The issues discussed in this chapter are of interest of both the manufacturers and the experts responsible for condition of the track superstructure. In general, stress in steel elements may affect the energy state, phase changes, and corrosion. It may reduce fatigue strength and cause damage and cracks of the rails. It is one of the causes of accelerated development of standard railhead defects. Proper selection of, e.g., bending process parameters provides uniform distribution and acceptable level of residual stresses in the bent components. Residual stresses that develop during manufacturing process in the railway turnout steel components can change their strength properties. The first part of this chapter presents ultrasonic measurement method and computer simulation that allowed to develop a method to diagnose state and distribution of residual stresses in steel components of the railway turnout (wing rails and switch blades) in the production process. The second part of this chapter includes experimental and simulation studies of superstructure in operational conditions. A track substructure with a crashed stone composite is a solution of reinforced standard track substructure. The results are used to draw conclusions concerning further development and possible modifications of a proposed solution. A significant number of simulation calculations also allow to determine the duration of guaranteed functionality of a reinforced track substructure.
Part of the book: Railway Research