This review focuses on recent research efforts to synthesize metal/semiconductor hybrid nanocrystals, understand and control the photocatalytic applications. First, we summarize the synthesis methods and recent presented metal/seminconductor morphologies, including heterodimer, core/shell, and yolk/shell etc. The metal clusters and nanocrystals deposition on semiconductor micro/nano substrates with well-defined crystal face exposure will be clarified into heterodimer part. The outline of this synthesis part will be the large lattice mismatch directed interface, contact and morphologies evolution. For detailed instructions on each synthesis, the readers are referred to the corresponding literature. Secondly, the recent upcoming photocatalysis applications and research progress of these hybrid nanocrystals will be reviewed, including the photocatalytic hydrogen evolution (water splitting), photo-reduction of CO2 and other newly emerging potential photosynthesis applications of metal/semiconductor hybrid nanocrystals. Finally, we summarize and outlook the future of this topic. From this review, we try to facilitate the understanding and further improvement of current and practical metal/semiconductor hybrid nanocrystals and photocatalysis applications.
Part of the book: Advanced Catalytic Materials