Compositions of the Si(OC2H5)4 (TEOS), H2O, and C2H5OH solutions used in the sol–gel process.
\r\n\t
",isbn:"978-1-83968-571-2",printIsbn:"978-1-83968-570-5",pdfIsbn:"978-1-83968-599-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dd81bc60e806fddc63d1ae22da1c779a",bookSignature:"Dr. Sebahattin Demirkan and Dr. Irem Demirkan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",keywords:"Decision Making, Blockchain, Accounting, Earnings Management, Strategic Alliances, Innovation, Performance, Corporate Governance, Accounting Quality, Digital Assets, Internationalization, MNCs",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"6 hours",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Academician in the area of accounting who believes in the impact of interdisciplinary research. Dr. Sebahattin Demirkan's research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics.",coeditorOneBiosketch:"Researcher of strategic management, corporate entrepreneurship, and international business; specific interests include innovation, the ambidexterity framework, inter-organizational relationships, and networks. Experienced in teaching graduate and undergraduate courses in strategy, entrepreneurship, and international business and management areas.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",middleName:null,surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan",profilePictureURL:"https://mts.intechopen.com/storage/users/336397/images/system/336397.jpg",biography:"Dr. Sebahattin Demirkan is a Professor of Accounting. He earned his Ph.D. in Accounting/Management Science at Jindal School of Management of the University of Texas at Dallas where he got his MS in Accounting, MSA Supply Chain, and MBA degrees. He got his BA in Economics and Management at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul. He worked at Koc Holding, a private venture capital firm, and the University of California, Berkeley during and after his education at Bogazici University. His research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics. Dr. Sebahattin Demirkan has published articles in Contemporary Accounting Research, JAPP, JAAF, TEM, Journal of Management, and other top academic journals. He teaches several different classes in both undergraduate and graduate levels in Accounting and Analytics programs. He is a treasurer and vice president of the TASSA, board member of the BURCIN and member of the American Accounting Association.",institutionString:"Manhattan College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Manhattan College",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"342242",title:"Dr.",name:"Irem",middleName:null,surname:"Demirkan",slug:"irem-demirkan",fullName:"Irem Demirkan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033HrA8QAK/Profile_Picture_1606729803873",biography:"Dr. Irem Demirkan earned her Ph.D. in International Management Studies and M.S. in Administrative Studies at Jindal School of Management at the University of Texas at Dallas, USA. She got her BA in Economics at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul, Turkey. She worked in the finance and textile industries before joining to academia. Dr. Demirkan has published research in the areas of strategic management and corporate entrepreneurship in journals such as the Journal of Management, Journal of Business Research, Management Science, European Journal of Innovation and Management, IEEE Transactions on Engineering Management, among others. Dr. Demirkan currently teaches strategic management, entrepreneurship, and international business at Loyola University Maryland in Baltimore, MD.",institutionString:"Loyola University Maryland",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Loyola University Maryland",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48467",title:"RE2O3 Nanoparticles Embedded in SiO2 Glass Matrix — A Colossal Dielectric and Magnetodielectric Response",doi:"10.5772/60677",slug:"re2o3-nanoparticles-embedded-in-sio2-glass-matrix-a-colossal-dielectric-and-magnetodielectric-respon",body:'Tiny electrical components are now unanimously required to be high in functionality and reliability and low priced in response to progress in the high density mounting technology. Continued device scaling for future technology nodes requires reduction in equivalent oxide thickness (EOT) of gate dielectrics to maintain electrostatic control of the charges induced in the channel. The use of amorphous SiO2 as a gate dielectric offers several key advantages in complementary metal-oxide semiconductor (CMOS) processing, including thermal and chemical stability as well as superior electrical isolation properties (high band gap of nearly 9 eV, and a Si–SiO2 potential barrier for electrons of about 3 eV). The continuous miniaturization of Si electronics has imposed severe constraints on the performance of the SiO2 gate oxide, with its thickness now approaching the quantum tunneling limit [1,2]. To continue the downward scaling, dielectrics with a higher dielectric constant (high-k) are being suggested as a solution to achieve the same transistor performance while maintaining a relatively thick physical thickness. Following this roadway, many materials systems (viz. lead–free non-ferroelectric) are currently under consideration as alternatives to conventional silicon oxide films as the gate dielectric material for sub-0.1 μm CMOS technology. Such an approach allows one to employ the best available materials for each phase, whose properties are known a priority due to the scarcity of high-k materials, to suit the desired application. Recent reports of giant dielectric constant have directed considerable attention to several new material systems, such as perovskite–related materials ACu3Ti4O12 (A = Ca, Bi2/3, Y2/3, La2/3) [3,4], La2/3LixTi1-xAlxO3 [5], Nd2O3 doped (1-x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 [6], Fe-containing complex perovskites A(Fe1/2B1/2)O3 (A = Ba, Sr, Ca; B = Nb, Ta, Sb) [7,8], non-perovskite material Li0.05Ti0.02Ni0.93O [9], percolative BaTiO3-Ni composites [10], electron-doped manganites Ca1-xLaxMnO3 and hole-doped insulators La2Cu1-xLixO4 and La2-xSrxNiO4 [11–13]. The sensitivity of these complex oxides to strain, stoichiometry, phase heterogeneities, oxidation state, disorder, etc. can lead to drastic modifications in their magnetic and electric properties at the nanoscale. Besides that, as the key guidelines for replacing alternative dielectrics with high-k materials are required to (i) remain thermodynamically and chemically stable between the metal-oxide and Si substrate; (ii) kinetic stability against Si and the metal gate, in particular during high temperature processing and annealing; (iii) insulating properties: band offsets with Si over 1 eV to assure low leakage currents; (iv) a passivated, low-defect-density interface with Si to ensure large carrier mobility in the Si channel and good breakdown properties; and (v) interface quality between the high-k dielectrics and Si substrate: a low defect density in the high-k dielectric itself to prevent flat band and threshold voltage shifts and instabilities. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. The ranking of HfO2-based system as a desired high-k gate dielectric material to replace amorphous SiO2 drops considerably, as HfO2 suffers crystallization at a relatively low process temperature (< 500°C), resulting high leakage current along the grain boundaries [14]. Therefore, the exploitation of new type of amorphous phase pure high-k gate dielectrics candidates as a replacement of SiO2 still faces several daunting challenges.
Besides the aforementioned consideration, the superior electrical characteristics of the Si–SiO2 interface in ideal gate dielectric stack compatible with planarization technology has not achieved with any other alternative semiconductor–dielectric combination. Despite several key advantages of SiO2, the continual scaling of CMOS technologies has pushed the Si–SiO2 system in formidable challenge. One promising alternative approach to overcome the scaling limit has been proposed to substitute by silica-based single-valence nanoparticles (NPs) as gate insulator (interface between silicon and NP-oxides embedded silica), where flexibility, compartibility and functionality may be achieved through different NPs sizes/concentrations. Concentrating on the desired NP-oxides, potentially stable rare earth oxides (RE2O3, RE ~ rare earth, a series of elements from La to Lu with stable RE3+) were chosen, which are attractive materials based on good thermodynamic energy considerations with silicon, highly resistive and a high conduction band offset over 2 eV. We have presented extensive results, providing useful insight into the physics of nano-composite high-k gate dielectrics. Sol–gel derived non-magnetic SiO2 glass matrix with magnetic/nonmagnetic rare earth NP-oxides provides a convenient way to tailor desired magnetic, dielectric (in presence of applied magnetic field), and other properties by altering the type, size and concentration of the dopant ions.
The preparation of RE2O3:SiO2 nano-glass composite system (RE ~ La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu) consists of three consecutive processes: (a) preparation of wet gel in which rare earth ions were doped by sol–gel way, (b) drying of the gel and (c) densification of the dry gel to a dense glass in which RE2O3 NPs embedded by calcining at selective temperatures [15]. The process was based on the hydrolysis of precursors, such as tetraethylorthosilicate {Si(OC2H5)4} (TEOS) and subsequent condensation of hydrolyzed TEOS in a medium containing a hydroalcoholic solution of rare earth salt [16] (Figure 1(a)) having different mol% concentrations following essentially the method developed by Sakka and Kamiya [17]. Water was required for the hydrolysis. The molar ratio of water and TEOS was kept at 20 while that of TEOS and catalyst HCl at 100. Dry ethanol was used for diluting the alkoxide. The following composition of the Si(OC2H5)4 solutions used in the study (Table 1):
\n\t\t\t\tSi(OC2H5)4\n\t\t\t\t \n\t\t\t\t(gm)\n\t\t\t | \n\t\t\t\n\t\t\t\tH2O\n\t\t\t\t \n\t\t\t\t(gm)\n\t\t\t | \n\t\t\t\n\t\t\t\tC2H5OH\n\t\t\t\t \n\t\t\t\t(gm)\n\t\t\t | \n\t\t\t\n\t\t\t\tMole ratio of H2O to Si(OC2H5)4\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\tVolume\n\t\t\t | \n\t\t\t\n\t\t\t\tSiO2 content (gm/100 cc)\n\t\t\t | \n\t\t
169.5 | \n\t\t\t292.8 | \n\t\t\t37.5 | \n\t\t\t20 | \n\t\t\t500 | \n\t\t\t9.80 | \n\t\t
Compositions of the Si(OC2H5)4 (TEOS), H2O, and C2H5OH solutions used in the sol–gel process.
There are two distinct chemical reactions involved in the sol–gel process, describing Eqn. (1) for hydrolysis of the alcohol groups, Eqns. (2) and (3) for polycondensation of hydroxyl groups.
Hydrolysis:
Condensation (water/alcohol condensation):
Water condensation:
Alcohol condensation:
The clear solutions without any precipitaion are prepared with the mixing of half amount of ethanol in alkoxide and the solution consisting of the specified amount of water with another half of the ethanol containing HCl and dopant. The mixure solutions continued stirring for 2–3 hours at room temperature. The clear solution was kept in pyrex beaker at the atmospheric condition for 7/8 days to form stiff monolithic transparent gel. Further, the gels were allowed to dry for 4–5 weeks at room temperature. The dried (liquid removed by thermal evaporation) monolith is termed as xerogel. The oven–dried gel (temperature range 100–200°C) still contains large concentration of chemisorbed hydroxyls. Heat treatment in the temperature range 500–800°C desorbs the hydroxyls, forming a stabilized gel. At 1000°C, it transformed to a dense glass. Heat treatments of samples were performed according to preselected calcination temperature schedule [16] (Figure 1(b)).
(Color online) (a) Sol–gel process. (b) Gel–glass embedded with rare earth nanoparticle calcination process.
It is relevant to mention here the important findings of Raman spectroscopic studies including measurements of pore size, density and specific surface area on the densification of undoped SiO2 gel as a function of heat treatment up to 900oC [18]. With increasing temperature from 700 to 800oC, the average pore size increases abruptly from 1.0 nm to 2.3 nm, whereas, the specific surface area decreases from 550 m2/g to 160 m2/g and the pore volume/gm decreases from 0.19 cc/g to 0.12 cc/g. The surface energy for a siloxane surface is higher than for a hydroxyl surface. The
Powder X-ray diffraction (XRD) of the sample was performed by using Cu-
A. Structural studies through transmission electron microscopy (TEM) and X-ray diffraction (XRD): Typical data are shown for Er2O3:SiO2 NPs-glass composite system having 0.5 mol% dopant Er2O3 concentration calcined at different temperatures, namely, 700, 800, 900, and 1200°C (henceforth referred as Er05-7, Er05-8, Er05-9 and Er05-12, respectively) [20]. Here, we discuss the TEM image of the powder specimen of typical Er05-8 (Figure 2(a)), showing nearly spherical NPs of Er2O3 embedded in the glass matrix in the range of 3–6 nm. The particle size distributions histogram (upper inset of Figure 2(a)) of the sample is calculated by counting onto the the micrograph at least 100 particles from Figure 2. The high-resolution TEM (HRTEM) image (lower inset of Figure 2(a)) of the respective sample also shows lattice fringes with interplanar spacing (3.04 Å). The selected area electron diffraction (SAED) pattern (Figure 2(b)) also shows spotted ring patterns, developing the regions of localized crystallinity.
(Color online) (a) TEM image of Er05-8, upper inset: the particle size distribution histogram and lower inset: the HRTEM image, (b) electron diffraction and (c) XRD patterns of all the Er05-7, Er05-8 and Er05-12 samples.
The XRD patterns of the Er2O3 oxide NPs doped SiO2 matrix calcined at 1200oC (Er05-12) show crystalline nature with quite large Er2O3 NPs. It exhibits clearly in Figure 2(c) the most intense characteristic line of single phase Er2O3 (JCPDF Card No. 43-1007) at 2θ~ 29.30° (222) corresponding the unit cell parameter a = 10.54 Å (space group: Ia3(206)). The sizes of Er-oxide NPs in Er05-12 are also estimated (> 40 nm) by applying the well-known Scherrer’s equation from the integral breadths of the XRD lines. XRD patterns cannot be well resolved from feeble broad peaks due to their amorphous-like character of Er05-7 and Er05-8 samples. However, it is significantly mentioned here that the sizes of Er2O3 NPs grow larger for samples calcined at higher temperatures. In the SiO2 glass matrix, low concentrations of Er3+ ions are bound to non-bridging oxygen atoms with quite low solubility [21]. Consequently, at a higher Er2O3 concentration with SiO2 (1:2), the formation of an Er2Si2O7 mixture with Er2O3 may occur at 1200oC [22]. However, at a higher calcined temperature (~1200oC and above), there is a possibility of the formation of Er2Si2O7 mixture with crystalline Er2O3 even with very low concentration (0.5 mol %) of dopant ions. Herein, the sample obtained at 1200oC are not emphasized because of the observed dielectric behavior (discussed in the next section) is almost comparable with pure bulk Er2O3 (unsupported with SiO2).
B. Dielectric and magnetodielectric (MD) effect
Er2O3 NPs-glass composite system: colossal enhancement of dielectric constant and large MD effect
Among various rare earth oxides, Er2O3 has been chosen first in the present work as it possesses most appealing properties viz. high resistivity (1012-1015 cm-3), large band gap (Eg= 5–7 eV), static dielectric constant (k ~ 14) [23,24], good thermodynamic stability with silicon and, moreover, not yet been explored from the viewpoint of observing the high MD effect. Although, present TEM and XRD studies also stimulate us for further exhaustive investigation on typical Er2O3:SiO2 nano-glass composite system with different Er2O3 NPs size to throw more light exploring the origin and application feasibility on these rich dielectric materials. Typical data are shown for a Er2O3:SiO2 nano-glass composite system having 0.5 mol% dopant (Er2O3) concentration calcined at different temperatures, namely, 700, 800, 900, and 1200°C (henceforth referred as Er05-7, Er05-8, Er05-9 and Er05-12 respectively).
(Color online) (a) The (ε′-T) curves of Er05-8 at different selective frequencies, inset: representative plots of ln(ε\'−1−ε\'m−1) vs. ln(T−Tm) of Er05-8 at temperatures > Tm, (b) (ε′-T) curves of Er2O3 nanoparticles dopes SiO2 glass calcined at different temperatures, inset shows (ε′-T) curves of Er05-12 with respect to Bulk Er2O3 and SiO2 showing non-DPT feature.
Figure 3(a) illustrates the relative dielectric constant (ε′) vs. temperature curves of typical Er05-8 sample without applied magnetic field measured at several selective frequencies (1–100 kHz). The shape of the curves with a notable broadening around the well-defined maxima
(Color online) (a) Dielectric loss tanδ of Er05-8 at different frequency, (b) representative Arrhenius plot of the relaxation time of Er05-8. The calculated activation energy values (in electron volt (eV)) are illustrated in each case.
To shed more light on the relaxation dynamics of rare earth oxide NPs-glass composite systems, temperature dependent dielectric loss tangent (tanδ) are carried out at various frequencies. The appearance of three maxima with strong frequency dispersion located at peak A ~180 K, peak B ~ 260 K, and peak C > 320 K are observed in tanδ vs. temperature curve. The former two peaks (peaks A and B) are shifted to high temperature with increasing frequency, whereas, the peak C with high-dielectric leakage (~ 7) is shifted to the lower temperature. In Figure 4(b), the temperature dependence logarithmic plot of the relaxation time (τ), determined as the inverse of the maximum peak frequency exhibit straight line, is shown in an Arrhenius representation τ=τoexp(Erelax/kT), with an energy barrier Erelax. Near the DPT temperature (Tm), thermally activated response is described with an energy barrier Erelax of about 1.13 eV. However, the temperature dependent relaxation response above 300 K becomes reversed with the activation energy 1.21 eV. These experimental facts suggest the presence of thermally activated oxygen vacancies associated with the dielectric relaxation process as presented earlier with activation energy ~ 0.7-1.2 eV [30,31]. Our present results support the recent experimental finding of perovskite type ABO3 [31] material, closely related to the thermally activated reorientation of dipole moment via the oxygen ion jumping through the oxygen vacancy, which can be controlled by sintering process. The dielectric response and DPT behavior diminishe by long-time annealing of the sample at higher temperature, which might be associated with reduced concentration of oxygen vacancies. Here, electrode effect in dielectric measurement is excluded by using different thickness of the samples with different electrode materials, indicating the intrinsic nature of this system.
(Color online) Dielectric hysteresis loop of Er05-8, measured near DPT (275 K) and above room temperature (320 K) using 2.0 and 1.0 kHz polarization frequency.
Figure 5 shows the frequency and temperature dependence hysteresis loop (P-E curves) of typical Er05-8. The values of remanent polarization (Pr ~ 0.032 µC/cm2) and coercive field (Ec ~ 0.78 kV/cm) of relatively narrow P-E loop near Tm (~270 K) without saturation are attributed to noncanonical ferroelectric-like (FEL) correlation in the sample, similar to those commonly observed in ABO3 perovskites [32]. However, the present NP-glass composite system has very high magnetic dilution of the NPs Er2O3 concentration (0.5 mol% Er2O3 : 99.5 mol% SiO2) and hence small amount of dipole moment per unit volume are not high enough to induce significant changes in the polarization. The spurious hysteresis loop reveals some contribution of lossy dielectric (space charge such as oxygen vacancies) or nicknamed as “banana loops,” the terminology recently coined by Scott [33]. At lower frequency, the hysteresis loop becomes slightly fatter. However, to check the possible FEL correlation in the sample, temperature dependent P-E characteristics are carried out at highest polarization frequency (2.0 kHz), obtained in our instrument (Precision LC meter, Radiant Technologies). It is noted that the measured hysteresis loop at high frequency is closely related with the intrinsic ferroelectric switching processes of the system [34]. Although, the values of remanent polarizaion and coercive field of P-E curves becoming more pronounced with decreasing temperature from 320 to 275 K suggesting ferroelectric-like ordering in NPs-glass composite system, further investigations are certainly needed to delineate it.
Materials exhibiting colossal enhancement of dielectric value are usually adopted to explain by Maxwell–Wagner (MW) mechanism. The present NPs-glass composite system is basically NPs grain of rare earth oxide (uniformly distributed) embedded in more insulating SiO2 matrix. The enhancement of dielectric constant along with DPT behavior might be a signature of the effect of internal barrier layer capacitance depending on the ration of grain size and the grain-boundary thickness. The complex impedance curves in Figure 6 have also been analyzed using an equivalent circuit, consisting of the two inclined semicircular arc (deviation from the ideal Debye response). Thus, the two depressed semi-arc in the Nyquist plot (complex impedance Z″-Z′plane) of the impedance data could be modeled on two parallel resistor–capacitor (RC) networks connected in series, one corresponds to the conducting part in high frequency region assigned to the intrinsic effect of grain (typical Er2O3 NPs) and the other arc in low frequency side corresponds to the more resistive part (SiO2 matrix) of the sample. Interestingly, the entire measured frequency region (20 – 2 × 106 Hz) at the temperature below Tm (<270 K) is governed by the grain response (intrinsic effect). The temperature dependence of grain (Er2O3) resistance (Rg) values are obtained from equivalent circuit model with the help of commercial software (Z-VIEW, version 2.9c). The contribution of grain resistance (intrinsic response of NPs-glass systems) in the presence of magnetic field effect are discussed in the next section.
(Color online) (a) Complex plane plots, Z″-Z′, of Er05-8 at several temperatures and (b) schematic model of equivalent electrical circuits indicating of two parallel resistor–capacitor (RC) combinations [(RgCg): Er2O3 nano-grain, (RgbCgb): SiO2 matrix] connected in series.
The observation of colossal MD effect is the most interesting finding of Er05-8 system as shown in Figure 7(a) at a specific frequency of 2.5 kHz. The large enhancement of dielectric constant (~2.75 times) is observed around the transition regime 260–300 K under 9 T magnetic field. The inverse of dielectric constant with temperature under magnetic field (upper inset of Figure 7(a)) are also fitted by Curie–Weiss law with Curie constant (C) (3968.82, 6211.29 and 6918.04 K for 0, 5 and 9 T, respectively) and Curie–Weiss temperature (To) (260.06, 270.12 and 271.64 for 0, 5 and 9 T, respectively). It is obvious that both dielectric temperatures (Tm and To) are shifted to higher temperatures with increasing magnetic field, indicating the occurrence of magnetic spin-ordering at higher temperature under magnetic field and hence exhibit a reduced spin-lattice coupling strength under magnetic field. Temperature and frequency dependent dielectric constant of Er05-7 and Er05-8 are measured at a typical higher magnetic field (~9 T), shown in Figures 7(b) and 7(c). One may speculate about particle size dependent field effect playing a role of the larger ε′ response in the lower temperature annealed samples [35]. Within this scenario, the system in which we observed MD effect as well as Curie–Weiss behavior is the single phase of amorphous Er2O3 NPs of 2–10 nm size embedded in SiO2 glass calcined at 700–900°C. The estimated field dependent MD response (MDR) near Tm (~275 K) is defined by
(Color online) (a) The magnetic field dependence of (ε′-T) curves of Er05-8 at a fixed frequency 2.5 kHz. Upper inset of (a): inverse of ε′ with temperature under magnetic field exhibiting the Curie–Weiss behavior and the lower inset of (a): the fractional change of the magnetic field induced change in the dielectric constant (∆ε′/ε′) of Er05-8 showing linear variation with the square of magnetization M2, measured in the vicinity of Tm (~ 275K). [(b), (c)] (ε′-T) curves of Er05-7 and Er05-8 samples measured with several selective frequencies under 9 T applied magnetic field.
Figure 8 shows the contribution of amorphous NP Er2O3 grain resistance Rg (calculated from equivalent circuit element analysis in Figure 6) of Er05-8 under external magnetic field as a function of measuring temperature. The temperature dependence of ac conductivity (σac) at various frequencies is demonstrated in Figure 9. In the inset of Figure 9, the ac conductivity as a function of temperature under external magnetic field is illustrated. Concomitantly, the grain resistance Rg(T) in Figure 8 exhibits a metal to insulator like transition coinciding with the dielectric maxima temperature Tm of ε′(T) (Figure 3(a)) as well as σac(T) (Figure 9). Interestingly, the Rg decreases under magnetic field, similarly observed in colossal magnetoresistive materials [25]. These experimental facts truely corroborate that the nature of charge carriers responsible for dc conduction in the grain interior and the dielectric relaxation maxima belongs to the same category.
Color online) Temperature dependence of grain resistance (Rg) calculated from impedance complex plane plots with external magnetic field. Inset: The region close to Tm is highlighted.
(Color online) Temperature dependence of ac conductivity (σac) of Er05-8 for various frequencies. Inset: temperature dependence of ac conductivity (σac) at 2.5 kHz with external magnetic fields.
The magnetoresistive property of magnetic NPs is attributed by spin-polarized tunneling [37]. Although, the observed strong positive magnetoelectric interaction constant (α~ 0.782) has a similar appearance to intrinsic multiferroics, the MD effect can also be achieved through a combination of magnetoresistance and the Maxwell–Wagner effect, as predicted by Catalan [38]. Since the current results suggest that MD behavior is probably a manifestation of magnetoresistance changes, depending on the NP size and separation. Enhancement of MD response (i.e., positive MD effect) through the decreases of NPs Er2O3 resistance under external magnetic field, (i.e., negative magnetoresistance) might imply the possible tunability of the resistive MD effect.
(Color online) (a) The (ε′-T) curves of Eu05-8 at different frequency, inset: representative plots of ln(ε\'−1−ε\'m−1) vs ln(T−Tm) at temperatures higher than Tm for the Eu05-8 at different frequency values.
(Color online) (a), (b) The (ε′-T) curves of Eu05-7 and Eu05-9 measured under different applied magnetic fields at a fixed frequency 2.5 kHz.
Typical data is shown for Eu2O3:SiO2 NPs-glass composite system having 0.5 mol% dopant Eu2O3 concentration calcined at different temperatures, namely, 700, 800 and 900oC (henceforth referred as Eu05-7, Eu05-8 and Eu05-9 respectively). Figure 10 represents the temperature dependence of ε′of Eu05-7 in the absence of the magnetic field. The nature of the variation of the (ε′-T) curves with maxima at Tm ∼ 270 K, represents as “diffuse phase transition” (DPT) around Tm with smaller ε′ than Er05-7 system, quite different and larger than that of bulk Eu2O3 [28] or pure SiO2 (∼ 3.9). Such system also follows a modified Curie–Weiss relationship [29], obtaining diffuseness exponent γ =1.58 (inset of Figure 10). The ε′-T plot (at 2.5 kHz), around the transition regime 240-320 K of Eu05-7 and Eu05-9 shows a decrease of ε′ under a magnetic field of 9 T (Figure 11). Here, we also observed particle size dependent effect, associated with DPT behavior as well as MD effect.
In previous sections, we have presented interesting particle size dependent colossal dielectric response along with MD effect in Er2O3 and Eu2O3 nano-glass composite systems. From the obtained results, there are colossal enhancement of dielectric constant and large MD effect in Er2O3 case [20], while those in Eu2O3 case, smaller responses were observed [39]. Obviously, the different electronic and magnetic properties for Er2O3 and Eu2O3 play a crucial role. However, these results suggest great promise in further systematic investigation to distinguish the mechanisms that contribute to colossal dielectric responses along with MD effect in other RE2O3:SiO2 nano-glass composite systems (RE2O3, RE ~ rare earth, a series of elements from La to Lu with stable RE3+) with different RE2O3 NPs size.The purpose of such study is to find amorphous high-k oxide candidates and MD effect with superior phase stability for gate dielectrics from a lineup of rare earth metal oxides embedded in SiO2 matrix, and to find a sequential coupling between different constituents among these nano-glass composite materials.
Figure 12 illustrates the temperature dependent ε′ of the series of rare earth oxide NPs-glass composite systems calcined at 700oC in the absence of the magnetic field. Here, we concentrate the variations of temperature dependent dielectric behavior mainly on the 700oC calcined sample for the sake of clarity. Besides that, the possibility of formation of other rare earth oxide phase (e.g., RE2Si2O7) mixture with crystalline RE2O3 is ruled out at 700oC for low dopant concentration (0.5 mol%) [22]. Interestingly, RE2O3:SiO2 nano-glass composite systems in which RE ~ Sm, Gd and Er show colossal enhancement of dielectric constant (ε′ ~103) around room temperature. The nature of the variation of the (ε′-T) curves represents well-defined maxima and notable dielectric broadening around ε′m (maximum value of ε′) with high ε′ and different from pure bulk RE2O3.
(Color online) The ε′-T curves of RE2O3 (gel-glass calcined at 700oC) at 1 kHz without applied magnetic field.
(Color online) (a) Maximum value of dielectric constant, and (b) MDR under 5 T applied field of RE2O3:SiO2 nano-glass composite systems calcined at 700oC with rare earth atomic number.
The amorphous self-organized rare earth oxide nano-glass composite systems may be the promising high-k gate dielectrics due to its reproducible high dielectric constant (Figure 13(a)), single-stage process in air at moderate temperature and good compatibility with modern microelectronics processing technique. The present systems also show the MD effect around the transition temperature. The MDR at 1 kHz is plotted as a function of atomic number of the rare earth elements near Tm as shown in the Figure 13(b). The RE2O3:SiO2nano-glass composite systems in which RE ~ Sm, Gd, Er and Lu show colossal response of dielectric constant under applied magnetic field. Sol–gel process provides a convenient way for tailoring phase pure, self-organized NPs of nearly uniform sizes (particle size distribution histogram from TEM image) and for facilitating homogeneous dispersion of these metal-oxide NPs in the silica matrix. It is believed that the sol–gel derived NP-glass composite systems prepared and calcined in identical condition (Figure 1(b)), the particle size distributions of all rare earth oxide at specific calcined temperature is nearly equal (say 700oC, we have checked for Er, Eu, Gd and La systems). These rare earth oxide NPs are rigidly fixed within the insulating silica matrix at all temperatures. So this dielectric behavior does not arise from the physical motion of the NPs. This feature takes place inside the rare earth NPs grain and they are very much conditioned by magnetic property of NPs grain, the potential barriers in the grain boundaries, the degree of deformation of the lattice and the crystallites, as well as the grain size and their constituent host. Why RE ~ Sm, Gd and Er shows much larger effects than other rare earths? It needs further investigation using magnetic and non-magnetic rare earth oxide NPs together with different doping concentrations to explore the mechanism and application feasibility on these rich dielectric materials.
As discussed in the above section, we have systematically investigated the colossal responses of dielectric behavior along with MD effect in rare earth oxide (RE2O3, RE ~ rare earth, a series of elements from La to Lu with stable RE3+) NPs embedded SiO2 glass composite systems with different RE2O3 NPs size. Properly annealed NPs-glass composites, where RE ~ Sm, Gd and Er, show an intriguing colossal response of dielectric behavior and MD effect near room temperature. These reproducible experimental facts suggest simultaneously a question why only these three magnetic rare earth elements have larger effects than others. Herein, we have systematically synthesized together via sol–gel route the magnetic Gd2O3 and non-magnetic La2O3 NPs with different doping concentrations and size embedded in SiO2 matrix. The doping concentration and the corresponding sample index are highlighted in Table II [40]. Here, we report that the high-k and MD of these NP-glass composite systems are very much conditional by magnetic property of Gd2O3 NPs size, concentration, and the degree of deformation of the host matrix. To improve the dielectric tunability in presence of external magnetic field, the crucial magnetic properties of dielectrics are necessary for the application of the devices.
\n\t\t\t\tSample name\n\t\t\t | \n\t\t\t\n\t\t\t\tNon-magnetic La2O3 (mol%)\n\t\t\t | \n\t\t\t\n\t\t\t\tMagnetic Gd2O3 (mol%)\n\t\t\t | \n\t\t
LGS1 | \n\t\t\t0.150 | \n\t\t\t0.000 | \n\t\t
LGS2 | \n\t\t\t0.120 | \n\t\t\t0.030 | \n\t\t
LGS3 | \n\t\t\t0.090 | \n\t\t\t0.060 | \n\t\t
LGS4 | \n\t\t\t0.075 | \n\t\t\t0.075 | \n\t\t
LGS5 | \n\t\t\t0.060 | \n\t\t\t0.090 | \n\t\t
LGS6 | \n\t\t\t0.000 | \n\t\t\t0.150 | \n\t\t
LGS7 | \n\t\t\t0.000 | \n\t\t\t0.500 | \n\t\t
Different doping concentrations of non-magnetic La2O3 and magnetic Gd2O3 (mol%) in SiO2 NP-glass composite systems.
Figure 14 illustrated the ε´-T curves of La2O3/Gd2O3 NPs embedded SiO2 glass composite systems (henceforth referred to as LGS) with different doping concentrations in the absence of the magnetic field. All the curves have well-defined diffuse phase transition-like maxima at Tm\n\t\t\t\t~320 K characteristic with oxygen vacancy-induced dielectric relaxation, thoroughly discussed in our previously reported sections [16,20,39] of other rare earth systems. Interestingly, at higher magnetic Gd2O3 doping concentrations, the LGS NP-glass composite systems show colossal enhancement of dielectric behavior near room temperature. Even, a very high magnetic dilution of Gd2O3 NPs (LGS2 sample ~ doping level 0.03 mol%) system, the dielectric value is higher than that of pure bulk crystalline counterpart [28].
(Color online) The ε´-T curves of LGS NP-glass composite systems with different doping concentrations calcined at 700oC.
Figure 15(a) illustrates the ε´max vs. Gd2O3 doping concentrations of NP-glass composite systems calcined at 700oC in the absence of the magnetic field. Here, ε´max increases with higher doping concentration of magnetic Gd2O3 NPs. The present systems also show strong MDR around the transition temperature (Tm). The MDR at several selective frequencies near Tm are plotted as a function of doping concentration of Gd2O3, shown in the Figure 15(b). MDR enhances with faster rate at relatively lower doping concentration (≤0.1 mol%) of magnetic Gd2O3, whereas at moderate concentration range (≥0.2 mol%), the colossal response are more pronounced. A profound analogy may be expected between the colossal MDR in magnetic NP-glass composite systems and the inhomogeneous magnetoelectric interaction, inducing through magnetic spin modulation (flexomagnetoelectric polarization) [41]. Depending on the characteristic size (particle radius) and magnetization in amorphous-like nanosized systems, the flexomagnetoelectric effect induces linear magnetoelectric tunability [42].
(Color online) (a) Maximum value of dielectric constant, and (b). MDR under 5 T applied field of LGS NP-glass composite systems with different Gd2O3 doping concentrations calcined at 700oC.
Extended X-ray absorption fine structure (EXAFS) experiments were performed at the Gd LIII edge to obtain further detailed information on the local surroundings of the chemical elements of the Gd-oxide doped (0.5 mol%) nano-glass composite system calcined at different temperatures, namely, 700, 800, 900, and 1200°C (henceforth referred as Gd05-7, Gd05-8, Gd05-9, and Gd05-12, respectively). The broad dielectric anomaly in Gd2O3:SiO2 can be plausibly attributed to oxygen vacancy defects, which are implied by the EXAFS measurements. Of particular interest are the coordination number of oxygen around the Gd atom and type of neighbors, the interatomic distance between the Gd atom and the surrounding oxygen, and the Debye–Waller factors which contain the mean-square relative displacements due to static disorder or thermal vibration. Figure 16 depicts the room temperature experimental EXAFS spectra of samples Gd05-7, Gd05-8 and Gd05-9. The EXAFS signals weighted by k2 [i.e., k2χ(k)] are shown in Figure 16(a), and the moduli of their Fourier transforms |F(R)| are presented in Figure 16(b). The EXAFS spectra in Figure 16(a) look very much the same, on the first glance, and thus one would not expect a major difference in the Fourier transform data. The Fourier transform modulus (Figure 16(b)) exhibits two main coordination peaks: the first one, located at R ~ 1.8 Å corresponds to the interatomic distances of Gd3+–O (first coordination shell), while the second one (not growing properly) is located at R ~ 2.8 Å, indicating mostly the amorphous environment of Gd [21], as expected for a Gd–Gd coordination (second coordination shell) in a crystal. However, the TEM results confirm the presence of NPs Gd2O3 with localized crystallinity in the glass specimen calcined at 700oC. The fitting results of Gd3+–O interatomic distances obtained from Figure 16 are summarized as a function of calcination temperatures in Table III. The values obtained from the EXAFS spectra are not significantly different in all the glass specimens with very low doping concentration. However, on close inspection it is evident that the average Gd3+–O interatomic distance of Gd05-7 is shorter than that of Gd05-8, Gd05-9, and bulk Gd2O3 (unsupported SiO2 glass matrix), suggesting that oxygen ions surrounding the oxygen vacancies around Gd ions should concurrently involve a relaxation toward their adjacent vacancies and, as a result, shorter bond length can be attributed [43]. This argument can, presumably, also be applied to the Er2O3:SiO2 NP-glass system. It has been found that the porous glass are formed at ~ 400°C and annihilation of pores start at ~ 700°C, completed at ~ 800°C [44]. Therefore, silica gel-glass doped with low concentration of rare earth ions are subjected to systematic heating, the collapse of the silica pores is initiated near 700°C (
\n\t\t\t\tSample\n\t\t\t | \n\t\t\t\n\t\t\t\tBond type\n\t\t\t | \n\t\t\t\n\t\t\t\tEXAFS\n\t\t\t | \n\t\t||
\n\t\t\t\t\n\t\t\t\t\tN\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tR+∆ (Å)\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tσ2 (Å2)\n\t\t\t\t\n\t\t\t | \n\t\t||
Gd05-7 | \n\t\t\tFirst coordination shell (Gd3+–O) | \n\t\t\t5.3±0.2 | \n\t\t\t2.216±0.012 | \n\t\t\t0.016±0.002 | \n\t\t
Gd05-8 | \n\t\t\t5.6±0.2 | \n\t\t\t2.234±0.011 | \n\t\t\t0.015±0.003 | \n\t\t|
Gd05-9 | \n\t\t\t5.8±0.3 | \n\t\t\t2.248±0.013 | \n\t\t\t0.014±0.002 | \n\t\t|
Gd2O3\n\t\t\t | \n\t\t\t6.0±0.2 | \n\t\t\t2.265±0.012 | \n\t\t\t0.007±0.003 | \n\t\t
Results of the quantitative analysis of the first coordination shell derived from EXAFS filtered data of Gd2O3:SiO2 nano-glass composite systems at different calcinations temperatures. N, R and σ2 are the average coordination number, interatomic distance, and relative mean square displacement (Debye-Waller factor), respectively.
(Color online) Gd LIII-edge EXAFS spectra of Gd3+-doped SiO2 glass samples calcined at different temperatures. Spectra are vertically shifted for clarity. (a) k2-weighted EXAFS signals. (b) Fourier transforms moduli radial distribution functions. Both experimental data (symbols) and the best-fit theoretical curves (dashed) are also reported. The transformation range is k = 2.5–8 Å-1 for all the spectra and the range for the first coordination shell fit is R = 1–3 Å.
Figure 17 depicts the room temperature experimental EXAFS spectra of LGS systems ((La, Gd)2O3:SiO2 NP-glass composite systems) with different doping concentrations (Table II) and particles size (different calcined temperatures). The first coordination peak located at ~1.8 Å (Figures 17(a), (b)) with the interatomic distance of La3+-O/Gd3+-O looks very much the similar without any perceptible shift at different doping concentrations. However, the interatomic distances of the first coordination peak (~1.8 Å) of LGS4 with different calcination temperatures (Figures 17(c), (d)) are shifted significantly even with very low doping concentration of La2O3/Gd2O3. It reveals significantly that the average La3+–O/Gd3+–O interatomic distances of LGS4 samples at lower calcination temperature is shorter, suggesting higher oxygen vacancies around La/Gd ions, supported with our previously reported article [16]. Therefore, the dielectric value decreases by annealing the sample at higher temperatures (or, more correctly, with higher NPs size) with identical molar concentration of dopant element. However, identical particle size (magnetic and/or non-magnetic NPs) with concentration dependence does not affect the oxygen vacancies. In other words, oxygen vacancies depend only on the particle size but not its magnetic phase.
(Color online) Room temperature Fourier transforms moduli radial distribution functions EXAFS spectra of LGS systems at (a) La LIII-edge with different La2O3 concentrations, (b) Gd LIII-edge with different Gd2O3 concentrations calcined at 700°C, (c) La LIII-edge of LGS4 sample at different calcined temperatures, and (d) Gd LIII-edge of LGS4 sample at different calcined temperatures. Spectra are vertically shifted for clarity.
The dc magnetization (after diamagnetic correction) of LGS5 sample under zero-field-cooled (ZFC) and field-cooled (FC) condition as a function of temperature (2–350 K temperature range) in the presence of an applied magnetic field of 200 Oe are shown in Figure 18. It is noteworthy that the observed temperature dependent magnetic feature of LGS5 sample is attributed from magnetic transition of Gd2O3 NPs only. On close inspection, the divergent behavior between ZFC and FC data occurs at low temperatures (irreversibility temperature, Tirr) with a rounded maximum for ZFC curve is obtained at 58 K (identified as the blocking temperature, TB). A spread in the blocking temperature may be rightly assumed with NPs size distribution. Such behavior is akin to superparamagnetic phase of Gd2O3 NPs in the nano-glass composite system similarly observed in oxide glasses containing Gd2O3 [46]. This typical characteristic temperature would be unlikely arising from a magnetic transition in oxygen contaminant [47]. The FC magnetization increases continuously with the lowering of temperature below the irreversibility temperature, consistent with ferromagnetic-like ordering of Gd2O3 NPs. The shape of the inverse susceptibility data (right axis of Figure 18) reveal a quite different behavior in comparison with usually found Curie-type behavior in bulk Gd2O3 [48].
(Color online) ZFC and FC magnetization versus temperature curves of LGS5 sample calcined at 700°C, right axis shows the temperature dependent inverse susceptibility curve. In the inset, the region close to the superparamagnetic transition is highlighted.
(Color online) ZFC and FC magnetization versus temperature curves of LGS4 sample at different calcination temperatures. Applied dc magnetic field 200 Oe.
The data obtained for the temperature dependence magnetization of LGS4 samples calcined at 700, 800, 900 and 1200°C are graphically depicted in Figure 19. The superparamagnetic blocking temperature cannot be traced in low accuracy (or resolution) of measurement with very low percentage-doping (~ 0.075 mol%) of magnetic Gd2O3. However, from the observed continuous increase in ZFC and FC curves at low temperature indicating the ferromagnetic nature of the LGS4 sample. Magnetic properties with size dependency are also observed for LGS4 samples calcined at different temperatures, related with the uncompensated surface spins present on the Gd2O3 NPs. It is likely that the Gd2O3 NPs with smaller size (i.e., higher surface-to-volume ratio) contain larger proportion of uncompensated surface spins and consequently reveal higher ferromagnetic values than larger NPs (higher calcined temperature). Temperature dependent inverse susceptibility data for LGS4 samples calcined at different temperatures with respect to bulk Gd2O3 can be fitted by the Curie–Weiss law (Figure 20(a)) having different slopes of straight lines. The intersection points of fitted lines with x-axis exhibit the Curie–Weiss temperatures, found to be 32.7, 16.6, 12.1 and 4.8 K for 700, 800, 900 and 1200°C respectively. These positive values for LGS4 sample calcined at different temperatures indicate weak ferromagnetic behavior, whereas, bulk Gd2O3 shows antiferromagnetism with negative Curie–Weiss temperature at -16.3 K. The current tendency of lowering Curie-Weiss temperatures with increasing calcined temperature for LGS4 samples infers that lager sized Gd2O3 NPs possess toward bulk crystalline counterpart.
(Color online) (a) Inverse susceptibility versus temperature curves of LGS4 samples at different calcination temperatures with respect to bulk Gd2O3, (b) the region close to the extrapolated lines intersect with temperature axis is highlighted.
Isothermal magnetization-field sweeps were performed to further investigate the nature of the superparamagnetic state and the ferromagnetism below transition temperature. Figure 21 displays the magnetic field dependence of the magnetization (M-H) curves for LGS4 sample calcined at 700°C at 300, 200, 100 and 5 K in the dc magnetic field range ±60 kOe. Defining the magnetic characteristics, magnetic hysteresis curve obtained at 300 K has zero area, whereas, there is a dramatic change both in magnitude (enhancement of magnetic moment/unit mass) and shape (deviate from linearity) with measurable finite areas at 5 K (lower inset of Figure 21). This constitutes strong evidence that at 5 K the Gd2O3 NPs are going to the magnetically ordered state or in ferromagnetic nature. Moreover, magnetization vs H/T curves plotted at different temperatures are linear and collapse to a single curve (upper inset of Figure 21) confirming the existence of superparamagnetic phase of Gd2O3 NPs embedded in SiO2 glass matrix. It is abundantly clear that Gd2O3 NPs grown with high magnetic dilution in glass matrix are best described as an assembly of non-interacting superparamagnetic NPs. The hysteresis curves have no magnetic saturation in the magnetic field range of ±60 kOe, considering large anisotropic fields appears in the Gd2O3 NPs systems [49].
(Color online) Hysteresis loop of LGS4 sample calcined at 700°C, lower inset: the region close to the coercive field value is highlighted, upper inset: magnetization vs. H/T of LGS4 sample.
We have synthesized self-organized RE2O3 NPs with almost equal size and separation embedded in SiO2 glass matrix by the sol–gel method.
Principal findings may be summarized below:
Presence of superparamagnetic phase occurs in magnetic rare earth oxide NPs doped glass samples.
Properly annealed sol–gel glass (in which RE ~ Sm, Gd and Er) (Fig. 2) shows an interesting colossal response of dielectric constant along with DPT and MD behavior around room temperature.
The experimental facts strongly suggest that the dielectric anomaly with DPT behavior is related to oxygen vacancy-induced dielectric relaxation in the material without ferroelectric phase transition.
The MDR observed in this glassy composite is considered to be associated with the direct consequence of magnetoresistance changes depending on the calcination temperatures (magnetic NPs size).
However, keeping the NPs size constant, the increase in dielectric constant and MDR strongly depends on the magnetic property (superparamagnetism) of the rare earth ions.
This research was partially supported by the Ministry of Science and Technology, Taiwan under Grant No. NSC 103-2112-M-110-010-MY3.
Heavy metals are those elements which have density greater than 5 g cm−3 [1]. Some heavy metals namely, cobalt (Co), copper (Cu), molybdenum (Mo), manganese (Mn), nickel (Ni) iron (Fe), and zinc (Zn) are considered to be essential for plants. These heavy metal elements directly impact on plant growth, development, senescence and energy producing processes and other physiological process due to their high reactivity. The concentration of heavy metals in soil after the admissible limits is toxic to plants either provoke oxidative stress through free radicals or crumbling up the functions of enzymes by replacing metals and nutrients which are essential [2, 3]. Cell metabolism changes by the affect of heavy metals at first reduce the plant growth. However, toxicity of metals depends on various stage of their growth stage [4]. Maksymiec and Baszynski [5] reported that dicotyledonous plants like various beans and Medicago sativa were more resistant to heavy metals at the early growth stage [6]. So, the heavy metals toxicity on the plant physiology and metabolism are much more noticeable. Among the heavy metals, chromium and cadmium are of special concern due to their potential toxicity on plants even at low concentrations [7, 8, 9]. The various types of chromium toxicity in plant had described by [10], and the inhibition of enzymatic activity by vaeious types mutagenesis had also be described. The visible symptoms are reduction in growth, leaf chlorosis, stunting, and yield reduction [7, 11]. [12] has explain that Cadmium (Cd) is particularly is one of the most dangerous pollutant due to its high level of toxicity and much solubility in water. [13, 14], have reported that in some plant species Cd interacts with the absorption of metal nutrients such as Fe, Zn, Cu and Mn, in addition to inducing a process named as peroxidation and breakdown of chlorophyll in plants, resulting in an enhanced production of reactive oxygen species (ROS) [15]. According to [16], Cadmium also inhibits the uptake of elements such as K, Ca, Mg, Fe because it uses the same transmembrane carriers. Cadmium acquisition in plants may also cause serious health hazard to human beings through food chain; however, it causes an extra risk to the children by direct ingestion of Cd-contaminated soil [17].
Heavy metals remain in environment in various forms like colloidal, ionic, particulate and dissolved phases. The soluble forms of heavy metal elements are remain in environment as ionised or unionized organometallic chelates. According to [18], the metal concentrations of soil ranges from low to 100,000 mg kg−1 which depends on the location, area and the types of metals. [19], studied that among chemical elements, Cr is considered to be the seventh most abundant elements on earth and constitutes 0.1 to 0.3 mg kg − 1 of the crystal rocks. According to McGrath [20], In alloys and 15 percent in chemical industrial processes, mainly leather tanning, pigments, electroplating and wood preservation, about 60–70 percent of the total world production of Cr is used. Chromium has many oxidation states ranging from Cr2− to Cr6 +; however, in a number of compounds, valences of I, II, IV and V have been shown to exist [21]. Cr (VI) is, however, considered the most toxic form of chromium and is also generally associated with oxygen as chromate (CrO42−) or dichromate (CrO42−) and dichromate (Cr2O72−) oxyanions. [22], observed that Cr (III) is less mobile and less toxic and is mainly bound to organic matter in soil and aquatic environments. According to [23], Cr present mostly in the form of Cr (III) in soil, and mineral environment. [24], has described that Cr and Fe (OH)3 is a solid phase of Cr(III) having even lower solubility than Cr(OH)3. Consequently, within the soil add up to solvent Cr(III) remains inside the allowable limits for drinking water for a wide extend of pH (4–12) due to precipitation of Cr(OH)3, Fe(OH)3[25, 26], moreover, major source of Cd is the parental fabric. Anthropogenic exercises have too been improved the sum of Cd in soil [27]. Overwhelming metals are regularly show at exceptionally moo concentrations in freshwaters [28], but the release of fluid squander from a wide assortment of businesses such as electroplating, metal wrapping up, calfskin tanning, chrome planning, generation of batteries, phosphate fertilizers, shades, stabilizers, and amalgams has solid impact in sea-going situations [29, 30, 31]. Cadmium pollution is also happened from rubber when car tires run over streets, and after a rain, the Cd is washed into sewage disposal systems and collected in the slush.
Heavy metals are enter in environment are transported by water and air, also deposited in soil and sediments where they could be immobilized [32]. However, the bonding process of metals may take considerably long time. At the starting of the official handle the bio accessible division of metal components in soil is tall, but diminishes continuously in due course of time [33]. Metal dissolvability and bioavailability to plant is basically affected by the chemical properties of soil such as, soil pH, stacking rate, cation trade capacity, soil surface, redox potential, clay substance and natural matter [34, 35, 36]. For the most part, higher the slime or natural matter and soil pH, the metals will be relentlessly bound to soil with longer time and will be less organically accessible to the plants. Soil temperature is additionally an vital calculate for varieties in metal amassing by crops [37]. The bioavailability of metals is make greater in soil through several means, the secretion of phytosiderophores into the rhizosphere to chelate and solubilise metals that are soil bound [38]. Acidification of the rhizosphere and exudation of carboxylates are deliberated potential means to enhancing metal consumption.
Heavy metals are taken through root cells of the vegetation after their mobilization inside the soil, and their improvement inside the soil relies upon in the main upon: (i) dissemination of steel additives alongside the attention attitude which has formed because of take-up of factors and ultimately inanition of the aspect inside the root region; (ii) interferences through roots, in which soil extent is uprooted through root extent after developing (iii) move of steel additives from enormous soil association down the water capacity slope [39]. Cell divider acts as a particle exchanger of relatively moo partiality and moo selectivity in which metals are first of all bound. From the mobileular divider, the shipping frameworks and intracellular high-affinity authoritative locations intercede and power the take-up of those metals over the plasma layer. A stable using power for the take-up of steel additives thru auxiliary transporters is made because of the layer capacity, that is bad at the indoors of the plasma movie and can exceed −200 mV in root epiderm. This is examined both in soil culture and in solution culture for Cd which might probably be due to low concentration of heavy metals per unit of absorption area [40, 41]. Both non-essential and essential metals are also preoccupied through leaves. Within the shape of gases, they input via thestomata withinside the leaves, while in ionic shape metals specifically input via theleaf cuticle [39, 42]. Hg in gaseous shape istaken up through stomata [43] and its uptake is recommended to bebetter in C3 than C4 flora [44]. The uptake of metals takes place viaectodesmata, non-plasmatic “channels” at a excessive level whichare much less dense elements of the cuticular layer which are located fundamental withinside theepidermal mobileular wall or cuticular membrane machine among shield cells andsubsidiary cells. Furthermore, the cuticle overlaying shield cells are oftenspecific to it overlaying everyday epidermal mobileular [39]. Most of the metallic factors are insoluble that won’t capin an edge toflow freely withinside the vascular machine of flora and, as a result typically shapesulphate, phosphate or carbonate precipitates immobilizing them inextracellular booths i.e. apoplastic and intracellular compartment i.e. symplastic [45]. In the apoplastic pathway solute and also the water debris diffuse via mobileular membrane, consequently the pathway stays unregulated. The mobileularwall of the endodermal mobileular layer acts as an impediment for apoplastic diffusioninto the vascular machine. Generally, prior to the access of metallic ions withinside thexylem, solutes must be haunted through root symplasm [46]. Ifmetals are obsessed through the premise symplasm, their similarly motion from root tothe xylem is specifically ruled through 3 processes, including: (i) metallicsequestration arise into the premise symplasm, (ii) symplastic shipping ariseinto the stele, and (iii) launch of metals arise into the xylem. The ionshipping into the xylem is often occured through membrane shipping proteins. Metal factors which are not wished through the flora successfully compete thecritical heavy metals for his or her shipping the usage of the equal transmembranecarriers. Cr(III) uptake through the plant is specifically a passive process, whilst Cr(VI) shipping is mediated through sulphate carrier [47]. Inhibitors like, sodium azide and di nitrophenol inhibits the uptake of Cr(VI) through barley seedlings however this is not happened just in case of Cr(III) [47]. In keeping with [48], Group VI anions like SO4−2 additionally inhibit the uptake of chromateswhile Ca2+ stimulates its shipping. This inhibition of chromate shipping is passed thanks to the aggressive inhibitiondue to the chemical similarity, whilst inspired shipping of Cr(VI) because of Ca is attributed to its critical position in flora for the receive and shipping of metallic factors [26, 49].
According to Kumar et al. [50], many plants species show an unusual capability to absorbe heavy metals through root system and accumulate of these heavy metals in their parts. Zayed and Terry [26] said that it seems a common tendency of all plant species to maintain Cr in their roots, but with quantitative differences. It is found that for the translocation of Cr to the plant tip, leafy vegetables such as spinach, turnip leaves that tend to acquire Fe appear to be the most effective [51]. While those leafy vegetables such as lettuce were considerably less effective for translocating Cr to their leaves, cabbage which accumulated relatively low Fe levels in their leaves. Zayed and Terry [26] have reported that some plant species attain substantially higher root or shoot concentration ratio than other species. However, a ‘Soil–Plant Barrier’ well protects the food chain from heavy metal toxicity, implying that, due to one or more of the following processes, heavy metal levels in edible plant tissues are reduced to safe levels for animals and humans: (i) prevention of metal element uptake due to soil insolubility, (ii) prevention of metal element translocation by making them immobile in roots, or (iii) prevention of metal element translocation for animals and humans to the permissible level [52]. Within plant tissues, some elements such as B, Mo, Cd, Mn, Se, and Zn are readily absorbed and translocated, while others such as Al, Ag, Cr, Fe, Hg, and Pb are less mobile because of their strong binding to soil components or root cell walls. However, at certain concentrations, all of these elements are mobilised, even against a concentration gradient, within the transport system of the plant. Kinetic data show, for instance, that essential Cu2 +, Ni2 + and Zn2 + and non-essential Cd2 + compete for their transport with the same transmembrane carrier [53]. As is the case of phytosiderophore such as Fe-transport in graminaceous species, metal chelate complexes can be transported by plasma membrane [54]. Among the most important parameter the most influencing factor of heavy metal accumulation in plants is soil pH [55, 56, 57, 58]. At higher soil pH, metal elements in soil solution decrease their bioavailability, and at lower soil pH metalelements in soil solution increase their bioavailability to plants [59].
Heavy metals mitigate the growth and development of the plant [60, 61]. The plant parts which are associated with the heavy metals polluted soils normally the roots express rapid and sensorial changes in their growth and development [62]. It is well observed that the very significant effects of a number of metals (Cd, Al, Cu, Fe, Ni, Pb, Hg, Cr, Zn,) on the growth of above ground plant parts vary [63]. Through the formation of free radicals and reactive oxygen species (ROS), heavy metals mainly affect plant growth, which causes constant oxidative damage by decreasing important cellular components. [64, 65]. For example, rice seedlings irradiated to Cd or Ni [66] and runner bean plants treated with Cd and Cu have shown an increase in carbohydrate content and a decrease in photosynthesis process, resulting in growth inhibition [67]. Similarly, in cucumber plants, Cu limits K uptake by leaf and inhibits the photosynthesis via sugar acquisition resulting into the inhibition of cell expansion [68]. Limped leaves, growth inhibition, progressive chlorosis in certain leaves and leaf sheaths and browned root systems, especially the root tips, are the symptoms of Cd toxicity in rice plants [7, 69]. Moreover, plant growth has also been retarded in maize (Zea mays) Cd [70, 71]. Some phenotypic abnormalities such as stunted growth, less branching and less fruiting are also shown by tomato plants irrigated with polluted water. However, acquisition of heavy metals is much more appears in stems, roots, and leaves as compared to fruits [72].
Seed germination is the breaking of seed dormancy which is inhibited by heavy metals. Germination of seeds and growth of seedling may sensitive towards environmental conditions [59]. So as per [73], the performance of germination, breaking of seed dormancy and seedlings growth rates are therefore often used to assess the abilities of plant tolerance to metal elementsIn comparison to control, higher concentrations such as 1 μM, 5 μM and 10 μM of heavy metals such as Cu, Zn, Mg and Na significantly inhibit seed germination and early growth of rice, barley, wheat and maize seedlings [74]. The ability of a seed to germinate in a moderate containing any metal element like Cr would be a direct indication of its level of tolerance to this metal, but seed germination is the first physiological process affected by toxic elements [73]. At 200 μM of Cr treatment, the seed germination of Echinochloa colona is decreased to 25 percent [75], and high levels (500 ppm) of Cr (VI) in soil decreased Phaseolus vulgaris germination by up to 48 percent [76]. Jain et al. [77] observed reductions in sugarcane bud germination of up to 35 per cent and 60 per cent at 20 and 80 ppm Cr application, respectively. In another study by Peralta et al. [73], at 40 ppm Cr (VI) treatment, Medicago sativacv germination was reduced to 23 percent.
Among the plant parts, roots are firstly come into contact with toxic elements and they usually absorbed more metals by root hair through absorbption process but shoots are not that [78, 79, 80]. The inhibition or retard of root elongation appears to be the first visible effect of metal toxicity. Elongations of root are reduced by the inhibition of cell division, the decrease of cell expansion, decrease of cell size in the elongation zone [81]. So the first visible effect of metal toxicity is the inhibition of root elongation, the root length can be used as most important tolerance index [82, 83, 84, 85]. Medicago sativa plants grown in solid media watered with 20 mg L−1 of Cr (VI) in another [73] study, the ratio of Cr in shoots to Cr in roots was approximately 43 percent. This is an indication that in the roots, 50 percent of the absorbed Cr is held. The response of roots to heavy metals in both herbaceous plant species and trees has been extensively studied. [86, 87, 88, 89]. After the work of numerous researchers [86, 87, 89, 90]. The main morphological and structural effects of metal root toxicity can be summarised as: (i) decrease in root elongation, (ii) decrease in biomass, (iii) decrease in vessel diameter, (iv) damage to tip, (v) collapse of root hair or decrease in number of roots, (vi) increase or decrease in lateral root formation, (vii) enhancement of suberification, (viii) enhancement of lignifications, (ix) translocation process become hampered. The research work of [91], revealed that Cr affects the root length than the other parts of plant as compared to other heavy metals. Mokgalaka-Matlala et al. [92], have observed that when increasing concentrations of As (V) and As (III) in Prosopis juliflora, the root elongation decreased significantly. It is reported that when Cr has applied on Salix viminalisis then the root length is affected more than by Cd and Pb [91]. In fact, the inhibition effect of Cr on the growth of the Salix alba root is similar to that of Hg and stronger than that of Cd and Pb, whereas the root length of Ni decreased less than Cr [93, 94]. In Salix viminalisis, the order of metal toxicity to the new root rimordial was reported to be Cd > Cr > Pb [91].
The heavy metal elements highly affect the plant height as well as shoot growth [95]. Cr transport to the various part of the plant have a direct impact on cellular metabolism as a result shoots contributing affected so plant height ultimately reduces [61]. It is observed that reduction of 11, 22 and 41% respectively compared to control in oat plants at 2, 10 and 25 ppm of Cr content in nutrient solutions in sand cultures [96]. Joseph et al. [97] observed a similar reduction in the height of Curcumas sativus, Lactuca sativa and Panicum miliaceum due to Cr (VI). Shoot growth in Medicago sativa is inhibited by Cr (III) [98]. In a glasshouse experiment after 32 and 96 days, Sharma and Sharma [99] noted a significant decrease in the height of Triticum aestivum when sown in sand with 0.5 μM sodium dichromate. A significant reduction in height of Sinapsis albaat a level of 200 or 400 mg kg−1 of Cr in soil along with N, P, K and S fertilizers was reported by Hanus and Tomas [100]. Very recently, it is found that a reduction in stem height at various concentrations (10, 20, 40 and 80 ppm) of Cd and Cr have been reported in Dalbergia sisso seedlings compared to the control [101].
The heavy metal elements severely affect the leaf height as well as leaf growth. Metal elements like Cd induce morphological changes such as drying of older leaves, wilt, and chlorosis and necrosis of younger leaves. Datura innoxia, D. metel, plants grown in a contaminated environment with Cr(VI) exhibited toxic symptoms at 0.1 mM to 0.2 mM of Cr(VI) in the form of leaf fall and wilting of leaves at 0.4 to 0.5 mM Cr(VI) in soil [97, 102]. A similar reduction in the height of Curcumas sativus, Lactuca sativa and Panicum miliaceum due to Cr(VI) was observed (1995). In Medicago sativa, shoot growth is inhibited by Cr(III) [98]. Sharma and Sharma [99] noted a significant drop in the height of Triticum aestivum when sown in sand with 0.5 μM sodium dichromate in a glasshouse experiment after 32 and 96 days [103]. In Zea mays, Acacia holosericeaOryza sativa, and Leucaena leucocephala plants treated with tannery effluent of varying concentrations, leaf dry weight and leaf area slowly decreases [104]. The effect of Cr(III) and Cr(VI) on the Spinacia oleracea plant was found in a study. Singh [105] reported that Cr applied to soil at a rate of 60 mg kg−1 and higher levels decreased the size of the leaves, causing leaf foliage, leaf tips or margins to burn, and slowed the rate of leaf growth.
The physiological process of the plant is severely affected by heavy metal elements. In reaction to heavy metal stress, plants show morphological, physiological, biochemical and metabolic changes which are thought to be adaptive responses [106]. Cd not only inhibits growth, for example, but also changes different physiological and biochemical features such as water balance, nutrient uptake, photosynthesis, breathing, mineral, nutrition and ion uptake, translocation, plant hormone [107, 108, 109] and Photosynthetic electron transport around PS I and PS II photosystems [110, 111, 112]. Likewise, Cr inhibits electron transport, decreases CO2 fixation, malformation of chloroplast [113, 114, 115], decreases water potential, increases transpiration rate, decreases diffusive resistance, and causes a reduction intercalary meristem [116].
The photosynthetic mechanism is significantly impacted by the heavy metal elements. The photosynthetic apparatus tends to be very susceptible to the toxicity of heavy metals, which directly or indirectly affect the photosynthetic process by inhibiting the enzyme activities of the Calvin cycle and CO2 deficiency in the plant body due to stomatal closure [59, 117, 118]. Cr has a well-cited detrimental effect on the photosynthic process in terrestrial plants. The influence of Cr on the PS I was more conspicuous than on the PS II operation in isolated chloroplasts of Pisumsativum plant [119] according to different reports. Photo inhibition in the leaves of Lolium perenne due to the influence of 250 μM Cr on the primary photochemistry of PS II, according to the Vernay et al. [120] report and A decrease in the overall photochemical efficiency of plant PS II at 500 μM of Cr was noted. Shanker et al. [61] argued that Cr triggered oxidative stress in plants because, due to the loss of molecular oxygen, Cr improves alternate sinks for the electrons. The ultimate influence of Cr ions on photosynthesis and conversion of excitation energy will be attributed to Cr-induced anomalies such as thylakoid expansion and reduction in the amount of grana in the ultrastructure of the chloroplast [121]. The impact of Cr on photosynthesis in higher plants is widely known [122, 123], it is not well known to what degree Cr induces photosynthesis inhibition either because of ultra-structure chloroplast malformation and the influence of Cr on the Calvin cycle enzymes or because of electron transport inhibition [116]. Krupa and Baszynski explained in 1995 that some theories applied to all photosynthesis pathways of heavy metal toxicity and introduced a list of primary photosynthetic carbon reduction enzymes that inhibited mainly cereal and legume crops in heavy metal treated plants. The 40 percent inhibition of whole plant photosynthesis in 52-day-old Pisum sativum seedlings at 0.1 mM Cr(VI) was further increased to 65 and 95 percent after 76 and 89 days of growth respectively [119]. A potential explanation of Cr mediated reduction rate of photosynthetic is a malformation of the chloroplast ultra structure and inhibition or returdation of electron transport processes due to Cr and a diversion of electrons from the electron donation side of PS-I to Cr (VI). It is likely that, as demonstrated by the low photosynthetic rate of the Cr stressed plants, electrons generated by the photo chemical process are not generally used for carbon fixation. According to [124, 125, 126], bioaccumulation of Cr and its toxicity to photosynthetic pigments in various crops and trees has been investigated. [127]; has extensively studied the effect of Cr present in tannery effluent sludge which directly get into chloroplast pigment content in Vigna radiata and reported that irrespective of Cr concentration, chlorophyll a, chlorophyll b, chlorophyll d and total chlorophyll decreased in 6 days old seedlings as compared to control. Chatterjee and Chatterjee [128] have reported that a dramatic decrease in chlorophylls a, b and d in leaves was recorded in Brassica oleracea grown in distilled sand with full nutrition with control and Co, Cr and Cu at 0.5 mM each. The stress order was Co > Cu > Cr. Conversely, a broad analysis on the tolerance of Cr and Ni in Echinochloa colona found that in terms of survival under elevated Cr concentration, the chlorophyll content was high in resistant calluses [129]. Chromium (VI) at 1 and 2 mg L−1 significantly decreased chlorophylls a, b and d and carotenoid concentrations in Salvinia minima [130]. The decrease in the chlorophyll a/b ratio brought about by Cr indicates that Cr toxicity possibly reduces the size of the peripheral part of the antenna complex [114]. It has been hypothesized that the decrease in chlorophyll b due to Cr could be due to the destabilization and degradation of the proteins of the peripheral part [61]. The interaction of heavy metals with the functional SH groups of proteins according to Van Assche and Clijsters [131, 132] is a possible mechanism of action for heavy metals.
Every physiological process is directly linked to water’s chemical potential. Water’s chemical potential is a quantitative expression of water-related energy. In plant growth regulation, water can be considered as the most important factor because it affects all growth processes directly or indirectly [133]. Plants grown in contaminated heavy metal soils often suffer from drought stress due primarily to poor physicochemical properties of the soil and shallow root system; researchers are interested in investigations on plant water relation under heavy metal stress. According to Barcelo et al. [134], Selection of drought resistance species can be considered to be an important trait in phytoremediation of soils polluted with heavy metals. The heavy metal stress can induce stress in plants through a series of events leading to decreased water loss like enhanced water conservation, decrease in number and size of leaves, decrease in root hair, malformation of parenchymatous cells stomatal size, number and diameter of xylem vessels, increased stomatal resistance, enhancement of leaf rolling and leaf abscission, higher degree of root suberization [90]. It has been suggested that through various mechanisms operating on the apoplastic and/or the symplastic pathway, heavy metals may influence root hydraulic conductivity. Reduced cell expansion can occur in the growth medium at relatively low concentrations without damaging the integrity of the cells. In bean plants, for instance, leaf expansion growth was inhibited after 48 h in bean plants exposed to 3 uM Cd. The most significant higher toxic effect of Cr (VI) is to degenerate the stomatal conductance that could damage the cells and membranes of stomatal guard cells. In this way, the relationship between water and many plant species has been affected.
Complex processes has used by plants to adjust their metabolism to rapidly changing environment. These processes include transduction, transcription, perception, and transmission of stress stimuli [135, 136, 137]. During stressing conditions plants adopt various process likes mechanisms of resistance and tolerance, later involves the immobilization of a metal in roots and in cell walls [138]. The plants adopt a series of mechanisms to avoid heavy metal toxicity which include: (i) Through auto oxidation and Fenton reaction plant produce reactive oxygen, (ii) blocking of main functional group, and (iii) from biomolecules displacement of metal ions, [139]. Plants are capable of growing in polluted soils because; (i) plants avoid metal absorption by aerial components or sustain low metal concentrations over a wide range of metal concentrations in soil by trapping metals in their roots [140]; (ii) plants deliberately absorb metals in their epidermal tissues due to the development of metal binding chelators (iii) they storing metals in non-sensitive parts by alter metal compartmentalisation pattern that is called metal indicators, and (iv) by the process of hyperaccumulators i.e. they can accumulate metals at much higher levels than soil in their aerial components [141, 142]. The processes used for hyperaccumulation are still unclear. Plants that can accumulate either As, Cu, Cr, Ni, Pb, or Co > 1000 mg kg−1 or zinc >10,000 mg kg−1 in their shot dry matter ([141, 143, 144, 145]; Baker and Reeves 2000) or Mo > 1500 mg kg−1 [146] are the standard for classifying plants as hyperaccumulators. (ii) Plants that absorb metals 10–500 times higher than average amounts in shoots [147], (iii) plants that accumulate metal components more in shoots than in roots [141]. Very few higher plant species have adaptations that enable them to live and replicate with Zn, Cu, Pb, Cd, Ni, and As highly polluted soils. [148, 149]. The tree roots of these plants can deliberately forage towards less polluted soil areas [150] and can “rest and wait” for optimal growth conditions even with highly reduced growth [151].
For the biological, biochemical and physiological functions of plants, various types of heavy metal elements are very important, including protein biosynthesis, lipids, nucleic acids, growth substances, hormones, chlorophyll and secondary metabolism synthesis, stress tolerance, morphological, structural and functional integrity of different membranes and other cellular compounds. These metal components, however, become poisonous in nature, above allowable limits, depending on the types of plants and the nature of the metal. Metal toxicity can inhibit the transport chain of electrons, reduce CO2 fixation, decrease the production of biomass, and cause chloroplast malformation. It can also affect plant growth by generating free radicals and ROS and other substances, which, by decreasing important cellular components, pose a threat to continuous oxidative damage. In addition, heavy metal stress can induce many events in plants leading to decrease in number and size of leaves, enhancement of leaf rolling and leaf abscission, leave erosion, changes in stomatal size, guard cell size, and stomatal resistance, and higher degree of root ligninization, suberization. Symptoms that are visible in plant by the affect of heavy metal toxicity include drying of older leaves, chlorosis, and necrosis of young leaves, stunting, wilting, canker, colour changes, blotch wrinkling and yield reduction. However, plants use complex processes (perception, transduction, and transmission of stress stimuli) and several non enzymatic and enzymatic mechanisms such as CAT, SOD, POD, and APX that activate the cell for their metabolism to heavy metal stress.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"802",title:"Operations Management",slug:"industrial-engineering-and-management-operations-management",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:2,numberOfCrossrefCitations:7,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-operations-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3723",title:"Management and Services",subtitle:null,isOpenForSubmission:!1,hash:"fd3d170b6b6bfc78a9568d26c89ca435",slug:"management-and-services",bookSignature:"Mamun Habib",coverURL:"https://cdn.intechopen.com/books/images_new/3723.jpg",editedByType:"Edited by",editors:[{id:"12501",title:"Prof.",name:"Dr. Md. Mamun",middleName:null,surname:"Habib",slug:"dr.-md.-mamun-habib",fullName:"Dr. Md. Mamun Habib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"11653",doi:"10.5772/9950",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3047,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11655",doi:"10.5772/9952",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",doi:"10.5772/9951",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null}],mostDownloadedChaptersLast30Days:[{id:"11653",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3046,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11657",title:"Realization of Lowpass and Bandpass Leapfrog Filters Using OAs and CCCIIs",slug:"realization-of-lowpass-and-bandpass-leapfrog-filters-using-oas-and-ccciis",totalDownloads:3632,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Yanhui Xi and Hui Peng",authors:null},{id:"11655",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null},{id:"11656",title:"Constructing Geo-Information Sharing GRID Architecture",slug:"constructing-geo-information-sharing-grid-architecture",totalDownloads:1561,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Qiang Liu and Boyan Cheng",authors:null}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-operations-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/176921/dericks-shukla",hash:"",query:{},params:{id:"176921",slug:"dericks-shukla"},fullPath:"/profiles/176921/dericks-shukla",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()