This paper discusses the performance and the impact of disturbances onto a proposed hybrid fuzzy-fuzzy controller (HFFC) system to attain speed control of a variable speed induction motor (IM) drive. Notably, to design a scalar controller, the two features of field-oriented control (FOC), i.e., the frequency and current, are employed. Specifically, the features of fuzzy frequency and fuzzy current amplitude controls are exploited for the control of an induction motor in a closed-loop current amplitude input model; hence, with the combination of both controllers to form a hybrid controller. With respect to finding the rule base of a fuzzy controller, a genetic algorithm is employed to resolve the problem of an optimization that diminishes an objective function, i.e., the Integrated Absolute Error (IAE) criterion. Furthermore, the principle of HFFC, for the purpose of overcoming the shortcoming of the FOC technique is established during the acceleration-deceleration stages to regulate the speed of the rotor using the fuzzy frequency controller. On the other hand, during the steady-state stage, the fuzzy stator current magnitude controller is engaged. A simulation is conducted via MATLAB/Simulink to observe the performance of the controller. Thus, from a series of simulations and experimental tests, the controller shows to perform consistently well and possesses insensitive behavior towards the parameter deviations in the system, as well as robust to load and noise disturbances.
Part of the book: Induction Motors
The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented.
Part of the book: Fault Diagnosis and Detection
This chapter provides a comprehensive analysis of noninvasive methods to diagnose stator winding insulation faults of an induction motor. Further, a novel noninvasive method is proposed to diagnose the root cause of winding failure due to unbalanced voltage to avoid catastrophic failure. Therefore, a winding function approach is utilized to derive an analytical expression for stator winding distribution and magnetomotive force (MMF). This tactic qualifies the conductor segment that generates MMF, and it also helps to analyze a healthy current spectrum. One can easily observe higher order harmonics in current spectrum; therefore, a new series of rotor harmonics is introduced to diagnose unbalanced supply. The locus of these harmonics is dependent on the poles, rotor bars, and slip. Due to the rapid complexity in industrial plants, it is inconceivable to continue human inspection to diagnose the faults. Thus, to avoid human inspection, in addition to new series of rotor harmonic, a fully automatic method based on neural network is proposed. This method not only diagnoses unbalanced voltage but it also recognize the percentage of unbalanced voltage by use of feed-forward multilayer perceptron (MLP) trained by back propagation. Finally, the experimental results shows the validation of this research work proposed method.
Part of the book: Fault Diagnosis and Detection