Compositions of biofloc produced from different feedstuff and carbon sources.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7539",leadTitle:null,fullTitle:"Connective Tissue Disease - Current State of the Art",title:"Connective Tissue Disease",subtitle:"Current State of the Art",reviewType:"peer-reviewed",abstract:"Connective tissue diseases (CTDs) comprise a number of systemic autoimmune disorders and related conditions characterized by rheumatic manifestations, production of myriad autoantibodies, and varied immune-mediated organ injury. To achieve the best outcomes for patients, accurate evaluation has become critical, and thus advanced diagnostic and assessment modalities have been developed that have had a revolutionary impact in precise characterization of the disease conditions in CTDs. This book provides an in-depth look at the current state of CTDs, while also presenting an overview that is easily understandable to newcomers to the field. Chapters cover such conditions as rheumatoid arthritis, lupus, systemic sclerosis spectrum diseases, and spondyloarthritis, as well as the importance of physical activity and exercise training in the clinical course of CTDs.",isbn:"978-1-78985-841-9",printIsbn:"978-1-78985-698-9",pdfIsbn:"978-1-78985-842-6",doi:"10.5772/intechopen.76664",price:100,priceEur:109,priceUsd:129,slug:"connective-tissue-disease-current-state-of-the-art",numberOfPages:96,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"392aff20e98be42f46dd35a6bf02e392",bookSignature:"Akira Takeda",publishedDate:"September 16th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7539.jpg",numberOfDownloads:4619,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:4,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 26th 2018",dateEndSecondStepPublish:"June 18th 2018",dateEndThirdStepPublish:"August 17th 2018",dateEndFourthStepPublish:"November 5th 2018",dateEndFifthStepPublish:"January 4th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"202405",title:"Dr.",name:"Akira",middleName:null,surname:"Takeda",slug:"akira-takeda",fullName:"Akira Takeda",profilePictureURL:"https://mts.intechopen.com/storage/users/202405/images/system/202405.jpg",biography:"Akira Takeda, MD, PhD, is the founder and director of the Division of Clinical Immunology & Rheumatology at International University of Health and Welfare Hospital, Japan. He graduated from Akita University School of Medicine, Japan, after which he joined Jichi Medical School, where he was actively involved in clinical rheumatology practice as well as basic research in the field of Immunology. After completing his thesis studies, he worked as an assistant professor at the University of Massachusetts Medical School while pursuing extensive studies of cellular and humoral immunity against pathogens to elucidate the precise host defense mechanisms. Upon his return to Japan, Dr. Takeda joined Dokkyo University School of Medicine and the current institute where he has been exploring the immuno-pathogenesis of connective tissue disease (CTD)-associated organ injury, leading to numerous publications including novel research into how T cells trigger and promote interstitial pneumonia in CTDs.",institutionString:"International University of Health and Welfare",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"International University of Health and Welfare",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"184",title:"Immunology, Allergology and Rheumatology",slug:"immunology-allergology-and-rheumatology"}],chapters:[{id:"72793",title:"Growing Need for Diagnostic Precision in Rheumatoid Arthritis: Proposal of MR Imaging Criteria for Early Diagnosis",doi:"10.5772/intechopen.92989",slug:"growing-need-for-diagnostic-precision-in-rheumatoid-arthritis-proposal-of-mr-imaging-criteria-for-ea",totalDownloads:696,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The recent and revolutionary paradigm shift involving novel therapeutics for the treatment of rheumatoid arthritis (RA) has called for changes in the early diagnosis of RA. Physicians now need to diagnose RA earlier, and with greater accuracy, in order to initiate effective definitive treatment as early as possible. However, due to the complexity and diverseness of RA, we still do not have comprehensive diagnostic criteria for RA readily available. To find a solution to this challenge, we aimed to develop practically useful criteria which integrate gadolinium (Gd) contrast-enhanced magnetic resonance imaging (MRI) findings with clinical manifestations of the disease. These diagnostic criteria we propose, the “diagnostic criteria for early RA with MRI findings,” are composed of two domains. The first domain consists of clinical findings suggestive of RA, which include both entry criteria—i.e., polyarthralgia of hands (joint pain of three or more joint areas confirmed by a physician), and exclusion criteria—i.e., exclusion of other rheumatic conditions including systemic lupus erythematosus (SLE), dermatomyositis and polymyositis (PM/DM), mixed connective tissue disease (MCTD), primary Sjögren’s syndrome (SS), and Behçet’s disease (BD). The second domain constitutes MRI criteria, which represent Gd-enhanced MRI findings indicating bilateral synovial enhancement seen in any joints of the proximal interphalangeal (PIP), metacarpophalangeal (MCP), or wrist joints. RA is defined by fulfilling all conditions of both domains. Our prospective study demonstrated that these criteria for the diagnosis of early RA, incorporating MRI findings with physical manifestations, can successfully distinguish patients with RA from those with other mimicking conditions, showing a sensitivity of 96%, specificity of 86%, and accuracy of 92%. When a case does not meet the criteria, RA can be ruled out with a high negative predictive value of 95%. We believe our “diagnostic criteria for early RA with MRI findings” can greatly help to solve unmet diagnostic needs in the early treatment of RA.",signatures:"Akira Takeda and Hideharu Sugimoto",downloadPdfUrl:"/chapter/pdf-download/72793",previewPdfUrl:"/chapter/pdf-preview/72793",authors:[null],corrections:null},{id:"68660",title:"Lupus Erythematosus: Dermatologic Perspectives on the Diversity",doi:"10.5772/intechopen.88446",slug:"lupus-erythematosus-dermatologic-perspectives-on-the-diversity",totalDownloads:787,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Lupus is one of the complex autoimmune disease, which is difficult to diagnose and consists of few subtypes that are required to be classified. During our clinical work, we found out that the dermoscopy can be of great benefit to diagnose discoid lupus erythematosus (DLE). The histopathological examination is very important to confirm the diagnosis. The cases of infant LE patients, may derive the autoimmune antibodies from their mothers in order to diagnose the neonatal lupus erythematosus. Thus, it is very important to examine the antibodies of the mother, who may also be a subclinical LE patient and need continuous follow-ups or even treatment managements. Here, we present the cases of lupus with particular characteristics including linear cutaneous lupus erythematosus, DLE, and neonatal lupus erythematosus.",signatures:"Ran Xin, Wang Peng, Huang Jinghong, Pradhan Sushmita, Yang Heli and Ran Yuping",downloadPdfUrl:"/chapter/pdf-download/68660",previewPdfUrl:"/chapter/pdf-preview/68660",authors:[null],corrections:null},{id:"65046",title:"The Established and Evolving Role of Nailfold Capillaroscopy in Connective-Tissue Disease",doi:"10.5772/intechopen.82386",slug:"the-established-and-evolving-role-of-nailfold-capillaroscopy-in-connective-tissue-disease",totalDownloads:1262,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Nailfold capillaroscopy (NFC) is a low-cost, non-invasive, rapid, highly specific and reproducible investigation well established in the diagnosis of systemic sclerosis and related conditions. This chapter will detail the relevant underlying scientific principles that underpin the investigation, the methods for performing NFC, the range of abnormalities that can be present and the currently available classification criteria before moving on to discuss the various established and emerging applications as relevant to the connective tissue diseases. In addition to its role in the diagnosis of SSc, highlighted by its inclusion in the most recent ACR/EULAR consensus classification criteria, NFC has been shown to predict disease activity, many organ-specific complications such as digital ulcers, pulmonary hypertension and interstitial lung disease, and even mortality. It is emerging as a useful investigation in other CTDs characterised by microvasculopathy, such as in the idiopathic inflammatory myopathies and mixed connective tissue disease, as well as being studied as a serial investigation in patients to act as a potential biomarker and measure of treatment efficacy. NFC can contribute to the earlier identification of patients with CTDs with clinically important complications and if applied accurately, therefore, can help improve outcomes in these often challenging diseases.",signatures:"Matthew J.S. Parker and Neil W. McGill",downloadPdfUrl:"/chapter/pdf-download/65046",previewPdfUrl:"/chapter/pdf-preview/65046",authors:[null],corrections:null},{id:"65424",title:"Ankylosing Spondylitis and Other Seronegative Arthritis",doi:"10.5772/intechopen.82332",slug:"ankylosing-spondylitis-and-other-seronegative-arthritis",totalDownloads:932,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Spondyloarthropathies are a group of disorders having some common features. They are characterised by inflammation of the attachment of tendons known as enthesitis. They are common in males. There is a familial occurrence. There is an association with HLA-B 27. Rheumatoid factor will be negative. Axial skeleton involvement in the form of sacroiliitis or spondylitis is common. The common conditions include ankylosing spondylitis, Reiter’s disease, psoriatic arthritis, enteropathic arthritis and reactive arthritis. In this chapter we are going to describe the clinical features, evaluation and management of common spondyloarthropathies.",signatures:"Balaji Zacharia and Antony Roy",downloadPdfUrl:"/chapter/pdf-download/65424",previewPdfUrl:"/chapter/pdf-preview/65424",authors:[null],corrections:null},{id:"65765",title:"Physical Exercise Improves Quality of Life in Patients with Connective Tissue Disease",doi:"10.5772/intechopen.83388",slug:"physical-exercise-improves-quality-of-life-in-patients-with-connective-tissue-disease",totalDownloads:942,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Connective tissue diseases (CTDs) affect the parts of the body that connect the structures of the body components together. As the conditions involve inflammatory responses in the joints, tendons, ligaments, skin, cornea, cartilage, bones, muscles and blood vessels, which cause symptoms of rheumatism, the CTDs can also be referred to as rheumatic diseases. The symptoms include pain, swelling, redness, warmth in a joint or affected area and functional loss of motion. The medical domain for these types of disorders is called rheumatology. Among various conditions fell under the broad heading of rheumatism, the common rheumatic disorders that here we take care of are rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), scleroderma (S), systemic sclerosis (SS), polymyositis/dermatomyositis (PM/DM), spondyloarthropathies (SA) (ankylosing spondylitis (AS) and psoriatic arthritis (PsA)), juvenile idiopathic arthritis (JIA), polymyalgia rheumatica (PMR), Sjogren’s syndrome, osteoarthritis, etc. When the diagnosis of CTDs is made by the rheumatologists, they oversee a treatment plan for the patients, which may include not only medications but also physical exercises. In this chapter, we will describe how the physical exercise contributes to the patients who suffered from CTDs. Furthermore, we intend to explain what type of exercise should be performed as well as its intensity, duration frequency and the benefits of those exercises to the health of those patients.",signatures:"Ricardo Munir Nahas, Vivianne Horsti Dos Santos and Silvio Lopes Alabarse",downloadPdfUrl:"/chapter/pdf-download/65765",previewPdfUrl:"/chapter/pdf-preview/65765",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"10426",title:"Inflammation in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"73637d19c1b71e285a3483d6df1c2e0f",slug:"inflammation-in-the-21st-century",bookSignature:"Vijay Kumar, Alexandro Aguilera Salgado and Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/10426.jpg",editedByType:"Edited by",editors:[{id:"63844",title:"Dr.",name:"Vijay",surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11031",title:"Rheumatoid Arthritis",subtitle:null,isOpenForSubmission:!1,hash:"b27b90045995c761c0d2f975e895c5d4",slug:"rheumatoid-arthritis",bookSignature:"Hechmi Toumi",coverURL:"https://cdn.intechopen.com/books/images_new/11031.jpg",editedByType:"Edited by",editors:[{id:"196403",title:"Prof.",name:"Hechmi",surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukins",subtitle:"The Immune and Non-Immune Systems’ Related Cytokines",isOpenForSubmission:!1,hash:"6d4ebb087fdb199287bc765704246b60",slug:"interleukins-the-immune-and-non-immune-systems-related-cytokines",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8114",title:"Recent Advances in Gout",subtitle:null,isOpenForSubmission:!1,hash:"737c7c9f4b2c0fb7a9a6416dc39ab844",slug:"recent-advances-in-gout",bookSignature:"Rie Kurose",coverURL:"https://cdn.intechopen.com/books/images_new/8114.jpg",editedByType:"Edited by",editors:[{id:"176402",title:"Dr.",name:"Rie",surname:"Kurose",slug:"rie-kurose",fullName:"Rie Kurose"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8702",title:"Different Aspects of Behçet's Disease",subtitle:null,isOpenForSubmission:!1,hash:"c4ea8fc9f142d35669fb8f27635db26b",slug:"different-aspects-of-beh-et-s-disease",bookSignature:"Müzeyyen Gönül and Arzu Kılıç",coverURL:"https://cdn.intechopen.com/books/images_new/8702.jpg",editedByType:"Edited by",editors:[{id:"187044",title:"Dr.",name:"Müzeyyen",surname:"Gönül",slug:"muzeyyen-gonul",fullName:"Müzeyyen Gönül"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8329",title:"Work-related Musculoskeletal Disorders",subtitle:null,isOpenForSubmission:!1,hash:"98a4aa04591a37613848a2ed2f12c21f",slug:"work-related-musculoskeletal-disorders",bookSignature:"Orhan Korhan",coverURL:"https://cdn.intechopen.com/books/images_new/8329.jpg",editedByType:"Edited by",editors:[{id:"101698",title:"Dr.",name:"Orhan",surname:"Korhan",slug:"orhan-korhan",fullName:"Orhan Korhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6775",title:"Newest Updates in Rheumatology",subtitle:null,isOpenForSubmission:!1,hash:"3d7e986fd74dc49e9319a558a4b4e95d",slug:"newest-updates-in-rheumatology",bookSignature:"Wahid Ali Khan",coverURL:"https://cdn.intechopen.com/books/images_new/6775.jpg",editedByType:"Edited by",editors:[{id:"64042",title:"Dr.",name:"Wahid Ali",surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5992",title:"Discussions of Unusual Topics in Fibromyalgia",subtitle:null,isOpenForSubmission:!1,hash:"7a396ba585f062de1cbd1df985fbff71",slug:"discussions-of-unusual-topics-in-fibromyalgia",bookSignature:"William S. Wilke",coverURL:"https://cdn.intechopen.com/books/images_new/5992.jpg",editedByType:"Edited by",editors:[{id:"86580",title:"Dr.",name:"William S.",surname:"Wilke",slug:"william-s.-wilke",fullName:"William S. Wilke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66777",slug:"corrigendum-to-robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",title:"Corrigendum to: Robust Optimal Power Distribution for Hyperthermia Cancer Treatment",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66777.pdf",downloadPdfUrl:"/chapter/pdf-download/66777",previewPdfUrl:"/chapter/pdf-preview/66777",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66777",risUrl:"/chapter/ris/66777",chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:null},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:null},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:null}]}},chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:null},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:null},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:null}]},book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11796",leadTitle:null,title:"Cytomegalovirus - Recent Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tCytomegalovirus (CMV) is a serious infection virus that is related to the herpes viruses and causes chickenpox and mononucleosis. CMV can develop in people who are immunocompromised and immunodeficient, called opportunistic infections. Opportunistic infections only occur if your immune system is quite weakened. Most adults carry CMV but are unaware of it because the virus cannot produce disease. In people with severely weakened immune systems, CMV can make a person feel as though they have mono. CMV can also cause serious diseases in different parts of the body. CMV spreads from person to person through body fluids, such as blood, saliva, urine, semen, and breast milk. Women who develop an active CMV infection during pregnancy can pass the virus to their neonates, who might then experience symptoms. Human cytomegalovirus (HCMV) infection induces both innate immune responses including Natural Killer cells as well as adaptive humoral and cell-mediated (CD4+ helper, CD8+ cytotoxic and γδ T cell) responses which lead to the resolution of acute primary infection. Therefore, recognition of immunopathology, pathogenesis and immune response against CMV are necessary.
",isbn:"978-1-80356-756-3",printIsbn:"978-1-80356-755-6",pdfIsbn:"978-1-80356-757-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"4e442adc2808f68ccc1aeac17e6ae746",bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11796.jpg",keywords:"Cytomegalovirus, Herpesvirales, Pathogenesis, Immunogenesis, CMV, dsDNA, HCMV, HHV-5, Immunocompromised, AIDS, Immunology, Pathogenesis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 25th 2022",dateEndSecondStepPublish:"June 2nd 2022",dateEndThirdStepPublish:"August 1st 2022",dateEndFourthStepPublish:"October 20th 2022",dateEndFifthStepPublish:"December 19th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"He has published more than 90 manuscripts in international journals on immunology, allergy, and asthma and more than 28 books. He is also on the editorial board of more than 65 international journals in medical sciences and has more than 12 inventions in medical sciences and has recorded 12 gene sequences in the gene bank. Dr. Athari has been invited as a top speaker for more than 40 international congresses and symposiums and has received several scientific awards and has 13 patents.",coeditorOneBiosketch:"Dr. Mehrebi Nasab has published more than 10 scientific articles in international journals and also she has been invited as a speaker in more than 15 international congresses. She has received some scientific awards from different scientific societies.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",middleName:null,surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari",profilePictureURL:"https://mts.intechopen.com/storage/users/139889/images/system/139889.jpeg",biography:"Dr. Seyyed Shamsadin Athari, MPH, Ph.D., is an Assistant Professor of Immunology, Department of Immunology, School of medicine, Zanjan University of Medical Sciences, Iran. He completed postdocs in allergy and asthma toxicology and, asthma management and controlling a network fellowship. He has published more than 30 books and 110 papers in international journals in immunology, allergy, and asthma. He is also on the editorial board of more than seventy journals. He has several scientific inventions to his credit and has recorded gene sequences in a gene bank. Dr. Athari has been invited as a top speaker at more than forty international congresses and symposiums. He is a recipient of several top researcher and young scientist awards.",institutionString:"Zanjan University of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Zanjan University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],coeditorOne:{id:"288617",title:"Dr.",name:"Entezar Mehrabi",middleName:null,surname:"Nasab",slug:"entezar-mehrabi-nasab",fullName:"Entezar Mehrabi Nasab",profilePictureURL:"https://mts.intechopen.com/storage/users/288617/images/system/288617.jpeg",biography:"Dr. Entezar Mehrabi Nasab, MD, is a cardiologist specializing in cardiovascular diseases who completed her residency at the Tehran Heart Center, Tehran University of Medical Sciences, Iran. She has published more than twenty scientific articles in international journals. She has been an invited speaker at more than twenty international congresses. Dr. Nasab has received awards from different scientific societies.",institutionString:"Tehran University of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440212",firstName:"Elena",lastName:"Vracaric",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440212/images/20007_n.jpg",email:"elena@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5776",title:"Allergen",subtitle:null,isOpenForSubmission:!1,hash:"20e406e7a94419ea2beba834a8030a79",slug:"allergen",bookSignature:"Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/5776.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6617",title:"Immunoregulatory Aspects of Immunotherapy",subtitle:null,isOpenForSubmission:!1,hash:"a2f42aa78dd846d4a1679066e72a7285",slug:"immunoregulatory-aspects-of-immunotherapy",bookSignature:"Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/6617.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68966",title:"Novel Biofloc Technology (BFT) for Ammonia Assimilation and Reuse in Aquaculture In Situ",doi:"10.5772/intechopen.88993",slug:"novel-biofloc-technology-bft-for-ammonia-assimilation-and-reuse-in-aquaculture-in-situ",body:'The world population will exceed 9 billion people by the middle of the twenty-first century, indicating proportionate food should have to provide. Fisheries and aquaculture are the critical important sources against this challenge of food and nutrition [1]. Between 1961 and 2016, the average annual increase in global food fish consumption (3.2%) outpaced population growth (1.6%) and exceeded that of meat from all terrestrial animals combined (2.8%). Total fish production in 2016 reached 171 million tones, of which 88% was directly utilized for human consumption. In per capita terms, food fish consumption grew from 9.0 kg in 1961 to 20.2 kg in 2015, accounting for about 17% of their average per capita intake of animal protein consumed by the global population [1].
Since the late 1980s, the fishery production has been stable without obvious increase. But aquaculture has become more and more important, which production grew faster than other major food production sectors. The contribution of aquaculture to the global production of capture fisheries and aquaculture combined has risen continuously, reaching 46.8% in 2016 and representing 53% of fish production for food uses [1].
However, the development of aquaculture has faced challenges because of lack of land and water source and degradation of environment [1]. Therefore, turning of aquaculture to intensive even high intensive model from extensive or semi-extensive model is a tendency all over the world. Intensive aquaculture utilizes limited land source to culture more fish and shrimp by excessively increasing aquatic animal density with little water exchange or even zero water exchange. However, one of the most harmful risks for success of fish and shrimp in intensive aquaculture system, especially in closed intensive culture system with little water exchange, is the accumulation of ammonia. Unfortunately, there is no effective solution for harmlessness of ammonia in practical operations except exchanging water or fixing some very expensive equipment for water treatment [2].
Biofloc technology (BFT) that appeared in recent years supplies a novel solution for this issue without exchanging huge water or fixing equipment [2]. BFT could assimilate ammonia almost in real time and reuse the by-product as a natural food source in situ in aquaculture water column. In this chapter, problems referred to ammonia in aquaculture (Part 2 and Part 3), principles of ammonia removal (Part 4), main operations of BFT (Part 5), applications of using biofloc produced as a by-product of BFT in aquaculture (Part 6 and Part 7), and some highlighting issues that should be paid attention to or need to be further researched (Part 8) are introduced in brief.
Ammonia is one of the most harmful inorganic nitrogen compounds for fish or shrimp in aquaculture (another is nitrite), whose accumulation in pond water may deteriorate water quality, reduce growth, increase oxygen consumption, alter concentrations of hemolymph protein and free amino acid levels, and even cause high mortality [3]. For example, in water with pH 8.05 and temperature 23°C, the 96 h median lethal concentration (LC50) value of ammonia on
There are two existent types for ammonia, ionic type (NH4+) and free type (NH3), both of which in general named together as total ammonia nitrogen (TAN). In fact, the toxicity of TAN is mainly from the free NH3; in water, the 96 h LC50 value to
This equilibrium indicates that NH4+ and NH3 exist in water at the same time and their proportions are determined by the pH of the water body so that the toxicity of TAN is highly related to water pH. Actually, the relationship among water pH and the concentrations of NH4+ and NH3 could be descripted with an equation [6] as follows:
In this equation,
Percent of NH4+ and NH3 changing with pH under 25°C.
Ammonia in aquaculture water body is mostly produced from artificial feeds fed to fish animals. Estimated about 78% of nitrogen existing in aquaculture water body comes from feedstuff [7]. Artificial formulated feed for aquaculture animals contains a very high content of protein; in general, the crude protein content in finfish feedstuff is 25–30% [8] and higher for crustacean animals, which is even up to 40–45% for shrimp species like white-leg shrimp [4]. However, the utilization efficiency of those feeds in water is very low. When feed is added to water, only 25% of protein nitrogen in feedstuff is assimilated to body growth of aquatic animals, and the rest of about an approximate 75% proportion will lose into the water body, via directly excreting as metabolic ammonia from gill, evacuating as urea and feces by cloaca system, or dissolving as other organic nitrogen compounds [9], which are further degraded as inorganic ammonia by microorganisms with hydrolysis enzymes.
There are three routes for ammonia removal or transformation in aquaculture system: intake by photoautotrophic algae, nitrification and nitration of autotrophic nitrobacteria, and assimilation of heterotrophic bacteria [10].
Actually, the intake route of ammonia by photoautotrophic algae is the process of well-known photosynthesis as follows [10]:
Or when nitrate is as the nitrogen source
where C106H263O110N16P represents the stoichiometric formula for algae.
In this process, the ionic ammonia of NH4+ is the first-order utilized inorganic nitrogen for synthesis of organic materials. However, a carbon to nitrogen to phosphorus ratio (C:N:P) of about 106:16:1 is also needed, indicating that to promote ammonia assimilation, exogenous additions of inorganic carbon and phosphorus sources are needed and that in general make the growth of algae, especially blue-green algae or cyanobacteria, to be very difficult to control and easily result in cyanobacteria blooming, a serious deterioration of water quality and a disaster for human daily life.
Autotrophic nitrobacteria, the chemical autotrophic bacteria, can oxidize ammonia by using inorganic carbon sources without the need of phosphorus [10]:
where C5H7O2N represents the chemical formula for microbial biomass.
However, the growth rate of nitrobacteria is very low when compared to heterotrophic bacteria, which in turn leads to a low oxidized rate for ammonia. There are also no other efficient supplemental approaches to accelerate this process, which mainly relies on the natural development of nitrobacteria. Furthermore, an intermediate product of this process, nitrite or NO2−, another toxic inorganic nitrogen compound for aquaculture animals, would be produced. Nitrite is an unstable product with high oxidized ability comparable to oxygen and thus will oxidize Fe2+ in the center of hemoglobin to Fe3+. As a result, oxygen could not combine to hemoglobin and transport to tissues, and thus animals will be asphyxiated, even though there is enough oxygen dissolved in water body [11]. Moreover, the oxidization of ammonia by nitrobacteria would cause numerous accumulation of nitrate (NO3−), another inorganic nitrogen compound which could be easily taken by phytoplankton, indicating a potential risk of algae blooming [10, 11]. Finally, the nitrification process could affect water quality, such as exhausting carbonate alkalinity (HCO3−) and resulting in reduction of water pH [10].
Ammonia also could be assimilated by heterotrophic bacteria through a process different from those of photoautotrophic algae (route 1) and autotrophic nitrobacteria (route 2) [10]:
where C5H7O2N represents the chemical formula for microbial biomass like route 2, or Eq. (5). Compared to route 2, sufficient dissolved oxygen is needed for the processing of bio-reaction of Eq. (6) as well, but about half of HCO3− will be exhausted. Differently, in Eq. (6) of route 3, carbohydrate (C6H12O6) is needed, and about 40 times microbial biomass is produced.
Ammonia accumulation is the head issue faced in aquaculture, and there are several routes referring to ammonia clearance mentioned above. However, routes 1 and 2 are all not suitable to apply in aquaculture. For route 1, intake of phytoplankton or algae might produce a large number of algae exceeding the biological capacity of water body, and those planktons will be old and die quickly and release toxins harmful to aquatic animals. In regard to route 2, it is mainly applied for effluent treatment in sewage plant, which needs inferior procedures of wastewater, and thus is not suitable in aquaculture as well. Fortunately, according to the principles of route 3 displayed in Eq. (6), a novel technology, in generic nicknamed as biofloc technology (BFT), is developed for aquaculture in recent years, to be used as effectively and environmental-friendly for transforming of ammonia.
In accordance with Eq. (6), existing of carbohydrate will promote assimilation of ammonia, companied with synthesis of microbial biomass. However, the content of carbohydrate or C:N in aquaculture water body is lower than the need for bio-reaction of Eq. (6) in general. Although the C:N of bacterial cell composition is about 5:1 [12], it needs a C:N of 15:1 for blooming growth of heterotrophic bacteria to assimilate ammonia [13, 14]. In aquaculture water body, the carbohydrate is mainly from feedstuff added in [7], whose content is usually inadequate for blooming growth of heterotrophic bacteria. For example, taking white-leg shrimp feed usually used in China into consideration, the contents of ingredients, such as crude protein, lipid, fiber, ash, and moisture, are 40, 5.0, 5.0, 15, and 12%, respectively, indicating a calculated C:N of approximate 6:1 according to the relationship between contents of carbohydrate and feed ingredients [15, 16]:
Therefore, additional exogenous organic carbon source containing carbohydrate (C6H12O6) should be supplemented to prompt assimilation of ammonia by improving growth of heterotrophic bacteria, and this is one of the two principal operations for BFT [17].
The other principal operations for BFT are aeration and treatment of by-product. Known from Eq. (6), a huge number of dissolved oxygen is needed to assimilate ammonia by heterotrophic bacteria, and also massive bacteria biomass is produced as by-product, which needs to be treated.
For assimilating 1 mole of ammonia, 1.18 mole of carbohydrate is exhausted according to Eq. (6), which indicates that when 1 g of NH4+ exists in water, about 12 g of C6H12O6 should be added [10, 17]. This needs to supervise the ammonia concentration of water continuously, which is difficult to implement actually. Thus, a general manipulation is that carbon source is added only when ammonia concentration excesses 1 mg/L with the NH4+ to C6H12O6 ratio (w:w) of 1:12 [10, 17]. Of course, the content of carbohydrate contained in material used as carbon source should be determined.
Another way for addition of carbohydrate to improve the bio-reaction of route 3 is adjustment of the C:N in water in real time. For this purpose, the contents of nitrogen in water are determined actually, and then materials rich in carbon or carbohydrate are added to adjust C:N. However, in fact, many times, the adjustment of C:N is not based on the actual carbon and nitrogen concentrations. Alternatively, only when feedstuff is fed, carbon source is considered to add, and the weight for addition is calculated according to the nitrogen content in feedstuff with a C:N of 15:1 [13].
Many materials could be used as carbon source for BFT system, such as acetate [18], glycerol [18], dextrose [19, 20, 21], cassava meal [22], cellulose [23], corn flour [24, 25], glucose [18], molasses [26, 27, 28], tapioca [29], wheat flour [28, 30], rice flour [16, 30], wheat bran [25, 31], rice bran [20, 29], starch [28, 32], poly-β-hydroxybutyrate (PHB) [33, 34], brewery residues [22], and sugar [32].
The process of ammonia assimilation via heterotrophic microorganisms needs a huge number of oxygen, because of (1) oxygen consumption by respiration of blooming growth of bacteria and (2) oxidized fermentation of organic materials secreted by bacteria [17]. Thus, it is needed to usually equip a robust air blower to blow air into the water body to maintain a highly dissolved oxygen level in water [2], in general at least 5 mg/L [4]. In some cases, even pure oxygen is used for this purpose.
A result induced by blooming growth of heterotrophic bacteria is substantial accumulation of suspended solids or bioflocs, one of the side effects of utilizing BFT. In a BFT system constructed by the author in the present article, bacteria secrete massive metabolic materials such as protein and polysaccharide, which could bond feeds, feces, debris, and other organic matters together, to become bioflocs and suspended in water under aeration condition (Figures 2 and 3). The author also found that sometimes the total suspended solid (TSS) content in BFT system would accumulate to above 800 mg/L (Figure 3b). That high level of TSS will be harmful to aquatic animals, which would lead to oxygen depletion, obstruction of fish or shrimp gills, and mortality due to asphyxiation [35]. Therefore, treatment of those accumulated TSS is an important operation for BFT [36].
Sedimentation of biofloc in an Imhoff cone.
Productivity characteristics of biofloc volume and TSS in closed traditional system (a) and BFT system (b) over time. Biofloc volume is defined as the volume of sinkable matter in 1 l water placed into an Imhoff cone in 15 min. TSS is represented as the mass (mg) of dry matter in 1 l water after filtering with a 0.45 μl membrane.
There are three ways used for treating of TSS. The first one is in situ eaten by fish or shrimp as supplemental food [37, 38] which is also the most frequently used method. The second one is equipping a settling chamber to remove excessive solids [39]. And the last one is using separation systems for biofloc production and aquatic animal production, respectively, so that the increasing TSS produced in biofloc production system will not affect the growth of fish or shrimp raised in another system whose water quality should remain controlled by the former system. And for this purpose, four 10 m3 composite tanks in general need to be fixed for water treatment of 12 tanks with a volume of 500 L per tank [40].
Although numerous amounts of oxygen will be consumed by respiration of a large number of flourishing heterotrophic bacteria, the author in this article supervised that the dissolved oxygen continuously sustained a high level in fact in a
Dissolved oxygen level in a BFT system over time.
The speed of ammonia assimilation in BFT system is very fast; Avnimelech [13] reported that ammonia added to water body with a final concentration of 10 mg/L disappeared over a period of about 2 h post addition of glucose as carbon source. The author of the present chapter found that in the BFT system culture
TAN, nitrite, and nitrate concentrations in closed traditional system (a) and BFT system (b) at different time points.
Treatment of suspended solids or bioflocs is one of the most important operations for using BFT. Usually, those solids or bioflocs are not removed just as a waste from water. In contrast, they are reused as a complemented food source for aquatic animals, especially omnivorous species such as shrimp and tilapia, in a system adopting BFT. During development of bioflocs, bacteria secrete protein and polysaccharide, which bond with feeds, feces, debris, and other organic matters together. Furthermore, the author of this article found that biofloc was also a nutritional resource that could attract zooplanktons to prey, such as protozoa, rotifers, nematodes, ciliates, and flagellates (Figure 6), which in turn provides live and fresh food rich in protein for fish and shrimp.
Bioflocs observed with a light microscope. The minimal scale of the rule in the down part of the figure represents 25 μm. Arrows indicate free zooplanktons (a), and zooplanktons prey food from biofloc (b).
There are three ways for biofloc used as food in aquaculture currently: (i) as a complemented food for fish or shrimp in situ [42, 43, 44, 45], (ii) as a gradient for feedstuff to replace fishmeal [46, 47, 48, 49], and (iii) as a normal feed to replace partial artificial feedstuff [50, 51, 52, 53, 54, 55]. In brief, fish and shrimp consume biofloc rich in microbe, phytoplankton, and zooplankton as a food directly. Because animals take biofloc as a vice food source, thus in fact the biofloc hunted by fish and shrimp is only a few parts of the whole. In other words, most of the bioflocs remain in the water body, which may be an obstacle for growth of fish and shrimp. For alleviating the negative effect of biofloc on animal growth, excessive parts should be collected from water body and could be taken as an alternative protein source for preparing feedstuff. Even more, biofloc is fed to fish or shrimp as feedstuff directly due to its whole and high nutritional value.
Nutritional value of biofloc is important for its reuse. However, this value is affected by several factors. Because the development of biofloc is sponsored and prompted by accumulation of ammonia and addition of carbon source, it is suspected that feedstuff and carbon source [30], especially the last one, would impressively affect biofloc nutritional composition and value (Table 1). For example, protein content and oil content of feedstuff will affect those of in biofloc. With regard to carbon source, there are two main types of carbon sources: (i) simple structure carbon sources with easily dissolving ability in water, such as glucose, sucrose, and sodium acetate [17, 20], and (ii) complex compounds, like flour or bran of rice and wheat [56] and brewery residues, which are a by-product from beer production industry [22]. In general, complex carbon source is more difficult to dissolve and more powerful in improving biofloc nutritional value, which in turn improves the growth of fish or shrimp [17, 20]. This carbon source is not easy to degrade with big diameter so that animals in water could easily prey and eat them directly; thus, except for being used as carbohydrate, those materials also contain other nutritional materials essential for growth of fish and shrimp, such as proteins, oils, vitamins, and minerals, even carotenoids [57, 58].
Animals | Carbon sources | Feedstuff composition | C:N | Biofloc composition | Ref. | ||
---|---|---|---|---|---|---|---|
CP | CL | CP | CL | ||||
Molasses and wheat bran | 42.5 | – | 20:1 | 28.7–43.1 | 2.11–3.62 | [59] | |
Sucrose | 35–40 | 7–9 | – | 24.01 | 3.31 | [60] | |
Molasses | 38 | 9 | 15:1 | 27.43 | 0.86 | [28] | |
Starch | 23.1 | 1.14 | |||||
Wheat flour | 30.73 | 2.18 | |||||
Mixture of molasses, starch, and wheat flour with equal weight ratio | 25.46 | 1.24 | |||||
Tilapia | Wheat flour | 24 | 6.23 | – | 37.93 | 3.16 | [61] |
35 | 6.24 | 38.41 | 3.23 | ||||
Feed | 22 | 12.3 | 11.6:1 | 50.6 | 2.6 | [62] | |
35 | 119 | 8.4:1 | 53.5 | 1.9 | |||
Poly-β-hydroxybutyric | 30 | 4 | – | 34.06 | 6.58 | [34] | |
Glucose | 38.53 | 6.06 | |||||
Molasses and wheat bran | 40 | 13.1 | 20:1 | 30.4 | 0.47 | [37] | |
35 | – | – | 18.4 | 0.3 | [63] | ||
Wheat flour | 29.6–35.4 | 4.2–16.5 | 10:1 | 35.4 | 1.1 | [52] | |
Wheat flour | 40 | – | 10:1 | 24.3 | 3.53 | [53] | |
Catfish | Glycerol | 43 | 6 | 10:1 | 44.27 | 5.84 | [64] |
15:1 | 38.65 | 7.35 | |||||
20:1 | 32.64 | 10.78 | |||||
Green cucumber | Glucose | 20.37 | 2.45 | 15:1 | 32.29 | 4.19 | [65] |
Sucrose | 28.04 | 4.30 | |||||
Starch | 21.67 | 3.83 | |||||
White cucumber | Glucose | 27.27 | 4.25 | ||||
Sucrose | 27.48 | 3.89 | |||||
Starch | 21.23 | 3.76 |
Compositions of biofloc produced from different feedstuff and carbon sources.
Note: CP, crude protein; CL, crude lipid.
BFT has been successfully used for culture of fish and shrimp, such as tilapia, carp, and
When bioflocs were eaten directly by fish or shrimp, the protein utilization efficiency of feed elevated by 29% [68], and the FCR decreased by about 18% for tilapia [66, 67], and also decreased for
Biofloc is also used as an alternative protein source for fishmeal sometimes. The protein content in biofloc is evidenced to be very high, in general 25–40% [34, 63, 66, 70], in a case even up to 50% [62]. The essential amino acids were also rich in biofloc, and its composition was also highly in agreement with that in the fish body [71], indicating that it is valuable for growth of fish and shrimp. Dantas et al. [46] and Kuhn et al. [48] replaced 30% of fishmeal or soy meal with biofloc to manufacture feedstuff for feeding of
In some cases, biofloc was collected and dried to make pellets and then fed to fish or shrimp like artificial or formulated feedstuff. Carps,
Meeting future demand for fish is very important for global food security. However, barriers to growth have to be explicitly recognized to the environmental and economic pillars of sustainability [73]. Fortunately, BFT could fulfill those requests for sustainable development of aquaculture.
Except availability of land and water, environmental impact is another possible main constraint to aquaculture growth. Thus, aquaculture systems that reduce eutrophication risks and other environmental costs while providing income and extended social benefits should be developed [73]. For this purpose, the FAO thinks that herbivorous and omnivorous species should be promoted and integrated aquaculture including multitrophic aquaculture is also an alternative, in which by-products (wastes) from one species are recycled to become inputs (fertilizers, food, and energy) for another [73].
From this point of view, in practical aquaculture operations, BFT utilizes by-products from agriculture industries, such as cassava meal [22], molasses [26, 27, 28], tapioca [29], wheat bran [25, 31], rice bran [20, 29], and brewery residues [22], as fertilizers for assimilating organic and inorganic materials. And in turn, its own by-product, biofloc, becomes complemented food for aquatic suspension or deposit feeders, like herbivorous fish. Some omnivorous aquatic animals, such as shrimp and tilapia, were all very suitable to be cultured with BFT [44, 62]. Due to the characteristics of in situ treatment of water quality and supplying of organic biofloc food, aquaculture systems that adopted BFT only need a few water exchange, even no water exchange, and decrease artificial feedstuff inputs, indicating reduced eutrophication risks of environment and the use of wild fish for aquaculture feeds to reserve balance of ecosystem.
Rego et al. [74] analyzed the financial viability of inserting the BFT system (625 m2 each pond) and maintaining the conventional culture system (2.86 ha each pond) for the marine shrimp
Undoubtedly, BFT is a novel solution for transformation of ammonia in aquaculture. However, how to effectively reuse or deposit biofloc, the by-product of assimilation of ammonia in BFT system in situ, as a supplemental food for aquatic animals, needs more researches in detail.
The consumed efficiency of biofloc by fish or shrimp in situ is not adequate high, resulting in gradual accumulation of TSS in BFT system because of huge numerous organic materials produced by blooming growth of heterotrophic bacteria. Thus, the causes contributed to this low efficiency should be researched. Furthermore, the strategies for improving the utilization efficiency of biofloc should be assessed as well, such as improving accumulation of lipid of biofloc, which will increase the nutritional value. Usually, the total lipid content in biofloc is too low to be sufficient for demand of fish and shrimp (Table 1). Previous studies found that the lipid contents of biofloc were 0.5–0.6% [63, 70], 1.03% [66], or 4.0% [62], respectively, which were all lower than the demands for lipid of aquatic animals [8]. For example, the recommended total lipid level in the diet for shrimp is in general higher than 6.5% [4]. Although external equipment could be used to settle the excessive part of biofloc, how to treat this deposit containing high content organic matter and bacteria, part of which may be pathogens, was also a problem [39].
The efficiency for producing biofloc also needs to be elevated, if biofloc is used as a gradient of formulated feedstuff for replacement of fishmeal or soybean meal or used to feed to aquatic animals directly as a food with whole nutritional gradients usually contained in artificial feedstuff. The productivity of biofloc recent is not adequate for those uses in practical operations.
Moreover, the improvement of biofloc palatability should be researched, which is important to the utilization of biofloc either eaten in situ or used as a food source [76]. Attractants or feeding promoting agents, like garlicin, betaine (trimethylglycine), trimethylamine oxide (TMAO), and s,s-dimethyl-β-propionic acid thetine (DMPT), could be taken into consideration as additives during development of biofloc in situ or preparing process for biofloc pellets. Thus, the effects of those agents on biofloc attraction to fish and shrimp should be studied in detail, respectively.
Biofloc technology (BFT) supplies a novel solution for this issue without huge water exchange, even zero water exchange. In general, ammonia would be removed quickly within several hours in a BFT system. Moreover, because of the very high nutritional value for fish and shrimp, bioflocs, the by-product of BFT, could also be reused as a complemented food in situ or a gradient for feedstuff to replace expensive fishmeal, and biofloc also could be processed to formulate diet to feed fish and shrimp directly. However, some aspects with regard to the effective use of biofloc as a food source for fish and shrimp, such as high lipid content, productivity, and palatability, need to be further researched in detail.
This work is supported by the development funds of the Chinese central government to guide local science and technology (2017CT5013); the Sci-Tech program of Hunan province, China (2016NK2132); and the science and research program of the Education Department of Hunan province, China (16C1085, 18B394).
The author declares no conflict of interest.
The author also thanks the support from Collaborative Innovation Center (Hunan) for Efficient and Health Production of Fisheries, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, and Academician Workstation (Fisheries) of Hunan Province.
biofloc technology
carbon to nitrogen (to phosphorus) ratio
crude lipid
crude protein
s,s-dimethyl-β-propionic acid thetine
Food and Agriculture Organization
feed conversion rate
internal rate of return
median lethal concentration
net present value
National Research Council
poly-β-hydroxybutyric
part(s) per million
total ammonia nitrogen
trimethylamine oxide
total suspended solids
The use of biomaterials in the reconstruction of injured body parts and skeletal healing is unavoidable. Diverse biomaterials including ceramics, metals, polymers, hydrogels, and composites are explored and have achieved clinical success as well [1, 2, 3]. For bone restoration applications ceramic biomaterials are well recognized by biomaterial engineers and medical experts due to their biocompatibility and osteoconductivity. Each bioceramic has its unique properties, and they can be divided into three categories based on the properties: [1] bioactive ceramics: capable of establishing chemical interaction with the cell surface, [2] bio-inert ceramics: fully unreactive to the living ecosystem, [3] resorbable bioceramics: undergoes in vivo deficiency for phagocytosis or dissolution of the biomaterials in human body fluids [4]. The standard bioactive ceramics used for bone-regeneration applications are bio-glasses and calcium phosphate-based resources, such as beta-tricalcium phosphate, hydroxyapatite, and biphasic calcium phosphate (mixture of beta-tricalcium phosphate and hydroxyapatite). However, alumina and zirconia oxide are the well-established bio-inert ceramics used in classic bone-regeneration applications [5]. Each bioceramics are widely used in the various human parts restoration applications based on the needs and capabilities. Excellent mechanical stability and biocompatibility brand zirconia as a potential dental restoration and bone scaffold material for load-bearing applications [6]. Hence, rigorous efforts were concentrated on zirconia-based ceramics in recent times by medical and research experts for dental and biomedical applications.
Zirconia is a polycrystalline dioxide ceramic of the transition metal zirconium [3, 7]. It was originally documented in 1789 by Martin Heinrich Klaproth, a German chemist [8]. Zirconia exists in three distinct crystal structures depending on the pressure and temperature: monoclinic, tetragonal, and cubic structures [9]. The monoclinic crystal structure is more constant from room temperature to 1170°C, but it has inferior mechanical properties compared to the other two structures [10]. It is commonly accepted that the monoclinic structure will transform into a tetragonal structure during thermal treatment between 1170°C and 2370°C. This change in crystal structure is accompanied by measurable volume reductions (4–5%) during the cooling period [8]. If the temperature is increased further, the tetragonal structure shrinks to form a cubic structure (between 2370°C and 2680°C, the melting point). During cooling, a noticeable volume expansion of 3–4% was observed, which is attributable to the reversible transformation into the monoclinic crystal structure [9]. During phase transformation, internal stress is induced in the zirconia lattice, which results in crack propagation. To suppress the aforementioned behavior, several metallic oxides or dopants (stabilizing agents such as Y2O3, MgO, CaO, and CeO) are added to stabilize the zirconia structure, and the resultant type of zirconia is known as partially stabilized zirconia (PSZ) [11].
The key features of PSZ are their ability to enhance the transformation toughening mechanism, which inhibits/shields the further propagation of cracks. Therefore, PSZ is considered suitable for biomedical applications in orthopedics and dentistry due to its unique toughening behavior. In the late 1970s, zirconia was widely used as an effective substitute material for metals and alumina in biomedical and dental applications. This was due to its long-lasting mechanical behaviors, such as good flexural strength and fracture resistance, admirable biocompatibility, chemical permanency, corrosion resistance, and esthetics [12, 13]. Nevertheless, the aging process of zirconia ceramic is stimulated by low-temperature degradation, which has unfavorable impacts on the mechanical strength of prostheses and subsequent growth of external flaws. The presence of microcracks may compromise the performance in the long term in biological fluids [14].
To date, zirconia-based materials have been used in numerous areas in the engineering (energy and aerospace), medicine (orthopedics), and dental (crowns and implants) fields [15]. Common categories of zirconia-based materials existing on the market for biomedical applications are yttrium tetragonal zirconia polycrystal (Y-TZP), glass-infiltrated zirconia-toughened alumina (ZTA), and magnesia partially stabilized zirconia (Mg-PSZ). The properties of these zirconia-based bioceramics are listed in Table 1.
Properties | Y-TZP | ZTA | Mg-PSZ |
---|---|---|---|
Chemical constituents | Y2O3, ZrO2 | Al2O3, ZrO2 | MgO, ZrO2 |
Crystallinity | Monophasic | Biphasic | Biphasic |
Density (g/cm3) | 6.05 | 5 | 5 |
Flexural strength (MPa) | 800–1300 | 750–850 | 700–800 |
Hardness (GPa) | 10–12 | 12–15 | 5–6 |
Fracture toughness (MPa m1/2) | 5–10 | 6–12 | 8–15 |
Properties of zirconia-based ceramics [16].
In general, zirconia-based ceramics are manufactured using conventional fabrication techniques, such as injection molding [17], hot and cold isostatic pressing, and slip casting [18]. Digital techniques such as computer-aided design (CAD) and computer-aided manufacturing (CAM) are extensively used to fabricate dental restorations [7, 19], as well as in subtractive manufacturing techniques, such as machining and milling. However, these techniques have limitations such as material wastage, difficulties in producing complex structures, being time consuming, and wearing of milling and cutting tools. Recently, additive manufacturing (AM) techniques have been increasingly used for the fabrication of high-potential complex ceramic parts with high precision and at reduced cost [20, 21]. Developments in AM technology for the fabrication of zirconia-based ceramic parts and their applications are discussed in the following section.
AM is one of the most widely used techniques in recent times, and it is capable of building three-dimensional (3D) complex geometric structures with high dimensional precision and within a short manufacturing time. 3D objects with high levels of complexity and structural architectures are fabricated by stacking up the materials layerwise using simulated design files [22, 23]. AM is also known as 3D printing, solid free-form fabrication, and rapid prototyping. The materials used for AM processes are in the form of powders, liquids, or solids. According to the ISO/ASTM 17296 standard, AM technology is mainly characterized into two types based on the degree of consolidation [24].
As the name suggests, the combined bulk product is manufactured with a basic/specified geometric shape in a single operation by melting and solidification or multi-pass welding (such as powder bed fusion, selective laser melting (SLM), or directed energy deposition), which is mostly used in metal AM.
It produces the products in multiple steps. First, the green body parts are constructed with the basic geometric shape by binding the powder particles with help of a polymer or binder. Subsequent steps include shape modification/densification, consolidation of the material, or modification of the material properties (such as binder jetting (BJ) and material extrusion). AM ceramics parts are typically formed using multistep progression [25].
For biomedical and dental applications, the 3D printing process principally comprises the following steps (precisely for clinical applications): 1. procurement of 3D models, 2. designing (CAD), 3. slicing, 4. 3D printing, and 5. postprocessing. Briefly, the AM process starts with the sorting of precise medical records (images) of the patients, which are obtained using computed tomography or magnetic resonance imaging. The procured data conforming to digital imaging and communications in medicine standards are transformed into digital models using materialise interactive medical image control system (MIMICS) or 3D DOCTOR software and formed into design files using 3D CAD software. The CAD file is converted to a standard tessellation language (.STL) file, and it is practically sliced to print patterns as per the specific needs of the implant. To acquire the desired print pattern of the products, numerous processing constraints such as printing speed, alignment, printing temperature, layer height, infill, laser condition, and environmental aspects are verified, based on experience or a literature review. The sliced file can be imported into the AM machine for printing/stacking the material in a layer, forming the 3D implant. Finally, the printed parts are exposed to washing, removal of sacrificial layer/support, and heat treatment [25, 26]. The detailed scheme of additive manufacturing process is displayed in Figure 1.
Illustration of additive manufacturing process.
The most common AM technologies for the construction of high-strength ceramics are selective laser sintering/melting (SLS/SLM), stereolithography (SLA), digital light processing (DLP), binder jetting (BJ), fused deposition modeling (FDM), and direct ink writing (DIW) [27, 28]. Each AM technology has great commercial potential as well as limitations [29]. Likewise, additively manufactured zirconia-based ceramics have inferior mechanical properties due to the persistent porosity and flaw-sensitive properties of zirconia ceramics. Thus, acquiring mechanical properties equivalent to those of ceramics fabricated with more conventional approaches is a big challenge for ceramic AM [30]. However, the technology is still at an early stage, compared with conventional ceramic processing techniques [29]. It is widely recognized that ceramic materials possess a high melting point, high sinterability, and high vulnerability to thermal shock. Therefore, it is challenging to achieve fully consolidated parts, without shortcomings, using AM-based techniques that directly produce sintered objects [25]. To overcome these shortcomings, each AM technology adapts scientific strategies to construct zirconia-based ceramics with high accuracy and quality. In the following section, the formulation strategies of each AM technology are discussed. Figure 2, demonstrate the AM technologies used for the fabrication of zirconia parts.
The schematic illustration of different types of AM technologies used for the fabrication of 3D zirconia-based ceramics.
SLS technology uses a high-powered laser beam to sinter/fire the ceramics at an elevated temperature. The laser is aimed at specific areas of the aggregate powdered particles using the distribution to create solid objects [31, 32, 33]. The SLM is principally similar to SLS; however, SLM completely melts and fuses the powder particles using a high-powered laser beam to form a solid object [34, 35]. SLS/SLM is an AM technique that uses a laser and is based on the powder bed method that produces 3D solid structures either by sintering or melting the powder materials layerwise following an architecture based on CAD data. (Obtaining high-strength and high-density parts with a laser without debinding/sintering processes can facilitate effective and rapid fabrication, enabling the mass production of ceramic parts (direct AM process) [36, 37].
However, zirconia ceramic is difficult to handle with SLS/SLM, as it has a higher melting point than other bioceramics. In addition, reaching full densification and realizing crack-free final products made of ceramics-based materials using this process are still challenging. Therefore, several studies are investigating the effect of powder properties and processing parameters [21, 35, 38]. Researchers describe the effectiveness of pre-heating the powdered bed, which could improve the mechanical properties of the final ceramic object by reducing the thermal stress, which alleviates crack formation during printing [39, 40]. Most of the zirconia particles use 3–8 mol% yttria-stabilized zirconia (YSZ) to preserve the desired mechanical properties of a tetragonal phase at room temperature. Alternative approaches were also found to be effective in improving the mechanical properties of the zirconia. For example, composites comprising zirconia and alumina are also found to retain the tetragonal phase [40, 41, 42]. To improve the mechanical properties of the final zirconia part and prevent cracking, an indirect method in SLS/SLM has been developed and documented [42, 43, 44]. Specifically, ceramic powder particles are mixed/coated with a sacrificial polymer binder (which has a lower melting point than the ceramic) and the laser is targeted towards the powder, which melts and fuses the ceramic particles. The fused ceramic particles are then subjected to postprocessing (debinding and sintering) to attain the dense zirconia ceramic scaffolds [42]. The summary of zirconia-based ceramics printing configurations used in SLS/SLM methods is presented in Table 2.
Particle size (μm) | Powder composition | Laser & power | Post-processing | Ref. |
---|---|---|---|---|
1–4 | Zircar ZYP-30 (10 wt%) | Phenix Systems PM100 (50 W) V = 1250–2000 mm/s | — | [35] |
20–70 | Alumina toughened zirconia (ATZ) (41.5, 80, 94) wt% ZrO2, (58.5, 20, 6) wt% Al2O3 | Nd: YAG laser (150 W) for processing CO2 laser (1000 W) for pre-heating | — | [45] |
22.5–45 | 7Y-TZP (20–80 wt%) | MCP Realizer SLM 250, Germany | — | [40] |
3–50 | 8Y-TZP + < 2 wt% graphite powder | Phenix ProX 200 Nd:YAG Laser power (W): 78–87 | — | [46] |
1–5 | ATZ of Y-TZP (80 wt%) | CW 200 W Nd-YAG laser (redPOWER, SPI Lasers Ltd., UK) Laser power (W): 34 | Post-thermal treatment at 1300°C for 2–10 h | [41] |
— | ATZ of Y-TZP (80 wt%) | Realizer SLM 125 equipped with Nd:YAG laser Laser power (W): 90 | — | [47] |
— | 3Y-TZP + 0.5 wt% MgO (magnesium oxide) powder +6.0 wt% epoxy resin | CO2 laser (λ: 10.6 μm) with power of 100 W Laser power (W): 7 | Cold isostatic pressing at 280 MPa | [44] |
— | ZrO2 + nylon 12 | Energy density: 0.415 J/mm2 Laser power: 6.6 W | Cold isostatic pressing at 200 MPa | [43] |
— | 3Y-TZP + isotactic polypropylene (PP) | CO2 laser (λ: 10.6 μm) with power of 100 W | Warm isostatic pressing at 64 MPa Sintering in air at 1450°C for 2 h | [42] |
Summary of zirconia-based configurations used in SLS/SLM methods [34].
BJ is also based on the powder bed fusion technique, where a binder (binding agent) is selectively deposited to link powder materials. In this technique, a thin layer of ceramic material in powder form is evenly spread over the building platform with the help of a roller [48]. A binding ink is then sprayed onto the ceramic powder particles using the jetting head. The result is the ceramic powders and binders adhering together to form a solid structure. This is repeated multiple times and the layers are printed on top of each other to form the preferred 3D scaffolds. During printing, green ceramic parts are reinforced by boundless powder particles [24]. The BJ process can eliminate the internal residual stresses that evolve during building [1]. Moreover, the postprocessing steps such as the removal of unbound powders and sintering are conducted to consolidate the dense ceramic parts. The effective production of numerous ceramics such as hydroxyapatite, tricalcium phosphate, ZTA, and Al2O3 structures with the required porosity using the BJ process have been reported in the literature for biomedical applications [49, 50]. However, obtaining the necessary shrinkage and density in the final product after sintering is still critical. Therefore, many researchers sought to address these issues by integrating nanoparticles into the liquid binder. Recently Huang et al. [32] studied the use of an inorganic colloidal binder (decomposable binder) as a binding agent for the construction of 3Y-ZrO2 ceramic structures using BJ technology. They selected zirconium basic carbonate as a precursor, and it was dispersed in the colloidal solvent to produce decomposable inorganic colloidal binder because it can be easily decomposed upon sintering and can form zirconia 3D parts with no residue [48]. It was established that the inorganic colloidal binder-based zirconia scaffolds exhibited superior surface quality and density compared to the conventional polymer binder. Conversely, Zhao et al. [32] ***attempted to print zirconia samples using a liquid binder containing zirconia nanoparticles (10 wt%). The density was increased by approximately 86.8%, whereas shrinkage was reduced by approximately 10.6% after sintering the printed parts [51].
Among the AM technologies using zirconia, SLA technology is the most well-known and popular method. A photocurable resin comprising photopolymerizable monomers, a photoinitiator, and ceramic particles is molded into a slurry and selectively cured by ultraviolet (UV) radiation in sequential layers to build the 3D object with the desired shape [52]. The geometrical accuracy of the manufactured parts produced using SLA technology is dependent on the laser power, layer thickness, cure depth, and energy dose. The key steps in fabricating ceramic parts with complex geometries and high resolution using SLA are preparing a suitable photocurable ceramic suspension, building the ceramic part, and debinding and sintering [53]. One of the most important factors in this process is the properties of the ceramic suspension. Homogeneous dispersion of zirconia ceramic materials with raw resin is essential for establishing photocurable ceramic resins. The introduction of ceramic materials negatively impacts the properties of raw resin by increasing the viscosity and immobilizing the ceramic/resin suspension. To initiate a matrix around the ceramic materials during photopolymerization, a combination of monomers and oligomers is blended with the ceramic suspension as a binder [54]. It is essential to include a dispersant to prevent agglomerations and retain the resin stability. The dense ceramic parts fabrication is primarily dictated by the volume fraction of the ceramics. Increases in volume fraction improve the final properties of the product (porosity reduction, shrinkage reduction, strength improvement, crack/deformation suppression) [28]. Due to this unique characteristic, SLA-based printers are commercially available in different forms. Hence, design and materials engineers recommend altering the design and printing parameters to the finest quality using state-of-the-art techniques and materials. Many studies have been focused on advancing a suitable photocurable ceramic suspension for the fabrication of zirconia-based ceramic parts (Table 3).
Particle size (μm) | Resin configuration | Solid loading (vol%) | Viscosity (Pa s) | Laser wavelength (nm) | Ref. |
---|---|---|---|---|---|
0.2 | HDDAa + TMPTAa | 55 | 1.65 at 200 s−1 | — | [55] |
— | HDDA + IBAa + PNPGDAa | 58 | 9.02 at 5 s−1 | 375–425 | [56] |
0.2 | AMb + MBAMb + Glycerol + Water | 40 | 0.127 | — | [57] |
0.2 | HDDA + PPTTAa + PEGc + U600a | 60 (wt%) | — | — | [58] |
0.2 | HDDA + PEGDA | 83 (wt%) | 1.23 at 100 s−1 | 405 | [59] |
Different formulations and viscosity characteristics for preparation of zirconia suspensions [53].
Acrylate-based monomer.
Acrylamide-based monomer.
Polyethylene glycol.
The oligomer (prepolymer) applied to the zirconia in AM methods has a chain structure comprising a medium molecular weight monomer. The oligomer regulates the physical properties of the resin. The reactivity between the monomer and the polymer with a low molecular weight number influences the properties of the cured film through molecular bonding triggered by polymerization. The classification is based on the molecular structure and includes polyester, epoxy, urethane, polyether, and polyacrylic. In general, it is difficult to use the oligomers directly for AM due to their high viscosity [60, 61].
A monomer is a reactive diluent added to reduce the viscosity of an oligomer. The polymerization can be categorized into two types, namely, a free radical reaction or a cationic reaction [60, 62]. Acrylates and methacrylate are the most used monomers from free radical reactions [62]. Photopolymerization can be stimulated through a free radical initiator, and when the monomer receives a free radical from the initiator, it transfers the free radical to another monomer to form a polymer. The cationic reactive monomers can induce photopolymerization via cationic initiators. Monomers, such as epoxides, vinyl ethers, propenyl ethers, siloxanes, cyclic acetals, and furfurals, are capable of polymerization under a cationic mechanism. Epoxide is the preferred monomer from the cationic reaction groups [63].
Monomers and oligomers cannot independently initiate photopolymerization. Therefore, photoinitiators are added to generate reactive species that can trigger the monomers and oligomers. When polymerization is initiated, the reaction proceeds through a chain reaction of double bonds and forms a three-dimensional cross-linked bond together with reactive monomers and oligomers [64, 65]. Free radical photoinitiators added to certain monomers, such as acrylates and methacrylates, absorb UV light to generate free radicals and incite a double bond reaction of the monomers [66]. Cationic initiators can readily react with the binding of certain monomers, such as vinyl ethers and epoxides, because the absorbed UV light produces acids to induce polymerization of the monomers [63].
Dispersants are copolymers with soluble polymer chains and “fixing groups” that impart affinity to the surface of inorganic pigments such as zirconia [53]. The main mechanism in nonaqueous systems with low polarity is steric stabilization. Polymer chains are attached to the pigment surface by adsorption and form a brush-like layer that prevents re-agglomeration due to osmotic and entropy effects. The polymer chains of the dispersant are adsorbed onto the pigment surface to form a layer that prevents re-agglomeration. An effective layer typically ranges from 5 nm to 20 nm, with a particle diameter in the range of 0.05–1 μm. Because the dispersant effects vary with the monomer and oligomer composition, as well as the properties of the ceramic powder, care must be taken regarding the type and content of the dispersant.
The compact ceramic raw material supplied to the extruder is difficult to use as an AM material because it has a high tendency of particle aggregation and, thus, increased resistance to flow [67]. Compatible ceramic powder and additives can guarantee permanency for storage and molding through homogeneous particle dispersion after mixing and, thus, facilitate the minimum pressure and viscosity for flow through the printing nozzle [68, 69].
Additionally, there is a need for good bonding and inhibition of separation between the deposited layers during printing [70, 71]. In addition, the included additives must be removed without defects during the post-treatment process [72, 73].
A study on the composition of multicomponent additives for a wax/thermoplastic base is suggested in Table 4. In addition to the main additives (such as polyethylene), other components such as wax dispersants and plasticizers are also included to provide strength, elasticity, flexibility, plasticity, and lower viscosity [20].
Processes | Powder | State | Additive materials | Ref. |
---|---|---|---|---|
Wax & thermoplastic base | 3 mol% YSZ 300 nm (40 vol%) | Feedstock | Low-density polyethene, paraffin wax, stearic acid | [74] |
3 mol% YSZ 90 nm (47 vol%) | Feedstock | High-density polyethylene, stearic acid, amorphous polyolefin, styrene-ethylene-butylene-styrene copolymer, paraffin wax, extender oil | [75] | |
3 mol% YSZ 500 nm (85 wt%) | Feedstock | Ethylene-vinyl acetate copolymer, polyethylene, paraffin wax and stearic acid | [20] | |
Water base | 3 mol% YSZ (45–50 vol%) | Paste | Anionic polyelectrolyte dispersant, hydroxypropyl methylcellulose, polyethyleneimine | [76] |
3 mol% YSZ 500 nm (50 vol%) | Paste | Water, acrylamide, N,N′-methylenebisacrylamide, ammonium citrate | [77] | |
3 mol% YSZ 40 nm (60 vol%) | Paste | Ammonium polymethacrylate, methylcellulose, deionized water | [78] |
Overview of extrusion processes for zirconia ceramics.
In the case of a feedstock in which a large amount of polymer is used as a dispersion medium, defects may occur during debinding after manufacturing. To solve this problem, an aqueous ceramic raw material is used. This water-based ceramic raw material enables the accumulation of zirconia powder with high content and decreases defects during degreasing due to the low content of organic matter.
The use of zirconia ceramic as a restorative material in the form of dental protheses started in the early 1980s and gained considerable attention in the dental community, thereafter due to its unique properties (such as excellent esthetics including tooth-like color, high fracture toughness, flexural strength, corrosion resistance, and biocompatibility) [8]. Hence, it has become the best alternative for metal-based dental restorations. Zirconia ceramics have been used in dental applications in the form of dental crowns, dental implants, and fixed partial dentures since 1998 [19]. In general, zirconia restorations are fabricated using digital techniques, including subtractive manufacturing techniques such as CAD/CAM, which is the established method for producing fixed prosthetic restorations [79], where the milling machine is controlled by a computer numeric controlled system. The power-driven milling tools were used to mill/remove the material from a block (presintered or fully sintered ceramic block) to achieve the desired prosthesis background [80]. However, it has certain disadvantages during manufacturing, such as material wastage and wear of milling tools. In addition, its precision is limited, limiting object complexity, tooling equipment dimensions, material properties, among other problems [81]. AM incorporates recent advanced and evolving techniques in digital dentistry, which construct the three-dimensional component by layering the material. It is capable of making cost-effective customized dental prostheses with minimal material consumption and high precision [82]. However, research studies on the 3D printing of zirconia crowns and bridges for dental applications are limited. In addition, various issues such as poor geometrical accuracy, high porosity, and poor margins are unresolved. Recently, several research studies on 3D printing of zirconia ceramics using photopolymerization-based printing (SLA-based technologies) improved the effectiveness and accuracy, making the technique favorable.
The goal of the dentist is to restore the lost tooth as naturally as possible. The most common material types used in the restorative field are metals and ceramics. However, ceramics possess significant advantages over metal/metal ceramics due to their natural appearance (tooth-like color), which satisfies the esthetic demands, making ceramics the material of choice [83, 84].
YSZ is the most widely used all-ceramic material in dental restorations due to its outstanding material properties [85]. It is used for load-bearing applications, such as dental crowns, bridges, veneers, and implant abutments. YSZ restorations have been used in clinical practice over the past two decades. It is used primarily as a core material for the fabrication of dental prosthesis frameworks. The chipping of ceramic veneers and fracture of the framework, when exposed to continuous masticatory load is often reported [86, 87]. For example, the thermal coefficients of the core material and outer veneer cap (porcelain/lithium disilicate) are different and subjected to different heat treatment temperatures that lead to catastrophic failure. Further, several other factors including surface treatment (airborne-particle abrasion/etching) of the framework and bond strength between the ceramics veneer and zirconia frameworks are consequential [9, 88].
The advancement in zirconia with full-contour monolithic zirconia restorations gained attention to address the aforementioned problems. The fabrication of crowns and bridges using monolithic zirconia is faster and cheaper compared to a manually constructed veneered prosthesis. In recent years, CAD/CAM technology (subtractive) has been used for the fabrication of all-ceramic prostheses and abutments. The very attractive flexural strength and toughness of 3 mol% YSZ make it a classic and suitable material for dental use. Despite the promising properties of zirconia, the optical properties (translucency) are poor, i.e., it is opaque. Therefore, the larger esthetic-related issues initiated the demands for monolithic restorations. Dental material researchers and manufacturers have found several ways to increase translucency characteristics. The light transmission can be improved by either reducing the concentration of aluminum oxide or increasing the concentration of yttrium oxide [15]. For instance, the molar concentration of the yttria is varied (3–5%) to improve the translucency of zirconia with optimal mechanical properties. However, when the concentration of yttria is increased, the material exhibits higher translucency (more esthetics) but also exhibits a reduction in mechanical properties because the structural change into cubic phase becomes dominant. Evidently, the cubic phase does not allow transformation in crystal structure and this leads to a reduction in crack resistance. The “gradient technology” has become the modern advancement in the area of translucent zirconium oxide. A material-specific gradient is introduced into the milling block along with the color gradient (highly chromatic at the cervical region and less chromatic at the incisal region). In particular, the high-strength raw material 3Y-TZP is combined with the highly translucent raw material 5Y-TZP to create a continuous, layer-free color and translucent gradient [89]. The development of AM technology has attracted much attention to the fabrication of zirconia-based restoration with a high potential of making customized dental prothesis with minimal waste (Figure 3).
AM zirconia crowns via DLP technology [
In 2009, Ebert et al. [90] built a zirconia dental crown using the direct inkjet printing method. The printing ceramic suspension was loaded with 27 vol% of zirconia ceramics, with a relative density of 96.9%, flexural strength of 763 MPa, and a fracture toughness of 6.7 MPa m1/2. The printed and fired samples showed process-related defects, which were attributed to the clogging of the nozzles during printing that directly affected the mechanical properties. However, the authors demonstrated the potential to print 3D crowns using this technology. Likewise, Özkol et al. [91] attempted to print the zirconia bridge framework using a direct ink printing (DIP) method. The ceramic aqueous ink was prepared with 40 vol% solid content of 3Y-TZP. The printed components were dried and sintered at 1450°C. The relative density of the final product was >96%. Furthermore, finite element analysis was used to determine the stress distribution and the maximum tensile stress of the framework structure. The results of all different loading cases show hot spots on the bottom marginal area of the interdental connectors. The estimated maximum tensile stress values ranged between 250 and 350 MPa. The flexural strength was approximately 843 MPa (Table 5).
Applications | Materials and ceramic content | Fabrication techniques | Density (%) and shrinkage (vol %) | Mechanical properties | Others | Ref. |
---|---|---|---|---|---|---|
Dental crown (2009) | YSZ 27 vol% | DIP (from Hewlett Packard) | Density 96.9% and Shrinkage 20% | Flexural strength 763 MPa; Weibull modulus 3.5; Fracture toughness 6.7 MPa m1/2 | — | [90] |
Dental crown (2011) | YSZ 47 vol% | Robo-casting | Shrinkage 30% | — | — | [92] |
Dental bridge framework (2012) | YSZ (3Y-TZP) 40 vol% | DIP (from HP deskjet) | Density > 96% | Flexural strength ̴ 843 MPa; Weibull modulus 3.6; tensile strength ̴ 340 MPa | — | [91] |
Dental bridges framework (2013) | ZTA (ZrO2−80% and Al2O3–20%) | SLM | Density ̴ 100% | Flexural strength 538 MPa | — | [45] |
Dental bridges (2018) | YSZ 40 vol% | SLA (from Shaanxi Hengtong Intelligent Machine Co., Ltd.) | Density 98.58% and shrinkage 20–30% | Flexural strength 200.14 MPa; Vickers hardness 1398 HV | — | [57] |
Dental crown (2018) | YSZ 37 vol% | SLA (polymer mold) and gel casting | Density 98.6% and Shrinkage 20.1% | Flexural strength 1170 MPa; Vickers hardness 1383 HV | — | [93] |
Dental crown (2019) | YSZ | SLA (from 3DCeram) | — | — | Surface trueness of the 3D printed crown meets the requirement | [94] |
Dental crown (2019) | YSZ 45 vol% | SLA (from Porimy 3D Printing Technology Co., Ltd.) | Density-5.83 g/cm3 and Shrinkage 18.1% in length, 20% in width, and 24.3% in height. | Flexural strength 812 MPa; Weibull strength 866.7 MPa; Weibull modulus 7.44 | Cement space 63.40 μm (occlusal area); 135.08 μm (axial area) and 169 μm (marginal area) | [95] |
Implant-supported AM crown (2019) | Commercial slurry (3DMixZrO2) | SLA (from 3DCeram) | — | Fracture resistance 1243 N | — | [96] |
Dental crown (2019) | YSZ (3Y-TZP) 48–58 vol% | DLP (from Octave Light R1) | Density 92.79% and Shrinkage—23.81% | Flexural strength 674.74 MPa | Geometrical overgrowth 36.94% | [56] |
Dental crown (2020) | Commercial slurry (3DMixZrO2) | SLA (from 3DCeram) | — | — | Marginal and internal discrepancies | [97] |
Occlusal veneers (2020) | YSZ 40–60 vol% | Litho-graphy-based ceramics manufacturing process (like DLP) (From Lithoz GmbH) | — | — | Load bearing capacity- Median Fmax values 2026 N | [98] |
Dental crown (2020) | YSZ 50–55 vol% | Inkjet | Density 98.5% | Hardness 14.4 GPa; transverse rupture strength 520 MPa | — | [99] |
Dental crown (2021) | Commercial slurry SL150 | SLA (from Porimy 3D Printing Technology Co., Ltd.) | — | — | Dimensional accuracy 65 μm and marginal adaptation | [100] |
Dental crown (2021) | Commercial slurry CSL150 (YSZ) 47 vol% | SLA (from Porimy 3D Printing Technology Co., Ltd.) | — | — | — | [101] |
Dental prothesis (bar shaped) (2021) | Commercial slurry (3DMixZrO2) | SLA (from 3DCeram) | — | Flexural strength 320.32 MPa and 281.12 MPa after aging; fracture resistance 640.64 N and 562.25 after aging | — | [102] |
Dental prothesis (bar shaped) (2021) | Commercial slurry (3DMixZrO2) | SLA (from 3DCeram) | Shrinkage—16.32% in length, 14.25% in width, and 20.33% in height. | — | — | [103] |
AM zirconia for dental applications.
Lian et al. [57] reported that complex zirconia bridges were produced using the SLA technique with a high shape precision. They prepared a 40 vol% zirconia suspension and the laser scanning speed of 1200 mm/s was optimized for printing. The density and Vickers hardness of the sintered bridges was 98.58% and 1398 HV, respectively. Nevertheless, the flexural strength (200.14) was very low, and it was not good enough for actual dental applications, because of the internal defects formed during the printing process. The authors, therefore, suggested a study of the further optimization of the parameters of the SLA and sintering process. Additionally, in 2019 Wang et al. [94] conducted an in vitro experiment to investigate the surface trueness at different locations (external, intaglio, marginal, and occlusal) of 3D printed zirconia crowns constructed using SLA 3D printing technology.
The point-to-point difference between the scan data (3D printing) and corresponding CAD model data determines the trueness of the fabricated crown. The comparative color maps could demonstrate the accuracy and inaccuracy between the 3D printing and milling techniques. Meanwhile, Li et al. [95] examined the internal and marginal adaptation of 3D printed zirconia crowns and studied the physical and mechanical properties. The authors achieved a consistent flexural strength of 812 MPa and Weibull modulus of 7.44 by using 45 vol% zirconia suspensions. The mechanical strength is sufficient for dental crowns fabrication. While the cement spaces in occlusal (63.4), axial (134.08), and marginal (169.65) areas were not ideal for clinical applications, this can be attributed to light scattering and anisotropic sintering shrinkage.
However, in 2019 Jang et al. [56] investigated the microstructure and physical properties of zirconia products fabricated via DLP technology. The zirconia suspension was prepared using different volume fractions of the ceramic content from 48 vol% to 58 vol%. Cracks were observed on the zirconia specimens, and these cracks increased in number as the zirconia volume fraction decreased. The 3-point bending strength, relative density, and shrinkage of the printed samples were 674.74 MPa, 83.02%, and 23.81%, respectively. The maximum volume fraction possible for 3D printing was 58 vol%.
More recently in 2021, Zandinejad et al. [96] investigated the fracture resistance of AM zirconia crowns cemented to an implant-supported zirconia abutment. They also compared the AM zirconia crowns with milled zirconia, as well as lithium disilicate crowns. A universal testing machine at a crosshead speed of 2 mm/min was used to determine the fracture resistance, and it was verified that the fracture resistance of AM zirconia is equivalent to milled crowns. Nevertheless, intra-oral simulation research on the AM ceramic crowns should be conducted to authorize AM as a real-world technology for the construction of ceramic restorations in clinical dentistry.
The popularity of zirconia-based implants is growing enormously as an alternative to alumina and metal-based endosseous implants [104]. Since the late 1980s, zirconia has been used to build surgical implants for the replacement of total hip prostheses in orthopedic surgery [105]. Zirconia-based ceramics have superior mechanical properties and corrosion resistance [106]. Besides, in vitro and in vivo,clinical studies of zirconia implants revealed excellent biocompatibility, osseointegration and a low affinity for bacterial plaque compared to standard metal implants (titanium implants) [107, 108, 109]. The utilization of AM technology is beneficial for the fabrication of zirconia-based ceramic dental implants as they can produce customized geometrics and complex structures. The technology can also improve bioactivity without any surface alterations, such as sandblasting, etching or coating [104]. Nevertheless, it is essential that the functional surface quality of zirconia-based implants fabricated from conventional techniques be enhanced to improve mechanical functions such as wear resistance and fatigue. Moreover, the surface treatments can improve bioactive functions, such as cell proliferation, adhesion, bonding strength, and bacterial decolonization [110].
For example, Osman et al. [111] fabricated 3D printed zirconia implants using DLP technology and evaluated the dimensional accuracy, surface topography, and flexural strength (Table 6). They showed that custom-designed 3D printed implants revealed satisfactory dimensional precision (root mean square error of 0.1 mm), and the flexural strength (943.2 MPa) is equivalent to that of conservative milled zirconia (800–1000 MPa). The roughness of the surface was found to be 1.59 μm and from the SEM analysis, it was observed that the presence of microporosities with interconnected pores (196 nm to 3.3 μm) and cracks were visible. These flaws were generated during the sintering process or improper dispersion of ceramic particles into the slurry. To enhance the potential microstructure quality of the printed implants, 3D printing parameters need to be optimized.
Applications | Materials | Fabrication techniques | Mechanical properties | Others | Ref. |
---|---|---|---|---|---|
Dental implants (2017) | YSZ | DLP (from Delta Co.) | Flexural strength 632.1 MPa; Vickers hardness 14.72 GPa | — | [112] |
Root analogue implants (RAI) (2017) | YSZ 27 vol% | DLP (from Admatec) | Weibull modulus 3.5; Fracture toughness 6.7 MPa.m1/2 | Density 96.9%; Shrinkage 20 vol % | [113] |
Dental implants (2017) | YSZ | DLP (from Admatec) | Flexural strength 943 MPa | Dimensional accuracy 0.089 mm and SURFACE roughness 1.59 μm | [111] |
Medical implants (cube, cuboidal, and bar shaped) (2019) | ATZ 70 wt% | LCM | Flexural strength 430 MPa | Density 5.45 g/cm3; accuracy 70–88% | [114] |
Hip implant (2019) | YSZ-ZnO (coating) | FDM and gel casting | — | MC3T3-E1 cells; | [115] |
Dental implants (square shaped) (2021) | Commercial slurry (LithaCon 3Y 230; 3DMix ZrO2; 3D Mix ATZ) | SLA (from 3DCeram and Lithoz GmbH) | Flexural strength 1108.8 MPa (3D Mix ATZ); Weibull modulus 11.1 | — | [82] |
Dental implants (2021) | ATZ 36–38 vol% | DLP (from Robotfactory) | — | Density 96.8% | [116] |
AM zirconia for implant applications.
However, Nakai et al. [82] inspected the microstructure and flexural strength of zirconia-based ceramics formed using SLA (AM technology) and related to CAD/CAM technology (subtractive technology). In their study, the authors compared the commercially available zirconia-based ceramics products. They were two AM 3Y-TZP (LithaCon 3Y 230 and 3D Mix zirconia) products, and one AM ATZ (3DMix ATZ) product, with conventionally fabricated 3Y-TZP (LAVA plus). The experimental outcomes confirmed that the flexural strength and microstructure of AM zirconia are sufficient and close to that of conventionally (subtractive) manufactured zirconia. AM ATZ exhibited higher flexural strength (1108.8 MPa) than 3Y-TZP. Both 3Y-TZP and ATZ are suitable for dental implants. Moreover, variation in the AM process and the impact of building alignment can alter the mechanical properties of AM zirconia. To promote the practical reliability of AM zirconia implants, the relationship between the surface morphology and bioactivity of zirconia needs to be evaluated in a future study. Recently, Magnani et al. [116] presented the potential capability of DLP printing technology to fabricate the dental implants with a new high-performance ATZ composite material (Figure 4).
Dental implant fabricated using DLP-based additive manufacturing technology. (a) ATZ dental implant-green body, (b) micrograph of the lattice structure [
The clinical success of zirconia bioceramics in the human environment in the form of dental posts, teeth, and crowns in the dentistry field encouraged biomedical researchers to exploit the biological and mechanical properties of zirconia bioceramics for bone-regeneration applications. Accordingly, developing zirconia-based scaffolds with high precision and dimensional stability is vital to satisfy increasingly challenging requirements for bone-regeneration requests. At present, there is a lack of a simple commercial approach to construct 3D zirconia structures, however, the proposal of AM in 3D zirconia scaffold construction shows great potential. Biomedical engineers targeted AM-based technologies for the zirconia scaffold preparations (Table 7). Unlike conventional bioceramics, initial attempts to fabricate zirconia bioceramics were mainly concentrated on multi-pass extrusion techniques [44]. The multi-pass extrusion technique is a simple AM technique in which the ethylene-vinyl acetate polymers were blended with zirconia powders to execute extrusion (the extrusion is repeated to construct the scaffold with constant porous core structure). The extrusion proportion, pore-gradient rate, and microstructure are the critical parameters in controlling the final output of the zirconia scaffolds. More importantly, to increase the biocompatibility of zirconia binary mixtures (ZrO2/Al2O3), fabrication of binary scaffolds with alternating ZrO2 and Al2O3 layers with 3D-interconnected micropores are also demonstrated [136]. However, the multi-pass extrusion designs were not controlled using modern numerical methods. In subsequent years, computerized extrusion-based techniques like 3D Bioplotter and FDM were introduced to precisely design the 3D zirconia scaffolds. Zirconia-based scaffolds (β-Ca2SiO4/zirconia scaffolds) fabricated using the 3D-Bioplotter technique were verified to induce bone-regeneration properties in an actual biological atmosphere using a rat model [131]. In FDM, zirconia ceramics are generally blended with polymers such as polycaprolactone to execute a computerized melt mixing process, which can construct a regular grid scaffold [133]. More importantly, biopolymers embedded in zirconia-based scaffolds fabricated using FDM were found to provide additional mechanical support, as well as bioactivity for the zirconia ceramics (Figure 5). Compared to the pristine zirconia-based scaffolds (alginate/gelatine), biopolymer embedded zirconia ceramics were found to exhibit the extracellular matrix (ECM) of the bone tissue, which is essential to imitate the biological environment [74]. Subsequently, considerable research efforts were dedicated to formulating zirconia-based scaffolds using the direct ink writing (DIW) or robocasting method (extrusion-based AM-based technique). 3D zirconia scaffolds fabricated with controlled pore openings and thread dimensions using the DIW method were found to possess high porosity (61% and 75%). More importantly, hydroxyapatite/fluorapatite-based coatings on the DIW derived zirconia-based scaffolds were needed to enhance its bioactivity [135]. Photopolymerization-based AM techniques including DLP and SLS were also studied for the fabrication of zirconia-based scaffolds. Specifically, DLP technology was found to have high accuracy and faster processing ability than other AM-based techniques. The ultraviolet light is irradiated on the zirconia suspensions (prepared by optimizing the solid loading of the zirconia powders, organic monomer, potentiators, and dispersant) to articulate the final design. It is important to perform heat treatment in a high-temperature vacuum furnace to avoid internal cracks and imperfections in the heat-treated zirconia scaffolds [132]. Although SLS-based techniques were widely studied for calcium-based bioceramics, the use of SLS techniques to construct zirconia has been limited due to low zirconia concentration. Mostly, zirconia is blended in minimum volume fraction with other bioactive materials like calcium silicates to avoid the unwanted agglomeration-induced material degradation [124]. In addition, to replicate the nano-to-microscale configuration of the ECM of bone tissue, electrospinning of the zirconia-based scaffolds was experimented with. It is believed that the zirconia scaffolds subjected to electrospinning exhibited high endurance to the inbound load from the bone tissue when compared to conventional more fragile scaffolds [125].
Materials | Fabrication techniques | Composite/coating materials and infiltration/intermediate layer | Porosity and pore size | Mechanical properties | Biological properties (in vitro and in vivo) | Ref. |
---|---|---|---|---|---|---|
YSZ 48–43 vol% (2011) | Multipass extrusion | Intermediate layer HA (α–TCP) –YSZ; coating: HA | 77% and 86 μm | Compression strength: 53 MPa | MG-63 cells | [117] |
YSZ (2011) | 3D Rapid Prototyper (ABS template) followed by slurry impergation | Coating: mesoporous bioglass | 63–68% and 500–800 μm | Compression strength: 44.35–123.32 MPa | SBF and BMSC cells | [118] |
YSZ 10 vol% (2011) | Sponge replica and electrospinning | Intermediate layer YSZ-BCP; coating; BCP | 67.68–69.65% | Compression strength: 4.83–4.97 MPa | MG-63 cells | [119] |
ZrO2 50 vol.% (2012) | Free-form | — | 40% and 350 μm | — | Case study (maxilla) | [120] |
YSZ 45–40 vol% (2012) | Multipass extrusion | Intermediate layer: HA-YSZ; coating: HA | — | Compression strength: 7–20 MPa | MG-63 cells | [121] |
YSZ 46–41 vol% (2012) | Multipass extrusion | Intermediate layer: YSZ-BCP: coating: PCL/BCP | 92–78% | Compression strength: 8.27–12.7 MPa | MG-63 cells | [122] |
YSZ 70 wt% (2014) | Direct ink writing (DIW) | — | 55 and 63% | Compression strength: 8 and 10 MPa | HCT116 cells | [123] |
ZrO2-CaSiO3 (2014) | SLS | Composite: ZrO2 (10–40 wt%) | 70% and 1600 μm | Compression strength: 17.9–44.1 MPa; fracture toughness 1.14–1.66 MPa.m1/2 | SBF and MG-63 cells | [124] |
YSZ-PVP (2016) | Electrospinning | — | — | Modulus 1.11 MPa | HMSC cells | [125] |
ZrO2-β-TCP (2016) | 3D Rapid Prototyper (ABS template) followed by impergation | Composite: ZrO2 (10–50 wt%) | 68.5–82.5% | Compression strength: 3–15 MPa; Modulus 184–396 MPa | PBS and MG-63 cells | [126] |
ZrO2-β-TCP (2017) | 3D Bioplotter | Composite: ZrO2 (30 wt%) | 60–76.46% and 160–226 μm | Compression strength: 7–12.025 MPa | MG-63 cells | [117] |
ZrO2-PCL 6–30 wt.% (2017) | Electrospinning | — | — | — | 3T3 cells | [127] |
YSZ-Al2O3 (ZTA) 70 wt% (35.5 vol%) (2018) | Robocasting | Composite: ZTA (YSZ-16 wt.%) | 50% and 245 μm | — | HOB cells | [128] |
ZrO2–BCP (2018) | FDM | Composite: ZrO2 (10 wt%) | 350 μm | Compression strength: 0.5 MPa | MG-63 and hMSCs cells | [129] |
YSZ 48 vol% (2019) | Robocasting | — | 200–500 μm | — | — | [130] |
ZrO2-β- Ca2SiO4 (2019) | 3D Bioplotter | Composite: ZrO2 (5, 10, 15 wt%) | ̴ 67% | Compression strength: 3.9–6.1 MPa | SBF and BMSC cells; RAT calvarial defect (8 weeks) | [131] |
ZrO2-HA 60 wt% (2019) | DLP | Composite: ZrO2 (1, 3, 6 wt%) | — | Tensile strength (29.4%); bending strength (23.9%) | BMSC cells | [132] |
ZrO2–PCL (2020) | FDM | Composite: ZrO2 (5, 10, 20 wt%) | 46.2–47% and 459.2–462.7 μm | Compression strength: 5.5–7.9 MPa; Modulus 43–67 MPa | MC3T3-E1 cells | [133] |
YSZ (2020) | DLP | Composite: HA (10, 20, 30 wt%) | 54.6% | Compression strength: 52.25 MPa; compression strength: after soaking in SBF (25 MPa) | SBF and MC3T3-E1 cells | [134] |
YSZ 40 vol% (2020) | FDM and Freeze drying | Intermediate layer: Glass (Infiltration); coating: glass/Zn-HA (̴ 1 μm) and gelatin/alginate | 40% and 300–450 μm | Compression strength: 68.2–89.8 MPa; Modulus 1.7–2.6 GPa; Strain energy density 1.8–4.2 MJ/m3 | DPCs cells | [74] |
YSZ 39.5 vol% (2021) | Direct ink writing (DIW) | Intermediate layer: FA; coating: HA ( ̴ 20 μm) | 61.1–75.3% | Compression strength: 20.8–62.9 MPa | SBF | [135] |
AM zirconia for bone tissue regeneration applications.
(a) Scaffold printing using FDM, (b) digital photograph of the printed zirconia scaffold, (d) microscopic images of zirconia scaffold, and (e) polymer embedded zirconia scaffold [
Zirconia is a classic bioceramic, and its use in the dental and biomedical fields is inevitable. Hence, extensive research efforts have been dedicated to maximizing the potential of AM technologies to formulate the zirconia ceramics into a precise bone or tooth replacement, scaffolds, implants, and crowns. Though, zirconia scaffolds are directly involved in the human environment (in both dental and biomedical fields), the requirements of each field are evidently different. For instance, the zirconia scaffolds should have adequate porosity for bone-regeneration applications and patient-specific design, whereas, zirconia scaffolds for dental restoration and implants need not have a porous structure; instead, they should retain complex shapes with solid/hollow structures. Hence, the scaffold processing via AM also needs to be precise for each application. AM or 3D printing has revolutionized the designing of complex human hard tissues with an excellent surface finish, minimum material wastage, and high fabrication speed compared to conventional techniques. However, AM also suffers from some inherent limitations and challenges. The primary challenges include difficulties in raw material preparation, process control, and immature designs (Figure 6). Research advancements achieved by the metal and polymers-based scaffolds via AM-based techniques both in the laboratory and at clinical levels are far ahead when compared to the practically challenging zirconia-based ceramics due to their inherent challenging properties (brittleness, high melting point, and high density). Hence, it is essential to pinpoint the existing challenges in the research investments and activities that restrict the feasibility of AM-based technologies in fabricating zirconia-based ceramics at the laboratory, clinical, and industrial levels.
Major challenges of AM zirconia-based ceramics.
Although different types of AM technologies are available for formulating bioceramics, only a few techniques are effective in the fabrication of zirconia parts with minimal imperfections. Despite the large number of AM technologies suitable for processing ceramics, each technique has its individual advantages and limitations. The primary issue for printing starts from the raw material (feedstock/slurry) preparation itself. For example, in extrusion-based techniques, temperature, pressure, nozzle size, and computer-generated design files (scaffold models) can be fed easily to the computer to accomplish the anticipated requirements. However, poor printability, nozzle blockage, and poor flowability of the feedstock have been major bottlenecks (due to the high density and hardness of zirconia) in designing zirconia-based scaffolds for bone-regeneration applications.
Compared to FDM-based techniques, SLA-based techniques have been extensively explored for the fabrication of zirconia-based ceramics due to the excellent surface finish and precision produced by the technology. Commercial SLA printers are now available for zirconia-based ceramics. However, the uneven distribution and particle aggregation of zirconia particles in the slurry suspension upsetting the light scattering properties (cure depth, curing time, and the energy of the UV light source) is a challenging issue. As a result, geometrical overgrowth is unavoidable due to the high refractive index of the zirconia. (SLA-based techniques are mainly controlled by the light source, refractive index, volume fraction, and particle size.) The most common problem associated with SLA-based techniques for zirconia-based ceramics is the delamination among the layers, which invariably disturbs the physical and mechanical properties of the sintered zirconia parts.
SLS-based techniques, however, can produce scaffolds with high precision, but they are rarely explored for zirconia-based ceramics due to the expensive and complicated control parameters. In particular, the high melting point of zirconia requires pre-heating of the powder bed (>1000°C) to avoid cracks caused by the thermal stress induced by the high-power laser source. Nevertheless, SLS-based techniques have represented a single-step scaffolding process for formulating zirconia scaffolds with full density. The requirement and urgency of developing this technique further for zirconia-based scaffolds are debatable.
For all the above, the major disadvantages of AM-based techniques except direct SLS-based techniques are the low-volume fraction of the zirconia in the feedstock (<60%, in which the polymer occupies the remaining portion). After debinding of polymers, the printed scaffolds can retain only half of the parent zirconia properties, which invariably affects the expected properties of the final sintered zirconia-based scaffolds.
In general, the strength and life of ceramic materials are directly associated with the type and level of residual stress that developed during the AM process. The major issue of any 3D printing system for the fabrication of zirconia parts is the internal (residual) stress, which is formed either during the printing process or during the post-process. The residual stress generated during the post-process includes high-temperature thermal treatment (sintering process) upon cooling or due to the difference in the thermal expansion coefficient (CTE) between the composite material of zirconia/bilayer material [137]. In other words, the mismatch of the CTE of two different materials can induce residual stress (tensile). Correspondingly, it was demonstrated that the selection of slow cooling and firing program of ceramic can potentially reduce the stress, which will also decrease the risk of chipping of porcelain layer in zirconia dental restoration [138]. Moreover, residual stress has a direct effect on the aging process. For instance, the tensile stresses of the zirconia composite can accelerate the aging process of the zirconia parts in body fluids [137]. It can be regulated by the stabilizer material nature and content of the zirconia phase in the composite. The most common diagnostic techniques employed for the residual stress measurements include X-ray diffraction, nanoindentation, Raman spectroscopic analysis, thermal tempering using a two-dimensional (2D) analytical model, and three-dimensional (3D) finite element simulation. However, the magnitude of the residual stress of zirconia parts varies from location to location of geometry. Also, the residual stress distribution is affected by the thickness and geometry of the zirconia parts [139]. Upcoming research should be focused on the residual stress of the AM zirconia parts are need to consider.
Although diverse AM-based research studies claim that zirconia-based scaffolds are practicable, true accomplishments are only determined based on the result of the clinical studies. In this regard, there are many unaddressed areas of applications when applying AM-based zirconia to real-world dental and bone restoration that are unresolved. For example, there are internal defects (cracks, porosity) that are formed during layering/printing or postprinting of the designed zirconia prostheses using AM-based techniques. They could affect the mechanical strength of AM zirconia crowns, bridges, implants, and scaffolds and result in a failure to satisfy the dental and biomedical requirements [57]. Nevertheless, optimum porosity is essential to guide cell adhesion or osteointegration. Hence, the stability among the material properties and biological requests need to be established by optimizing the slurry formulation/feedstock and sintering procedures on whatever AM-based techniques are used. The major challenges of 3D printed dental prostheses for real clinical applications are surface finishing/topography, staircase effects, geometrical overgrowth, and mechanical properties. Specifically, the marginal tolerance requirement (< 0.1 mm) for dental prosthetic applications via AM-based techniques is hard to realize, particularly when material strength and density are also mandatory [54, 140].
Uneven shrinkage is caused by the inbound technical shortage of AM-based techniques. Unresolved accuracy in the z-direction compared to the x and y-directions induces densification of ceramic powders within the layer and related issues (degree of polymerization and layer thickness). Overall, the printing parameters along the z-direction are yet to be optimized in such a way that the dimensional accuracy of the zirconia parts is achieved using AM-based techniques capable of addressing the patient-specific requirements. The technical imperfections in design may lead to plaque accumulation, risk of microleakage, and local inflammation [141, 142]. Thus, the relationship between dimensional precision and clinical adoption is critical to the adoption of any AM-based techniques.
Because the scaffolds need to be in direct contact with biological fluids, parts sterilization is important. Hence, biomedical engineers should be aware of the sterilization requirements while designing zirconia-based parts using AM-based techniques. The scaffolds should not lose their characteristic properties even after sterilization. Limited in vivo studies have been devoted to determining the after-effects of zirconia-based scaffolds on the biological environment. These confirm that the AM-based techniques for zirconia-based ceramics are still in infancy. Hence, biomedical engineers should be conscious of the importance of in vivo studies to realizing the practical applications of zirconia-based scaffolds.
Leading biomedical implant manufacturing companies including Stryker Corp, ZERAMEX, Straumann ceramic, Nobel Biocare, Zimmer Biomet, Wright Medical, Globus Medical, and Integra Lifesciences focused on developing, manufacturing, and promoting zirconia-based biomedical implants as a material of choice via additive manufacturing technology. Design flexibility, material productivity, and low-volume production feasibility are the prime factors behind the interest in additive manufacturing technology among the leading companies. However, AM-based technologies facing undeniable difficult challenges to fabricate zirconia-based scaffolds. Though adopting AM-based technologies for zirconia implants needs time and determination, the most important challenge lies in the substantial investment on the principal investment cost for the production floor [143]. Investment in the fabrication of zirconia-based biomedical implants from AM-based technologies is not only about equipment cost. It includes the investments in the AM ecosystem as well, which involves material, software, manpower coaching, postprocessing apparatus, documentation, and merging all facilities capable of mass production. More importantly, capital investment and material resources will be added to the above-stated challenges, which is large enough for a corporation to invest in AM as an aggregate. Hence, long-term cost assessment challenges were ahead for any biomedical implant company to unlock the AM-based technology to process zirconia-based scaffolds for wider marketplaces [143].
New technologies often mean new construction techniques and material and resource applications. AM has become a potentially vital technology in fabricating zirconia-based materials for various critical-sized applications, including bone scaffolds and dental crowns, bridges, and implants. As both AM-based technology and zirconia-based materials are in their infancy for scaffold application, it is essential to create awareness and sensitization among researchers. For example, among the AM-based technology, very few 3D printing systems (SLA, SLS, and DLP) are successful in manufacturing zirconia-based ceramics as scaffolds in the lab scale itself. This is inadequate when compared to well-established 3D printing systems for the use of metal and polymer materials, hence there is a prolonged difficulty in the clinical accomplishment of zirconia-based scaffolds. Though the mechanical properties of the zirconia parts achieved via 3D printing are comparable to the conventional zirconia parts, still some inbound issues such as internal defects (crack and porosities) and dimensional accuracies need to be enhanced. Moreover, for the enhanced bioactivity of zirconia parts, precise selection of the bioactive material and surface treatment strategies (coating/composite) are still under search. It has to be declared here that the essential printing parameters, materials preparation, and the development of the printer capability are progressively taken care of by the biomedical experts in the recent reports. Hence, collective efforts need to be dedicated in collaboration with academia, AM-machine developers, and clinical end-users to share their materials and design requirements to achieve the expected goals. The collective scientific outcomes, together with materials engineering and manufacturing technology, are extremely important in actualizing any emerging technology. AM-based technology could be utilized for manufacturing zirconia-based ceramics, which would be a milestone for society if all its current limitations can be systematically and creatively addressed.
This work was supported by the National Research Foundation of Korea (NRF). Grant funded by the Korean government (MSIT) (No. 2019R1A2C108945613).
The authors declare no conflict of interest.
We thank Pavithra Kumaresan, Karthik Narayanan, and Hariprasath Sekar for their timely help during editing the manuscript.
Y-TZP (or) YSZ | yttrium tetragonal zirconia polycrystal (or) yttria stabilised zirconia |
ZTA | zirconia toughened alumina |
Mg-PSZ (or) MgSZ | magnesia partially stabilized zirconia (or) magnesium stabilized zirconia |
Y2O3 | yttrium oxide |
ZrO2 | zirconium dioxide/zirconia |
Al2O3 | aluminium oxide/alumina |
MgO | magnesium oxide |
ATZ | alumina toughened zirconia |
ZnO | zinc oxide |
HA | hydroxyapatite |
TCP | tricalcium phosphate |
BCP | bicalcium phosphate |
FA | fluroappatite |
CaP | calcium phosphate |
PMMA | polymethamethylacralate |
PCL | polycaprolactone |
CS | chitosan |
SF | silk fibrin |
POM | polyoxometalates |
PLA | polylatic acid |
PRP | plasma rich protein |
HS | heparin sulfate |
CZ | calcium zirconate |
Ca2SiO4 | calcium silicate |
PVP | polyvinylpyrrolidone |
ABS | acrylonitrile butadiene styrene |
Zn-HA | zinc doped hydroxyapatite |
DIW | direct ink writing |
BJ | binder jetting |
FDM | fused deposition modelling |
DLP | digital light processing |
CAD/CAM | computer aided design/computer aided milling |
SLS | selective laser sintering |
SLM | selective laser melting |
S. aureus | Streptococcus aureus |
E. coli | Escherichia coli |
HOS | human osteoscarcoma |
SBF | stimulated body fluid |
MG63 | ostesarcoma cells |
MCT3-E1 | murine preosteoblast cells |
BMSC | bone marrow-derived mesenchymal stem cells |
L929 | murine fibroblast cells |
PBS | phosphate buffered saline |
HGF | human gingival fibroblast cells |
OB6 | murine bone marrow-derived osteoblastic cells |
HCT116 | human colon carcinoma cells |
HOB | human osteoblast cells |
hMSC | human mesenchymal stem cells |
DPCs | dental pulp cells |
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11680",title:"Immune Checkpoint Inhibitors - New Insights and Recent Progress",subtitle:null,isOpenForSubmission:!0,hash:"65dc94eb0a8dd733522f67d95b2c2d48",slug:null,bookSignature:"Dr. Afsheen Raza",coverURL:"https://cdn.intechopen.com/books/images_new/11680.jpg",editedByType:null,editors:[{id:"339296",title:"Dr.",name:"Afsheen",surname:"Raza",slug:"afsheen-raza",fullName:"Afsheen Raza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11812",title:"New Insights Into Pharmacodynamics",subtitle:null,isOpenForSubmission:!0,hash:"b889e24b3132aa437b6745db36fffe9b",slug:null,bookSignature:"Prof. Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/11812.jpg",editedByType:null,editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12207",title:"Statins",subtitle:null,isOpenForSubmission:!0,hash:"245ddb277df310de302579b803b715b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12207.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"56e8be78a5a1aed62dbc6e8f3c1371f8",slug:null,bookSignature:"Prof. Juber Akhtar, Dr. Mohammad Ahmad, Dr. Mohammad Irfan Khan and Dr. Badruddeen",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:[{id:"345595",title:"Prof.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12212",title:"Hypoxia",subtitle:null,isOpenForSubmission:!0,hash:"c7561177210ce5982b54d46a48666012",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12212.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12315",title:"Cosmetic Products and Industry",subtitle:null,isOpenForSubmission:!0,hash:"4730ab11e05d70d04ea88d87983a5cef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12315.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1015",title:"Healthcare Informatics",slug:"healthcare-informatics",parent:{id:"179",title:"Engineering Technology in Medicine",slug:"engineering-technology-in-medicine"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:135,numberOfWosCitations:45,numberOfCrossrefCitations:85,numberOfDimensionsCitations:145,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1015",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9158",title:"Sports Science and Human Health",subtitle:"Different Approaches",isOpenForSubmission:!1,hash:"2e9d3cc22773ce656e50633f8f1721f4",slug:"sports-science-and-human-health-different-approaches",bookSignature:"Daniel Almeida Marinho, Henrique P. Neiva, Christopher P. Johnson and Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/9158.jpg",editedByType:"Edited by",editors:[{id:"177359",title:null,name:"Daniel A.",middleName:"Almeida",surname:"Marinho",slug:"daniel-a.-marinho",fullName:"Daniel A. Marinho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7952",title:"Smart Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"a2d80535e2d71781a0cd3e2c0597a375",slug:"smart-healthcare",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/7952.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6714",title:"Assistive Technologies in Smart Cities",subtitle:null,isOpenForSubmission:!1,hash:"efe4929060be9f8e0006311a7feef8bd",slug:"assistive-technologies-in-smart-cities",bookSignature:"Alejandro Rafael Garcia Ramirez and Marcelo Gitirana Gomes Ferreira",coverURL:"https://cdn.intechopen.com/books/images_new/6714.jpg",editedByType:"Edited by",editors:[{id:"184021",title:"Dr.",name:"Alejandro Rafael",middleName:null,surname:"Garcia Ramirez",slug:"alejandro-rafael-garcia-ramirez",fullName:"Alejandro Rafael Garcia Ramirez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6653",title:"eHealth",subtitle:"Making Health Care Smarter",isOpenForSubmission:!1,hash:"c65db68c389c911ae57b1181b3e0db07",slug:"ehealth-making-health-care-smarter",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/6653.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5926",title:"Breast Imaging",subtitle:null,isOpenForSubmission:!1,hash:"532651aded5c421961d536865d05ecea",slug:"breast-imaging",bookSignature:"Cherie M. Kuzmiak",coverURL:"https://cdn.intechopen.com/books/images_new/5926.jpg",editedByType:"Edited by",editors:[{id:"96708",title:"Dr.",name:"Cherie M.",middleName:null,surname:"Kuzmiak",slug:"cherie-m.-kuzmiak",fullName:"Cherie M. Kuzmiak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5172",title:"Mobile Health Technologies",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"ebed3ce9b26add7630f52aed7ea68983",slug:"mobile-health-technologies-theories-and-applications",bookSignature:"Wilfred Bonney",coverURL:"https://cdn.intechopen.com/books/images_new/5172.jpg",editedByType:"Edited by",editors:[{id:"24511",title:"Dr.",name:"Wilfred",middleName:null,surname:"Bonney",slug:"wilfred-bonney",fullName:"Wilfred Bonney"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1813",title:"Medical Informatics",subtitle:null,isOpenForSubmission:!1,hash:"9491881d167f70982dd1da2f504ffe0e",slug:"medical-informatics",bookSignature:"Shaul Mordechai and Ranjit Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/1813.jpg",editedByType:"Edited by",editors:[{id:"21994",title:"Prof.",name:"Shaul",middleName:null,surname:"Mordechai",slug:"shaul-mordechai",fullName:"Shaul Mordechai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60562",doi:"10.5772/intechopen.74714",title:"Use of Artificial Intelligence in Healthcare Delivery",slug:"use-of-artificial-intelligence-in-healthcare-delivery",totalDownloads:2893,totalCrossrefCites:23,totalDimensionsCites:27,abstract:"In recent years, there has been an amplified focus on the use of artificial intelligence (AI) in various domains to resolve complex issues. Likewise, the adoption of artificial intelligence (AI) in healthcare is growing while radically changing the face of healthcare delivery. AI is being employed in a myriad of settings including hospitals, clinical laboratories, and research facilities. AI approaches employing machines to sense and comprehend data like humans has opened up previously unavailable or unrecognised opportunities for clinical practitioners and health service organisations. Some examples include utilising AI approaches to analyse unstructured data such as photos, videos, physician notes to enable clinical decision making; use of intelligence interfaces to enhance patient engagement and compliance with treatment; and predictive modelling to manage patient flow and hospital capacity/resource allocation. Yet, there is an incomplete understanding of AI and even confusion as to what it is? Also, it is not completely clear what the implications are in using AI generally and in particular for clinicians? This chapter aims to cover these topics and also introduce the reader to the concept of AI, the theories behind AI programming and the various applications of AI in the medical domain.",book:{id:"6653",slug:"ehealth-making-health-care-smarter",title:"eHealth",fullTitle:"eHealth - Making Health Care Smarter"},signatures:"Sandeep Reddy",authors:[{id:"230704",title:"Associate Prof.",name:"Sandeep",middleName:null,surname:"Reddy",slug:"sandeep-reddy",fullName:"Sandeep Reddy"}]},{id:"56615",doi:"10.5772/intechopen.69792",title:"Computer Aided Diagnosis - Medical Image Analysis Techniques",slug:"computer-aided-diagnosis-medical-image-analysis-techniques",totalDownloads:3105,totalCrossrefCites:13,totalDimensionsCites:21,abstract:"Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties.",book:{id:"5926",slug:"breast-imaging",title:"Breast Imaging",fullTitle:"Breast Imaging"},signatures:"Bhagirathi Halalli and Aziz Makandar",authors:[{id:"202101",title:"Mrs.",name:"Bhagirathi",middleName:null,surname:"Halalli",slug:"bhagirathi-halalli",fullName:"Bhagirathi Halalli"},{id:"202105",title:"Prof.",name:"Aziz",middleName:null,surname:"Makandar",slug:"aziz-makandar",fullName:"Aziz Makandar"}]},{id:"72859",doi:"10.5772/intechopen.93228",title:"Machine Learning in Wearable Biomedical Systems",slug:"machine-learning-in-wearable-biomedical-systems",totalDownloads:717,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Wearable technology has added a whole new dimension in the healthcare system by real-time continuous monitoring of human body physiology. They are used in daily activities and fitness monitoring and have even penetrated in monitoring the health condition of patients suffering from chronic illnesses. There are a lot of research and development activities being pursued to develop more innovative and reliable wearable. This chapter will cover discussions on the design and implementation of wearable devices for different applications such as real-time detection of heart attack, abnormal heart sound, blood pressure monitoring, gait analysis for diabetic foot monitoring. This chapter will also cover how the signals acquired from these prototypes can be used for training machine learning (ML) algorithm to diagnose the condition of the person wearing the device. This chapter discusses the steps involved in (i) hardware design including sensors selection, characterization, signal acquisition, and communication to decision-making subsystem and (ii) the ML algorithm design including feature extraction, feature reduction, training, and testing. This chapter will use the case study of the design of smart insole for diabetic foot monitoring, wearable real-time heart attack detection, and smart-digital stethoscope system to show the steps involved in the development of wearable biomedical systems.",book:{id:"9158",slug:"sports-science-and-human-health-different-approaches",title:"Sports Science and Human Health",fullTitle:"Sports Science and Human Health - Different Approaches"},signatures:"Muhammad E.H. Chowdhury, Amith Khandakar, Yazan Qiblawey, Mamun Bin Ibne Reaz, Mohammad Tariqul Islam and Farid Touati",authors:[{id:"129681",title:"Dr.",name:"Mamun Bin Ibne",middleName:null,surname:"Reaz",slug:"mamun-bin-ibne-reaz",fullName:"Mamun Bin Ibne Reaz"},{id:"244639",title:"Dr.",name:"Muhammad E.H.",middleName:null,surname:"Chowdhury",slug:"muhammad-e.h.-chowdhury",fullName:"Muhammad E.H. Chowdhury"},{id:"245398",title:"MSc.",name:"Amith M. A.",middleName:null,surname:"Khandakar",slug:"amith-m.-a.-khandakar",fullName:"Amith M. A. Khandakar"},{id:"279345",title:"Prof.",name:"Mohammad Tariqul",middleName:null,surname:"Islam",slug:"mohammad-tariqul-islam",fullName:"Mohammad Tariqul Islam"},{id:"312319",title:"Prof.",name:"Farid",middleName:null,surname:"Touati",slug:"farid-touati",fullName:"Farid Touati"},{id:"321692",title:"M.Sc.",name:"Yazan",middleName:null,surname:"Qiblawey",slug:"yazan-qiblawey",fullName:"Yazan Qiblawey"}]},{id:"56617",doi:"10.5772/intechopen.69794",title:"Breast Ultrasound Tomography",slug:"breast-ultrasound-tomography",totalDownloads:1479,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Both mammography and standard ultrasound (US) rely upon subjective criteria within the breast imaging reporting and data system (BI-RADS) to provide more uniform interpretation outcomes, as well as differentiation and risk stratification of associated abnormalities. In addition, the technical performance and professional interpretation of both tests suffer from machine and operator dependence. We have been developing a new technique for breast imaging that is based on ultrasound tomography which quantifies tissue characteristics while also producing 3-D images of breast anatomy. Results are presented from clinical studies that utilize this method. In the first phase of the study, ultrasound tomography (UST) images were compared to multi-modal imaging to determine the appearance of lesions and breast parenchyma. In the second phase, correlative comparisons with MR breast imaging were used to establish basic operational capabilities of the UST system. The third phase of the study focused on lesion characterization. Region of interest (ROI) analysis was used to characterize masses. Our study demonstrated a high degree of correlation of breast tissue structures relative to fat subtracted contrast-enhanced MRI and the ability to scan ~90% of the volume of the breast at a resolution of 0.7 mm in the coronal plane.",book:{id:"5926",slug:"breast-imaging",title:"Breast Imaging",fullTitle:"Breast Imaging"},signatures:"Nebojsa Duric and Peter Littrup",authors:[{id:"202080",title:"Dr.",name:"Nebojsa",middleName:null,surname:"Duric",slug:"nebojsa-duric",fullName:"Nebojsa Duric"},{id:"202081",title:"Dr.",name:"Peter",middleName:null,surname:"Littrup",slug:"peter-littrup",fullName:"Peter Littrup"}]},{id:"51702",doi:"10.5772/64620",title:"Empowering Diabetes Patient with Mobile Health Technologies",slug:"empowering-diabetes-patient-with-mobile-health-technologies",totalDownloads:2502,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Chronic diseases, especially diabetes mellitus, are huge public health burden. Therefore, new health care models for sharing the responsibility for care among health care providers and patients themselves are needed. The concept of empowerment promotes patient’s active involvement and control over their own health. It can be achieved through education, self-management, and shared decision making. All these aspects can be covered by mobile health technologies, the so-called mHealth. This term comprises mobile phones, patient monitoring devices, tablets, personal digital assistants, other wireless devices, and numerous apps. Many challenges of diabetics can be addressed by mHealth, including glycemic control, nutrition control, physical activity, high blood pressure, medication adherence, obesity, education, diabetic retinopathy screening, diabetic foot screening, and psychosocial care. However, mHealth plays only minor role in diabetes management, despite numerous apps on the market. Namely, these apps have many shortcomings and the majority of them does not include important functions. Moreover, these apps lack the perceived additional benefit by the user and the ease of use, important factors for acceptance of mHealth. Studies of diabetes apps regarding usability and accessibility have shown moderate results. Beside improvements of apps usability, the future of diabetes mHealth lies probably in personalized education and self-management with the help of decision support systems. At the same time, work on artificial pancreas is in progress and smartphone could be used as user interface.",book:{id:"5172",slug:"mobile-health-technologies-theories-and-applications",title:"Mobile Health Technologies",fullTitle:"Mobile Health Technologies - Theories and Applications"},signatures:"Matjaž Krošel, Lana Švegl, Luka Vidmar and Dejan Dinevski",authors:[{id:"15129",title:"Prof.",name:"Dejan",middleName:null,surname:"Dinevski",slug:"dejan-dinevski",fullName:"Dejan Dinevski"},{id:"186406",title:"M.D.",name:"Matjaž",middleName:null,surname:"Krošel",slug:"matjaz-krosel",fullName:"Matjaž Krošel"},{id:"186407",title:"Mrs.",name:"Lana",middleName:null,surname:"Švegl",slug:"lana-svegl",fullName:"Lana Švegl"},{id:"186408",title:"Dr.",name:"Luka",middleName:null,surname:"Vidmar",slug:"luka-vidmar",fullName:"Luka Vidmar"}]}],mostDownloadedChaptersLast30Days:[{id:"63955",title:"Creative Haptic Interface Design for the Aging Population",slug:"creative-haptic-interface-design-for-the-aging-population",totalDownloads:1166,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Audiovisual human-computer-interfaces still make up the majority of content to the public; however, haptic interfaces offer unique advantage over the dominant information infrastructure, particularly for users with a disability or diminishing cognitive and physical skills like the elderly. The tactile sense allows users to integrate new, unobstructive channels for digital information into their sensorium, one that is less likely to be overwhelmed compared to vision and audition. Haptics research focus on the development of hardware, improving resolution, modality, and fidelity of the actuators. Despite the technological limitations, haptic interfaces are shown to reinforce physical skill acquisition, therapy, and communication. This chapter will present key characteristics intuitive tactile interfaces should capture for elderly end-users; sample projects will showcase unique applications and designs that identify the limitations of the UI.",book:{id:"6714",slug:"assistive-technologies-in-smart-cities",title:"Assistive Technologies in Smart Cities",fullTitle:"Assistive Technologies in Smart Cities"},signatures:"Eric Heng Gu",authors:[{id:"237761",title:"M.Sc.",name:"Eric Heng",middleName:null,surname:"Gu",slug:"eric-heng-gu",fullName:"Eric Heng Gu"}]},{id:"56615",title:"Computer Aided Diagnosis - Medical Image Analysis Techniques",slug:"computer-aided-diagnosis-medical-image-analysis-techniques",totalDownloads:3101,totalCrossrefCites:12,totalDimensionsCites:20,abstract:"Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties.",book:{id:"5926",slug:"breast-imaging",title:"Breast Imaging",fullTitle:"Breast Imaging"},signatures:"Bhagirathi Halalli and Aziz Makandar",authors:[{id:"202101",title:"Mrs.",name:"Bhagirathi",middleName:null,surname:"Halalli",slug:"bhagirathi-halalli",fullName:"Bhagirathi Halalli"},{id:"202105",title:"Prof.",name:"Aziz",middleName:null,surname:"Makandar",slug:"aziz-makandar",fullName:"Aziz Makandar"}]},{id:"60562",title:"Use of Artificial Intelligence in Healthcare Delivery",slug:"use-of-artificial-intelligence-in-healthcare-delivery",totalDownloads:2889,totalCrossrefCites:23,totalDimensionsCites:27,abstract:"In recent years, there has been an amplified focus on the use of artificial intelligence (AI) in various domains to resolve complex issues. Likewise, the adoption of artificial intelligence (AI) in healthcare is growing while radically changing the face of healthcare delivery. AI is being employed in a myriad of settings including hospitals, clinical laboratories, and research facilities. AI approaches employing machines to sense and comprehend data like humans has opened up previously unavailable or unrecognised opportunities for clinical practitioners and health service organisations. Some examples include utilising AI approaches to analyse unstructured data such as photos, videos, physician notes to enable clinical decision making; use of intelligence interfaces to enhance patient engagement and compliance with treatment; and predictive modelling to manage patient flow and hospital capacity/resource allocation. Yet, there is an incomplete understanding of AI and even confusion as to what it is? Also, it is not completely clear what the implications are in using AI generally and in particular for clinicians? This chapter aims to cover these topics and also introduce the reader to the concept of AI, the theories behind AI programming and the various applications of AI in the medical domain.",book:{id:"6653",slug:"ehealth-making-health-care-smarter",title:"eHealth",fullTitle:"eHealth - Making Health Care Smarter"},signatures:"Sandeep Reddy",authors:[{id:"230704",title:"Associate Prof.",name:"Sandeep",middleName:null,surname:"Reddy",slug:"sandeep-reddy",fullName:"Sandeep Reddy"}]},{id:"60985",title:"Terminology Services: Standard Terminologies to Control Medical Vocabulary. “Words are Not What they Say but What they Mean”",slug:"terminology-services-standard-terminologies-to-control-medical-vocabulary-words-are-not-what-they-sa",totalDownloads:1346,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Data entry is an obstacle for the usability of electronic health records (EHR) applications and the acceptance of physicians, who prefer to document using “free text”. Natural language is huge and very rich in details but at the same time is ambiguous; it has great dependence on context and uses jargon and acronyms. Healthcare Information Systems should capture clinical data in a structured and preferably coded format. This is crucial for data exchange between health information systems, epidemiological analysis, quality and research, clinical decision support systems, administrative functions, etc. In order to address this point, numerous terminological systems for the systematic recording of clinical data have been developed. These systems interrelate concepts of a particular domain and provide reference to related terms and possible definitions and codes. The purpose of terminology services consists of representing facts that happen in the real world through database management. This process is named Semantic Interoperability. It implies that different systems understand the information they are processing through the use of codes of clinical terminologies. Standard terminologies allow controlling medical vocabulary. But how do we do this? What do we need? Terminology services are a fundamental piece for health data management in health environment.",book:{id:"6653",slug:"ehealth-making-health-care-smarter",title:"eHealth",fullTitle:"eHealth - Making Health Care Smarter"},signatures:"Daniel Luna, Carlos Otero, María L. Gambarte and Julia Frangella",authors:null},{id:"66085",title:"Connected Insurance Reshaping the Health Insurance Industry",slug:"connected-insurance-reshaping-the-health-insurance-industry",totalDownloads:1193,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The role of today’s insurer is changing toward a more preventive and digital or connected approach. In this context, connected health insurance has the potential to contribute toward the health and the general well-being of the population. New technologies like e-health and wearables employed by the insurance industry might even help deal with major issues related to the rising number of people, of chronic disease patients, and of elders while keeping them healthier and at the same time protected by insurance. The aim of this chapter is to briefly illustrate the concept of “connected insurance” with specific focus on “connected health” and “wearables” and to present two case studies: Discovery’s Vitality program which aims to create healthier lifestyles for its customers through the use of wearables and rewards and ICS Maugeri’s MOSAIC project based on AI and predictive models aimed at helping with the management of treatment and quality of life in type 2 diabetes patients.",book:{id:"7952",slug:"smart-healthcare",title:"Smart Healthcare",fullTitle:"Smart Healthcare"},signatures:"Andrea Silvello and Alessandro Procaccini",authors:[{id:"288367",title:"Mr.",name:"Andrea",middleName:null,surname:"Silvello",slug:"andrea-silvello",fullName:"Andrea Silvello"},{id:"294610",title:"MSc.",name:"Alessandro",middleName:null,surname:"Procaccini",slug:"alessandro-procaccini",fullName:"Alessandro Procaccini"}]}],onlineFirstChaptersFilter:{topicId:"1015",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain. She is a Full Professor at the Department of Medicine and Animal Surgery at the same University. She developed her research activity in the field of Endocrinology, Hematology, Biochemistry and Immunology of horses. She is a scientific reviewer of several international journals : American Journal of Obstetrics and Gynecology, Comparative Clinical Pathology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology. Since 2014, she has been the Head of the Clinical Analysis Laboratory of the Hospital Clínico Veterinario from the Faculty of Veterinary, CEU-Cardenal Herrera University.",institutionString:"CEU-Cardenal Herrera University",institution:{name:"CEU Cardinal Herrera University",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"208123",title:"Dr.",name:"Mari-Carmen",middleName:null,surname:"Uribe",slug:"mari-carmen-uribe",fullName:"Mari-Carmen Uribe",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"345713",title:"Dr.",name:"Csaba",middleName:null,surname:"Szabó",slug:"csaba-szabo",fullName:"Csaba Szabó",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"345719",title:"Mrs.",name:"Márta",middleName:null,surname:"Horváth",slug:"marta-horvath",fullName:"Márta Horváth",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"420151",title:"Prof.",name:"Novirman",middleName:null,surname:"Jamarun",slug:"novirman-jamarun",fullName:"Novirman Jamarun",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andalas University",country:{name:"Indonesia"}}}]}},subseries:{item:{id:"11",type:"subseries",title:"Cell Physiology",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology",scope:"\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"186048",title:"Prof.",name:"Ines",middleName:null,surname:"Drenjančević",slug:"ines-drenjancevic",fullName:"Ines Drenjančević",profilePictureURL:"https://mts.intechopen.com/storage/users/186048/images/5818_n.jpg",institutionString:null,institution:{name:"University of Osijek",institutionURL:null,country:{name:"Croatia"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria",profilePictureURL:"https://mts.intechopen.com/storage/users/79615/images/system/79615.png",institutionString:null,institution:{name:"Oswaldo Cruz Foundation",institutionURL:null,country:{name:"Brazil"}}},{id:"84459",title:"Prof.",name:"Valerie",middleName:null,surname:"Chappe",slug:"valerie-chappe",fullName:"Valerie Chappe",profilePictureURL:"https://mts.intechopen.com/storage/users/84459/images/system/84459.jpg",institutionString:null,institution:{name:"Dalhousie University",institutionURL:null,country:{name:"Canada"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79371",title:"The Contrasting Effects between Caffeine and Theobromine on Crystallization: How the Non-fluoride Dentifrice Was Developed",doi:"10.5772/intechopen.101116",signatures:"Tetsuo Nakamoto, Alexander U. Falster and William B. Simmons Jr",slug:"the-contrasting-effects-between-caffeine-and-theobromine-on-crystallization-how-the-non-fluoride-den",totalDownloads:130,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79409",title:"The Dental Implant Maintenance",doi:"10.5772/intechopen.101187",signatures:"Gayathri Krishnamoorthy, Aparna I. Narayana and Dhanasekar Balakrishnan",slug:"the-dental-implant-maintenance",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79387",title:"Ulcerative Lesions of the Oral Cavity",doi:"10.5772/intechopen.101215",signatures:"Nelli Yildirimyan",slug:"ulcerative-lesions-of-the-oral-cavity",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79319",title:"Empirical Study on Medical Information and Communication Technology System in Dentistry in Southeast Asia",doi:"10.5772/intechopen.101080",signatures:"Ichiro Nakajima, Ken-ichiro Ejima, Yoshinori Arai, Kunihito Matsumoto, Kazuya Honda, Hirofumi Aboshi, Marina Hamaguchi, Akao Lyvongsa, Bounnhong Sidaphone, Somphone Phanthavong, Chanthavisao Phanthanalay and Souksavanh Vongsa",slug:"empirical-study-on-medical-information-and-communication-technology-system-in-dentistry-in-southeast",totalDownloads:145,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"