Plasma technology used to perform thermochemical treatments is well established for the majority of steels, but it is not the case for the different stainless steel classes. Thus, important scientific and technological achievements can be expected in the coming years regarding plasma-assisted thermochemical treatment of such steels. The metallurgical aspects as well as the application cost-efficiency of stainless steels impose specific requirements for the thermochemical treatment, such as easy native chromium-rich oxide layer removal and surface activation at low temperature, which do not appear for other steel classes (plain, low-alloy, and tool steels). Thus, due to the highly reactive physicochemical environment created by the plasma, plasma-assisted technology presents advantages over other “conventional” technologies like those performed in gas or liquid environments. Low temperature is needed to avoid the reduction of corrosion resistance of stainless steels, by suppressing chromium carbide/nitride precipitation, and, in this case, good surface properties are achieved by the formation of treated layers containing metastable phases. Such attributes make the low-temperature plasma thermochemical treatments of stainless steels an important R&D field in the domain of plasma technology and surface treatments, and the goal of this chapter is to introduce the reader to this important topic.
Part of the book: Plasma Science and Technology
Direct current (dc) plasma-assisted sintering of metal parts is a promising and relatively new research and development field in powder metallurgy (PM). In the present entry, it is intended to introduce the reader to the main applications of the dc plasma sintering process in PM. To achieve this goal, the present entry is divided in a brief introduction and sections in which the bases of the dc plasma abnormal glow discharge regime and its influence in the sintering process are carefully treated. In this case, a clear language is purposely used to didactically introduce the reader to this “fascinating glow world”, the dc plasma-assisted sintering of metal parts, aiming to put in evidence the main points on physicochemical aspects of the plasma environment, basic knowledge of the plasma heating, and surface-related phenomena during dc plasma sintering of parts. All these aspects are treated considering the main techniques of the dc plasma-assisted sintering process applied to PM. Finally, some results on DC plasma heating, sintering and surface modification are presented.
Part of the book: Powder Metallurgy