occur years later, however any operation carries this risk.
This condition occurs as a result of the failure of the omphalomesenteric (vitelline) duct to completely involute between weeks 5–7 of gestation (Figure 6).
Omphalocele (left) and gastroschisis (right). The herniated intestine is covered with a sac with umbilical cord attached to it in omphalocele, while the intestinal loops in gastroschisis herniate through a defect on the right side of umbilicus and are not covered.
Meckel’s diverticulum is the most common congenital GIT malformation and the most common cause of painless lower intestinal bleeding in children. It usually presents by the age of 2 years, but presentation can be delayed into the teenage years. There is a male predominance. The bleeding is typically brisk and bright red. Laboratory values will demonstrate anemia. A fibrous cord connecting the diverticulum to the abdominal wall may be present and can act as a point around which bowel can obstruct, twist or intussuscept. In such cases, the child will present with abdominal pain and distention, inability to pass flatus or move their bowels.
Technetium-99 pertechnate scintigraphy (“Meckel’s scan”) localizes the bleeding ulcer. The diverticulum is typically found within 2 feet proximal to the ileocecal valve, on the anti-mesenteric side of the ileum and contains heterotopic mucosa, usually that of gastric or pancreatic in origin. Ulceration and bleeding occur secondary to acid secretion from the heterotopic mucosa. It is a true diverticulum involving all four layers of the bowel.
If bleeding is the presenting symptom, ileal resection with primary anastomosis is the procedure of choice. Segmental resection is also indicated in cases complicated by diverticulitis, perforation, obstruction, volvulus or if the base of the diverticulum is very wide. Simple diverticulectomy may be performed if the neck of the diverticulum is narrow, or if diverticulitis does not involve the base.
Resection of Meckel’s diverticulum has an excellent prognosis without major long term post-operative complications.
These are congenital defects of the abdominal wall, not of the gastrointestinal tract itself, but are discussed because they are associated with malrotation (Figure 6).
Numerous physical characteristics differentiate omphalocele from gastroschisis. The abdominal wall defect in omphalocele is midline, versus to the right of the umbilicus in gastroschisis. Defects tend to be smaller in gastroschisis, typically ≤3 cm. In comparison, omphaloceles can vary widely in diameter, ranging in size from 2 to 15 cm. Larger defects allow for herniation of more organs, namely the liver and spleen. This rarely, if at all, occurs in gastroschisis. Herniated contents are covered by an amniotic sac in omphalocele but not in gastroschisis. Exposure of the bowel to amniotic fluid during gestation causes the bowel to become thickened and the mesentery fibrotic whereas bowel is normal in omphalocele since it is protected by the overlying sac. Lastly, omphalocele has a higher association with chromosomal abnormalities and other congenital anomalies compared gastroschisis. Intestinal atresia may be seen in gastroschisis.
These defects may be appreciated on pre-natal ultrasound and are therefore expected upon delivery. Chest radiography, echocardiogram and renal ultrasound are performed to rule out associated anomalies in the case of omphalocele, as is karyotyping though this may have been performed prenatally.
Exposure of intestinal contents to the environment can result in significant insensible losses. Initial management aims to maintain adequate volume status and body temperature. The infant is placed under a warmer, fluid resuscitation commenced, and urinary catheter inserted to strictly monitor volume status. Oro- or naso-gastric tube is placed for bowel decompression. Intestinal contents are wrapped in a moist, sterile plastic dressing to prevent evaporative losses. In the case of omphalocele, care must be taken to prevent rupture of the protective sac. The goals of operation are to return the herniated contents into the abdominal cavity and close the defect. If this is unable to be accomplished either because the infant is too unstable to be taken to the operating room or because there is high risk of abdominal compartment syndrome, a silo can be sutured in place over the herniated viscera and contents gradually reduced. Daily manual reduction can be performed bedside, gently as tolerated, with complete reduction usually achieved over 3–7 days. The resultant ventral hernia is repaired once all viscera have been reduced and the infant deemed fit to tolerate general anesthesia.
Given the protective nature of the overlying sac in omphalocele, infants typically have normal bowel function following reduction and abdominal wall repair. Long term complications are related to concomitant congenital defects. In contrast, patients with gastroschisis, especially if they also have intestinal atresia, are subject to dysmotility, malabsorption and are at increased risk of developing necrotizing enterocolitis. These infants often require long term parenteral nutrition following surgical correction.
Aganglionosis of the myenteric plexus due to failure of neural crest cell migration during weeks 6–12 of embryonic development. Most often occurs in the rectum though any portion and, rarely, the entire bowel can be affected. The myenteric plexus lies in between the outer longitudinal and inner circular muscle layers of the colon and is responsible for peristalsis.
Aganglionosis results in a functional obstruction manifesting as failure to pass meconium within first 24 h of life. Abdominal distention may be present. Rectal stimulation causes explosive passage of air and stool. Because disease is distal, infant will likely be able to tolerate oral intake though may have intermittent episodes of bilious emesis. Less severe disease may not manifest until later in childhood, up to 2–3 years of age, with chronic constipation. There is an association with trisomy 21. Therefore, work up includes echocardiogram to rule out concomitant cardiac defects.
Gold standard is suction rectal biopsy, which demonstrates aganglionosis of the myenteric plexus. Biopsy should be obtained 1–1.5 cm proximal from the dentate line to ensure rectal specimen is obtained. Pathology will reveal unmyelinated nerve fibers with hypertrophied endings that stain darkly with acetylcholinesterase. Abdominal X-ray shows dilated proximal bowel with collapsed distal colon. Contrast enema is helpful in distinguishing transition zone between affected and normal colon however, gross anatomic distinction does not always correlate with histopathology [8].
Although various operative methods have been described, the fundamental principle of each procedure is the same: to establish continuity between the normal, ganglionic segments of bowel. In the past, multi-stage operations beginning with decompressive colostomy followed by definitive repair was common. Nowadays, single-stage laparoscopic approach is preferred. Regardless of procedure, however, intra-operative frozen section must be performed to confirm the presence of normal ganglionic colon prior to anastomosis, otherwise dysfunction will continue post-operatively.
The rectum/aganglionic segment is dissected circumferentially, everted through the anus and resected. Normal colon is pulled down and a low end-to-end colorectal anastomosis is created.
The aganglionic portion of bowel is bypassed and a posterior end to side anastomosis is created between the innervated segments of colon and distal rectum. The rectum is stapled at the proximal margin of disease. An incision is made in the distal posterior wall of the rectal stump approximately 1 cm superior to the dentate line. The innervated colon is pulled down through the presacral space and then anastomosed in an end-to-side fashion to the distal posterior rectal wall. The defunct rectal stump is left in place.
Circumferential endorectal dissection of rectal mucosa and submucosa, followed by evagination of these layers through the anus for resection. A rectal muscular channel remains, and innervated colon is intussuscepted through the remaining rectal muscular channel. A colorectal anastomosis is performed at the distal end of the muscular channel [9].
No single procedure has been shown to be superior to other in terms of long-term outcomes, and up to 90% patients will have relatively normal bowel function following repair. Although results tend to be quite favorable, one significant cause of significant morbidity and mortality is Hirschsprung’s enterocolitis. While the exact etiology of this entity is unknown, bacterial overgrowth and translocation appear to be implicated. Patients present with fever, abdominal distention and diarrhea. Management consists of fluid resuscitation, IV antibiotics and rectal irrigation. Refractory cases require surgical decompression with a proximal ostomy. Other complications such as anastomotic leak, stricture, abscess, wound infection and obstruction occur in up to 10% cases [1].
During the 5th week of gestation, the midline urorectal septum descends in a caudal direction toward the cloaca and divides into ventral and dorsal portions. The ventral bud becomes the urogenital sinus, which develops into the urethra and bladder. The dorsal bud becomes the rectum and anal membrane. The anal membrane involutes around week 8, thereby forming the anus. Dysgenesis can occur at any time point, allowing for variability in clinical presentation.
An anatomical distinction based on the pathology’s relation to the levator ani muscle complex was first described by Pena. The levator ani complex supports the pelvic floor and is composed of three striated muscles: the puborectalis, the pubococcygeus and the iliococcygeus. The puborectalis encircles the base of the rectum, helps to form the external anal sphincter and thereby plays an integral role in regulating defecation. Anorectal dysgenesis above the levator ani muscles is considered a “high” lesion. Conversely, lesions inferior to the levator ani complex are termed “low” malformations. Generally speaking, higher malformations tend to cause more severe issues with controlling defecation as the neuromuscular development between the levator ani complex and growing recto-anus is compromised to a greater degree.
Failure to pass meconium in the first 24–48 h of life. Physical exam will reveal abdominal distention and absence of anus. A subtle opening in the perineum through which small amounts of meconium pass may be present and indicates an anoperineal fistula in the setting of a low imperforate anus. This is the most common pathology seen. In females, low lesions may also be associated with a rectovestibular fistula, and meconium may be expressed through the vagina. Elimination of meconium during urination indicates rectourethral or rectovesicular fistula and a high rectal pouch.
Diagnosis is made upon physical examination of the perineum. Historically, an invertogram was performed to evaluate the length of atresia. In this study, a radiopaque marker is placed on the infant’s bottom, where the anus would normally be located, and the infant is placed in a head down position to allow air to ascend at the most inferior point in the rectum. Lateral films of the pelvis are then obtained. The distance between the marker and distal rectum indicate the level of pathology—high vs. low. Now, ultrasound is preferred.
Anorectal malformations are part of the VACTERL syndrome and most commonly associated with concomitant genitourinary defects. In addition to a renal ultrasound, a voiding cystourethrogram should be obtained, especially if a rectourethral/rectovesicular fistula is suspected as this can help delineate the tract. Plains films of the chest, limbs and spine as well as an echocardiogram help identify the presence of other anomalies. Any other life-threatening co-morbidities take precedence, and a temporary diverting ostomy can be placed until definitive repair can be safely performed, usually between 8 and 12 months of age.
Posterior sagittal anorectoplasty (PSARP) is the surgical procedure performed. The infant is placed in a prone jack-knife position. If a perineal fistula is present, an incision is made around the fistula and carried posteriorly toward the coccyx. If no perineal fistula is present, the incision starts inferior to the coccyx and is carried down to the perineum. It is imperative to remain midline. This is ensured by visualizing striated muscle fibers, which run perpendicular to the incision. If fat is encountered during the dissection, this indicates that the operator has deviated from midline and entered the lateral ischioanal/ischiorectal space. The rectum is identified by its overlying glistening fascia and then freed circumferentially, beginning posteriorly and advancing anteriorly until the fistula is encountered. The fistula is resected. After the fistula is taken down, the anterior rectal wall is freed from its surrounding structures. In females, the anterior rectum lies in close proximity to the posterior vaginal wall and in males, the prostate and bladder. The anterior rectal wall is gently dissected off these structures up to the peritoneal reflection. Complete, circumferential dissection of the rectum will allow for tension-free pull down and anastomosis. The rectum is situated in its anatomic position in the muscle complex. The muscle complex is repaired around the properly positioned rectum and the neoanus is created by suturing mucosa to the perineum.
Long terms outcomes are dependent on the level of pathology—high versus low anorectal dysgenesis—and the extent of neuromuscular development of the levator ani complex and rectum. Almost all children will require some degree of lifestyle modifications to manage fecal incontinence or, conversely, chronic constipation. This is achieved by strict bowel regimens with enemas or cathartics. In more severe cases, a cecostomy or appendicostomy may be required to allow for daily antegrade enemas. Worst case scenarios may necessitate a diverting ostomy.
The contribution of Natalia Louise Smith is greatly appreciated for drawing the figures numbered as 1-to-6.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:null,isOpenForSubmission:!0,hash:"339199f254d2987ef3167eef74fb8a38",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10741",title:"Synthetic Genomics - From Natural to Synthetic Genomes",subtitle:null,isOpenForSubmission:!0,hash:"eb1cebd0b9c4e7e87427003ff7196f57",slug:null,bookSignature:"Dr. Miguel Fernández-Niño and Dr. Luis H. Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/10741.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"a71558dd7dfd16ad140168409f887f7e",slug:null,bookSignature:"Prof. Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!0,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:null,bookSignature:"Dr. Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:null,editors:[{id:"181267",title:"Dr.",name:"Jie",surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!0,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:null,bookSignature:"Prof. Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:null,editors:[{id:"40482",title:"Prof.",name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!0,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:null,bookSignature:"Prof. Yusuf Tutar and Dr. Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:null,editors:[{id:"158492",title:"Prof.",name:"Yusuf",surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"654",title:"Seismology",slug:"seismology",parent:{title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:13,numberOfAuthorsAndEditors:311,numberOfWosCitations:364,numberOfCrossrefCitations:199,numberOfDimensionsCitations:451,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"seismology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8257",title:"Seismic Waves",subtitle:"Probing Earth System",isOpenForSubmission:!1,hash:"6a7acf0b6350ff87cc629283bfe248f8",slug:"seismic-waves-probing-earth-system",bookSignature:"Masaki Kanao and Genti Toyokuni",coverURL:"https://cdn.intechopen.com/books/images_new/8257.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8361",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",subtitle:null,isOpenForSubmission:!1,hash:"788c034eec48a4e2f1f6a2f1788d3346",slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8361.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",middleName:null,surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8282",title:"Polar Seismology",subtitle:"Advances and Impact",isOpenForSubmission:!1,hash:"69e0f0e64b988f29d30532c2618705b2",slug:"polar-seismology-advances-and-impact",bookSignature:"Masaki Kanao",coverURL:"https://cdn.intechopen.com/books/images_new/8282.jpg",editedByType:"Authored by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"6213",title:"Risk Assessment",subtitle:null,isOpenForSubmission:!1,hash:"ee3d73b48171426d2edb88e55e20f615",slug:"risk-assessment",bookSignature:"Valentina Svalova",coverURL:"https://cdn.intechopen.com/books/images_new/6213.jpg",editedByType:"Edited by",editors:[{id:"62677",title:"Dr.",name:"Valentina",middleName:null,surname:"Svalova",slug:"valentina-svalova",fullName:"Valentina Svalova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5958",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",subtitle:"New Insights and Contributions",isOpenForSubmission:!1,hash:"c7007d85d2a3d26fe08d934f72b0278d",slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",bookSignature:"Gemma Aiello",coverURL:"https://cdn.intechopen.com/books/images_new/5958.jpg",editedByType:"Edited by",editors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3059",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2edf2eec98179a50d827dd4fd9dbe011",slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/3059.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3551",title:"Earthquake Research and Analysis",subtitle:"New Advances in Seismology",isOpenForSubmission:!1,hash:"b1e244d7ea470738d42bc37e38470f22",slug:"earthquake-research-and-analysis-new-advances-in-seismology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/3551.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2227",title:"Tectonics",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3b4c2f80af61284334fb3655852de9f7",slug:"tectonics-recent-advances",bookSignature:"Evgenii Sharkov",coverURL:"https://cdn.intechopen.com/books/images_new/2227.jpg",editedByType:"Edited by",editors:[{id:"32743",title:"Prof.",name:"Evgenii",middleName:null,surname:"Sharkov",slug:"evgenii-sharkov",fullName:"Evgenii Sharkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1602",title:"New Achievements in Geoscience",subtitle:null,isOpenForSubmission:!1,hash:"f2742feb8ad590c91677e0dd148fc36d",slug:"new-achievements-in-geoscience",bookSignature:"Hwee-San Lim",coverURL:"https://cdn.intechopen.com/books/images_new/1602.jpg",editedByType:"Edited by",editors:[{id:"3910",title:"Dr.",name:"Hwee-San",middleName:null,surname:"Lim",slug:"hwee-san-lim",fullName:"Hwee-San Lim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2051",title:"Earthquake Research and Analysis",subtitle:"Statistical Studies, Observations and Planning",isOpenForSubmission:!1,hash:"492268d0be01c6d76f0e2e4ac5c35730",slug:"earthquake-research-and-analysis-statistical-studies-observations-and-planning",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/2051.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"605",title:"Earthquake Research and Analysis",subtitle:"Seismology, Seismotectonic and Earthquake Geology",isOpenForSubmission:!1,hash:"7f97c97f3cf8d09622afa27f3fd2d1e4",slug:"earthquake-research-and-analysis-seismology-seismotectonic-and-earthquake-geology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/605.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2048",title:"Earthquake Research and Analysis",subtitle:"New Frontiers in Seismology",isOpenForSubmission:!1,hash:"28d7da86de8c245c5391e4a78f6c2d53",slug:"earthquake-research-and-analysis-new-frontiers-in-seismology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/2048.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"37859",doi:"10.5772/50009",title:"Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic",slug:"plate-tectonic-evolution-of-the-southern-margin-of-laurussia-in-the-paleozoic",totalDownloads:4863,totalCrossrefCites:12,totalDimensionsCites:41,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Jan Golonka and Aleksandra Gawęda",authors:[{id:"16567",title:"Dr.",name:"Jan",middleName:null,surname:"Golonka",slug:"jan-golonka",fullName:"Jan Golonka"}]},{id:"37864",doi:"10.5772/50145",title:"Role of the NE-SW Hercynian Master Fault Systems and Associated Lineaments on the Structuring and Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Northern Tunisia",slug:"role-of-the-ne-sw-hercynian-master-fault-systems-and-associated-lineaments-on-the-structuring-and-ev",totalDownloads:6637,totalCrossrefCites:14,totalDimensionsCites:23,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Fetheddine Melki, Taher Zouaghi, Mohamed Ben Chelbi, Mourad Bédir and Fouad Zargouni",authors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"},{id:"147368",title:"Dr.",name:"Fetheddine",middleName:null,surname:"Melki",slug:"fetheddine-melki",fullName:"Fetheddine Melki"}]},{id:"26255",doi:"10.5772/30219",title:"Modelling Seismic Wave Propagation for Geophysical Imaging",slug:"modelling-seismic-wave-propagation-for-geophysical-imaging-",totalDownloads:6059,totalCrossrefCites:11,totalDimensionsCites:22,book:{slug:"seismic-waves-research-and-analysis",title:"Seismic Waves",fullTitle:"Seismic Waves - Research and Analysis"},signatures:"Jean Virieux, Vincent Etienne, Victor Cruz-Atienza, Romain Brossier, Emmanuel Chaljub, Olivier Coutant, Stéphane Garambois, Diego Mercerat, Vincent Prieux, Stéphane Operto, Alessandra Ribodetti and Josué Tago",authors:[{id:"12036",title:"Dr.",name:"Stephane",middleName:null,surname:"Operto",slug:"stephane-operto",fullName:"Stephane Operto"},{id:"12331",title:"Dr.",name:"Romain",middleName:null,surname:"Brossier",slug:"romain-brossier",fullName:"Romain Brossier"},{id:"12332",title:"Pr.",name:"Jean",middleName:null,surname:"Virieux",slug:"jean-virieux",fullName:"Jean Virieux"},{id:"121171",title:"Dr.",name:"Stéphane",middleName:null,surname:"Garambois",slug:"stephane-garambois",fullName:"Stéphane Garambois"},{id:"122541",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Chaljub",slug:"emmanuel-chaljub",fullName:"Emmanuel Chaljub"},{id:"122542",title:"Dr.",name:"Olivier",middleName:null,surname:"Coutant",slug:"olivier-coutant",fullName:"Olivier Coutant"},{id:"122544",title:"Dr.",name:"Vincent",middleName:null,surname:"Etienne",slug:"vincent-etienne",fullName:"Vincent Etienne"},{id:"122545",title:"Dr.",name:"Diego",middleName:null,surname:"Mercerat",slug:"diego-mercerat",fullName:"Diego Mercerat"},{id:"122546",title:"Mr.",name:"Vincent",middleName:null,surname:"Prieux",slug:"vincent-prieux",fullName:"Vincent Prieux"},{id:"122548",title:"Dr.",name:"Alessandra",middleName:null,surname:"Ribodetti",slug:"alessandra-ribodetti",fullName:"Alessandra Ribodetti"},{id:"122550",title:"Dr.",name:"Victor",middleName:"M.",surname:"Cruz-Atienza",slug:"victor-cruz-atienza",fullName:"Victor Cruz-Atienza"},{id:"122551",title:"Mr.",name:"Josué",middleName:null,surname:"Tago",slug:"josue-tago",fullName:"Josué Tago"}]}],mostDownloadedChaptersLast30Days:[{id:"37864",title:"Role of the NE-SW Hercynian Master Fault Systems and Associated Lineaments on the Structuring and Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Northern Tunisia",slug:"role-of-the-ne-sw-hercynian-master-fault-systems-and-associated-lineaments-on-the-structuring-and-ev",totalDownloads:6636,totalCrossrefCites:14,totalDimensionsCites:23,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Fetheddine Melki, Taher Zouaghi, Mohamed Ben Chelbi, Mourad Bédir and Fouad Zargouni",authors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"},{id:"147368",title:"Dr.",name:"Fetheddine",middleName:null,surname:"Melki",slug:"fetheddine-melki",fullName:"Fetheddine Melki"}]},{id:"64562",title:"Electrical Resistivity Tomography: A Subsurface-Imaging Technique",slug:"electrical-resistivity-tomography-a-subsurface-imaging-technique",totalDownloads:1926,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",fullTitle:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics"},signatures:"Bing Zhou",authors:null},{id:"67965",title:"Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data",slug:"seismic-velocity-structure-in-and-around-the-japanese-island-arc-derived-from-seismic-tomography-inc",totalDownloads:953,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"seismic-waves-probing-earth-system",title:"Seismic Waves",fullTitle:"Seismic Waves - Probing Earth System"},signatures:"Makoto Matsubara, Hiroshi Sato, Kenji Uehira, Masashi Mochizuki, Toshihiko Kanazawa, Narumi Takahashi, Kensuke Suzuki and Shin’ichiro Kamiya",authors:null},{id:"37860",title:"Structural Geological Analysis of the High Atlas (Morocco): Evidences of a Transpressional Fold-Thrust Belt",slug:"structural-geological-analysis-of-the-high-atlas-morocco-evidences-of-a-transpressional-fold-thrust-",totalDownloads:14020,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Alessandro Ellero, Giuseppe Ottria, Marco G. Malusà and Hassan Ouanaimi",authors:[{id:"144013",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Ottria",slug:"giuseppe-ottria",fullName:"Giuseppe Ottria"},{id:"144580",title:"Dr.",name:"Alessandro",middleName:null,surname:"Ellero",slug:"alessandro-ellero",fullName:"Alessandro Ellero"},{id:"158054",title:"Dr.",name:"Marco G.",middleName:null,surname:"Malusà",slug:"marco-g.-malusa",fullName:"Marco G. Malusà"},{id:"158056",title:"Prof.",name:"Hassan",middleName:null,surname:"Ouanaimi",slug:"hassan-ouanaimi",fullName:"Hassan Ouanaimi"}]},{id:"57107",title:"Pharmaceuticals and Personal Care Products: Risks, Challenges, and Solutions",slug:"pharmaceuticals-and-personal-care-products-risks-challenges-and-solutions",totalDownloads:1084,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"risk-assessment",title:"Risk Assessment",fullTitle:"Risk Assessment"},signatures:"Zakiya Hoyett",authors:[{id:"209465",title:"Dr.",name:"Zakiya",middleName:null,surname:"Hoyett",slug:"zakiya-hoyett",fullName:"Zakiya Hoyett"}]},{id:"43814",title:"Damage Estimation Improvement of Electric Power Distribution Equipment Using Multiple Disaster Information",slug:"damage-estimation-improvement-of-electric-power-distribution-equipment-using-multiple-disaster-infor",totalDownloads:1244,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"earthquake-research-and-analysis-new-advances-in-seismology",title:"Earthquake Research and Analysis",fullTitle:"Earthquake Research and Analysis - New Advances in Seismology"},signatures:"Yoshiharu Shumuta",authors:[{id:"73485",title:"Dr.",name:"Yoshiharu",middleName:null,surname:"Shumuta",slug:"yoshiharu-shumuta",fullName:"Yoshiharu Shumuta"}]},{id:"57751",title:"Sequence Stratigraphy of Fluvial Facies: A New Type Representative from Wenliu Area, Bohai Bay Basin, China",slug:"sequence-stratigraphy-of-fluvial-facies-a-new-type-representative-from-wenliu-area-bohai-bay-basin-c",totalDownloads:1297,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",fullTitle:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy - New Insights and Contributions"},signatures:"Jingzhe Li and Jinliang Zhang",authors:[{id:"202289",title:"Prof.",name:"Jinliang",middleName:null,surname:"Zhang",slug:"jinliang-zhang",fullName:"Jinliang Zhang"},{id:"204039",title:"Dr.",name:"Jingzhe",middleName:null,surname:"Li",slug:"jingzhe-li",fullName:"Jingzhe Li"}]},{id:"61767",title:"A New Trend in Cryoseismology: A Proxy for Detecting the Polar Surface Environment",slug:"a-new-trend-in-cryoseismology-a-proxy-for-detecting-the-polar-surface-environment",totalDownloads:655,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"polar-seismology-advances-and-impact",title:"Polar Seismology",fullTitle:"Polar Seismology - Advances and Impact"},signatures:"Masaki Kanao",authors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}]},{id:"42784",title:"Advanced Applications in the Field of Structural Control and Health Monitoring After the 2009 L’Aquila Earthquake",slug:"advanced-applications-in-the-field-of-structural-control-and-health-monitoring-after-the-2009-l-aqui",totalDownloads:2086,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",fullTitle:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering"},signatures:"Vincenzo Gattulli",authors:[{id:"159477",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Gattulli",slug:"vincenzo-gattulli",fullName:"Vincenzo Gattulli"}]},{id:"43262",title:"Pushover Analysis of Long Span Bridge Bents",slug:"pushover-analysis-of-long-span-bridge-bents",totalDownloads:3383,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",fullTitle:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering"},signatures:"Vitaly Yurtaev and Reza Shafiei",authors:[{id:"161878",title:"Ph.D.",name:"Vitaly",middleName:null,surname:"Yurtaev",slug:"vitaly-yurtaev",fullName:"Vitaly Yurtaev"}]}],onlineFirstChaptersFilter:{topicSlug:"seismology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/177790/silvano-caenazzo-tiozzo",hash:"",query:{},params:{id:"177790",slug:"silvano-caenazzo-tiozzo"},fullPath:"/profiles/177790/silvano-caenazzo-tiozzo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()