Proteins from the export of P. falciparum that modify post-invasion erythrocyte [6, 9].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"6819",leadTitle:null,fullTitle:"Prefrontal Cortex",title:"Prefrontal Cortex",subtitle:null,reviewType:"peer-reviewed",abstract:"The prefrontal cortex reaches its greatest development in the human brain, making up nearly one third of the neocortex. Due to its remarkable evolution, the prefrontal cortex plays an important role in higher integrative functions such as information processing, thinking, understanding, attention, behavior, motivation, emotions, working memory, and analysis. This book brings together theoretical and technical research advances on the prefrontal cortex, from the basic explanations of the neuronal architecture of the prefrontal cortex and its anatomy, presenting it as a morphological substrate for many psychological conditions, through normal and altered connectivity and its manifestation in different behavior and identification of organizational levels inside the prefrontal cortex through different neuroimaging methods. It also provides an interdisciplinary view of the prefrontal cortex and its issues and discovers the main role of this part of brain in psychosocial, economic, and cultural adaptation.",isbn:"978-1-78923-904-1",printIsbn:"978-1-78923-903-4",pdfIsbn:"978-1-83881-726-8",doi:"10.5772/intechopen.73226",price:119,priceEur:129,priceUsd:155,slug:"prefrontal-cortex",numberOfPages:132,isOpenForSubmission:!1,isInWos:1,hash:"903b3a38d3c8196f6a865526c124a6de",bookSignature:"Ana Starcevic and Branislav Filipovic",publishedDate:"October 3rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6819.jpg",numberOfDownloads:6054,numberOfWosCitations:5,numberOfCrossrefCitations:6,numberOfDimensionsCitations:6,hasAltmetrics:1,numberOfTotalCitations:17,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 2nd 2018",dateEndSecondStepPublish:"February 23rd 2018",dateEndThirdStepPublish:"April 24th 2018",dateEndFourthStepPublish:"July 13th 2018",dateEndFifthStepPublish:"September 11th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"182584",title:"Dr.",name:"Ana",middleName:null,surname:"Starcevic",slug:"ana-starcevic",fullName:"Ana Starcevic",profilePictureURL:"https://mts.intechopen.com/storage/users/182584/images/system/182584.jpg",biography:"Dr. Ana Starcevic is an Assistant Professor of Anatomy and researcher at the Medical Faculty, University of Belgrade. She holds PhD in Molecular medicine and has extensive experience and expertise in Basic and Applied Neuroscience. Translational approach in neuroscience is one of her main research goals, as it bridges the gap between basic investigations of different mental conditions and psychological operations such as cognitive to human social behavior. Dr. Starcevic is also a Psychiatry specialist who worked with individuals with Posttraumatic stress disorder and Transgender people. Dr. Ana Starcevic is a member of Serbian Medical Society, Serbian Anatomical Society, Serbian Psychiatric Society, European Society for Traumatic Studies (ESTSS), International Society for Development and Sustainability (ISDS). She is the author of a large number of peer reviewed papers and the regular speaker at the international scientific conferences.",institutionString:"University of Belgrade",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Belgrade",institutionURL:null,country:{name:"Serbia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"179727",title:"Prof.",name:"Branislav",middleName:null,surname:"Filipovic",slug:"branislav-filipovic",fullName:"Branislav Filipovic",profilePictureURL:"https://mts.intechopen.com/storage/users/179727/images/6500_n.jpg",biography:"Branislav Filipović, M.D., Ph.D. is a Full Professor of Anatomy, Director of the Institute of Anatomy, Medical faculty, University of Belgrade. Professor Filipovic is also Psychiatrist, Court Expert for posttraumatic stress disorder and sub-specialist for the Addiction Diseases . Head of the grants financed by Ministry of Science of Serbia. Member of the Organizing Committees of many domestic congresses, President of the Organizing Committee for the national congress of the Serbian Anatomical Society, Editor in Chief of “Folia Anatomica”, member of the Board for Test, School of Medicine, Belgrade, Member of the Editorial Board of International Journal of Medical Case Reports. Author of a large number of peer reviewied papers, monographies,and speaker at many international scientific conferences.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Belgrade",institutionURL:null,country:{name:"Serbia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"209",title:"Cognitive Neuroscience",slug:"cognitive-neuroscience"}],chapters:[{id:"63179",title:"Development Period of Prefrontal Cortex",doi:"10.5772/intechopen.78697",slug:"development-period-of-prefrontal-cortex",totalDownloads:2603,totalCrossrefCites:5,totalDimensionsCites:5,signatures:"Merve Cikili Uytun",downloadPdfUrl:"/chapter/pdf-download/63179",previewPdfUrl:"/chapter/pdf-preview/63179",authors:[{id:"163607",title:"Ms.",name:"Merve",surname:"Cikili",slug:"merve-cikili",fullName:"Merve Cikili"}],corrections:null},{id:"62290",title:"The Dynamic Maturation Process of the Brain Structures, Visual System and Their Connections to the Structures of the Prefrontal Cortex during 4–6 Years of Age",doi:"10.5772/intechopen.79169",slug:"the-dynamic-maturation-process-of-the-brain-structures-visual-system-and-their-connections-to-the-st",totalDownloads:835,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Neli Cvetanova Vasileva",downloadPdfUrl:"/chapter/pdf-download/62290",previewPdfUrl:"/chapter/pdf-preview/62290",authors:[{id:"243925",title:"Prof.",name:"Neli",surname:"Vasileva",slug:"neli-vasileva",fullName:"Neli Vasileva"}],corrections:null},{id:"63249",title:"Frontal Lobe: Functional Neuroanatomy of Its Circuitry and Related Disconnection Syndromes",doi:"10.5772/intechopen.79571",slug:"frontal-lobe-functional-neuroanatomy-of-its-circuitry-and-related-disconnection-syndromes",totalDownloads:894,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rafael Batista João and Raquel Mattos Filgueiras",downloadPdfUrl:"/chapter/pdf-download/63249",previewPdfUrl:"/chapter/pdf-preview/63249",authors:[{id:"243900",title:"Mr.",name:"Rafael",surname:"Batista João",slug:"rafael-batista-joao",fullName:"Rafael Batista João"},{id:"248830",title:"Dr.",name:"Raquel",surname:"Mattos Filgueiras",slug:"raquel-mattos-filgueiras",fullName:"Raquel Mattos Filgueiras"}],corrections:null},{id:"62392",title:"Prefrontal Cortex: Role in Language Communication during Social Interaction",doi:"10.5772/intechopen.79255",slug:"prefrontal-cortex-role-in-language-communication-during-social-interaction",totalDownloads:588,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Xiaoming Jiang",downloadPdfUrl:"/chapter/pdf-download/62392",previewPdfUrl:"/chapter/pdf-preview/62392",authors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],corrections:null},{id:"62849",title:"Hemoglobin (Hb) - Oxyhemoglobin (HbO) Variation in Rehabilitation Processes Involving Prefrontal Cortex",doi:"10.5772/intechopen.79163",slug:"hemoglobin-hb-oxyhemoglobin-hbo-variation-in-rehabilitation-processes-involving-prefrontal-cortex",totalDownloads:625,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Samorindo Peci and Federica Peci",downloadPdfUrl:"/chapter/pdf-download/62849",previewPdfUrl:"/chapter/pdf-preview/62849",authors:[{id:"245761",title:"Ph.D.",name:"Samorindo",surname:"Peci",slug:"samorindo-peci",fullName:"Samorindo Peci"},{id:"247744",title:"Dr.",name:"Federica",surname:"Peci",slug:"federica-peci",fullName:"Federica Peci"}],corrections:null},{id:"62543",title:"Consciousness and Social Cognition from an Interactionist Perspective: A New Approach on Understanding Normal and Abnormal Relations between Metacognition and Mindreading",doi:"10.5772/intechopen.79584",slug:"consciousness-and-social-cognition-from-an-interactionist-perspective-a-new-approach-on-understandin",totalDownloads:509,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Małgorzata Gakis, Ewelina Cichoń, Tomasz Cyrkot and Remigiusz\nSzczepanowski",downloadPdfUrl:"/chapter/pdf-download/62543",previewPdfUrl:"/chapter/pdf-preview/62543",authors:[{id:"222700",title:"D.Sc.",name:"Remigiusz",surname:"Szczepanowski",slug:"remigiusz-szczepanowski",fullName:"Remigiusz Szczepanowski"},{id:"232890",title:"Dr.",name:"Małgorzata",surname:"Gakis",slug:"malgorzata-gakis",fullName:"Małgorzata Gakis"},{id:"249819",title:"MSc.",name:"Ewelina",surname:"Cichoń",slug:"ewelina-cichon",fullName:"Ewelina Cichoń"},{id:"249820",title:"MSc.",name:"Tomasz",surname:"Cyrkot",slug:"tomasz-cyrkot",fullName:"Tomasz Cyrkot"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7834",title:"Psychological Trauma",subtitle:null,isOpenForSubmission:!1,hash:"bf017e468f45af73aeddb136833b319b",slug:"psychological-trauma",bookSignature:"Ana Starcevic",coverURL:"https://cdn.intechopen.com/books/images_new/7834.jpg",editedByType:"Edited by",editors:[{id:"182584",title:"Dr.",name:"Ana",surname:"Starcevic",slug:"ana-starcevic",fullName:"Ana Starcevic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6144",title:"High-Resolution Neuroimaging",subtitle:"Basic Physical Principles and Clinical Applications",isOpenForSubmission:!1,hash:"505b513060f90e61167b5e46e8cd9fea",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",bookSignature:"Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/6144.jpg",editedByType:"Edited by",editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6614",title:"Alzheimer's Disease",subtitle:"The 21st Century Challenge",isOpenForSubmission:!1,hash:"91df6c15517737c8fb91543f870d484d",slug:"alzheimer-s-disease-the-21st-century-challenge",bookSignature:"Jolanta Dorszewska and Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/6614.jpg",editedByType:"Edited by",editors:[{id:"31962",title:"Dr.",name:"Jolanta",surname:"Dorszewska",slug:"jolanta-dorszewska",fullName:"Jolanta Dorszewska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6167",title:"Cognitive and Computational Neuroscience",subtitle:"Principles, Algorithms and Applications",isOpenForSubmission:!1,hash:"828beb18d956dedaf19b5a87c8bfb828",slug:"cognitive-and-computational-neuroscience-principles-algorithms-and-applications",bookSignature:"Seyyed Abed Hosseini",coverURL:"https://cdn.intechopen.com/books/images_new/6167.jpg",editedByType:"Edited by",editors:[{id:"86475",title:"Dr.",name:"Seyyed Abed",surname:"Hosseini",slug:"seyyed-abed-hosseini",fullName:"Seyyed Abed Hosseini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"47331",slug:"correction-to-the-cultural-reinforcers-of-child-abuse",title:"Correction to: The Cultural Reinforcers of Child Abuse",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/47331.pdf",downloadPdfUrl:"/chapter/pdf-download/47331",previewPdfUrl:"/chapter/pdf-preview/47331",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/47331",risUrl:"/chapter/ris/47331",chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]}},chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]},book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10908",leadTitle:null,title:"Decision Making",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThis book will aim to synthesize the analytic principles with business practice of Decision Making and provide an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of decision making, acting as a complementary to other sub-disciplines such as economics, finance, marketing, decision and risk analysis, etc. The chapter authors are encouraged to introduce and demonstrate decision making theory and practice case studies, as well as key results for each sector with diverse real-world case studies, to accompany theory with relevant analysis techniques, progressional approach building from simple theory to complex and dynamic decisions with multiple data points, including big data, lot of data, etc. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are also advised for a support analysis of multi-criteria decision-making problems with defined constraints and requirements.
",isbn:"978-1-83969-497-4",printIsbn:"978-1-83969-496-7",pdfIsbn:"978-1-83969-498-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"126486f7f91e18e2e3539a32c38be7b1",bookSignature:"Prof. Fausto Pedro García Márquez",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",keywords:"Decision Making, Business Decision, Decision Theory, Decision Practice, Logistics, Big Data, Data Analytics, Optimization, Computer Science, Statistics, Management Decision, Operations Research",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 11th 2021",dateEndSecondStepPublish:"March 11th 2021",dateEndThirdStepPublish:"May 10th 2021",dateEndFourthStepPublish:"July 29th 2021",dateEndFifthStepPublish:"September 27th 2021",remainingDaysToSecondStep:"7 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Garcia Márquez is a holder of several awards such as Runner Prize for Management Science and Engineering Management Nominated Prize, Advancement Prize, First International Business Ideas Competition 2017 Award, and Best Paper Award in the international journal of Renewable Energy.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez",profilePictureURL:"https://mts.intechopen.com/storage/users/22844/images/system/22844.jpeg",biography:"Fausto Pedro García Márquez has been accredited as Full Professor at UCLM, Spain since 2013. He also works as a Honorary Senior Research Fellow at Birmingham University, UK, Lecturer at the Postgraduate European Institute, and has worked as Senior Manager in Accenture (2013-2014). He obtained his European PhD with a maximum distinction. He is a holder of the Runner Prize for Management Science and Engineering Management Nominated Prize (2020), Advancement Prize (2018), First International Business Ideas Competition 2017 Award (2017), Runner (2015), Advancement (2013) and Silver (2012) by the International Society of Management Science and Engineering Management (ICMSEM), and Best Paper Award in the international journal of Renewable Energy (Impact Factor 3.5) (2015). He has published more than 150 papers (65 % ISI, 30% JCR, and 92% internationals), some recognized as follows: “Applied Energy” (Q1, as “Best Paper 2020”), “Renewable Energy” (Q1, as “Best Paper 2014”), “ICMSEM” (as “excellent”), “International Journal of Automation and Computing” and “IMechE Part F: Journal of Rail and Rapid Transit” (most downloaded), etc. He is an author and editor of 25 books (Elsevier, Springer, Pearson, Mc-GrawHill, IntechOpen, IGI, Marcombo, AlfaOmega, etc.), and 5 patents. He is also an Editor of 5 International Journals and Committee Member of more than 40 International Conferences. He has been a Principal Investigator in 4 European Projects, 6 National Projects, and more than 150 projects for universities, companies, etc. He is an European Union expert in AI4People (EISMD) and ESF. He is Director of www.ingeniumgroup.eu. His main interest are: artificial intelligence, maintenance, management, renewable energy, transport, advanced analytics, and data science.",institutionString:"University of Castile-La Mancha",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"10",institution:{name:"University of Castile-La Mancha",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"120",title:"Digital Filters",subtitle:null,isOpenForSubmission:!1,hash:"10692f498575728ddac136b0b327a83d",slug:"digital-filters",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/120.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3198",title:"Digital Filters and Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"ad19128b3c5153cd5d30d16912ed89f3",slug:"digital-filters-and-signal-processing",bookSignature:"Fausto Pedro García Márquez and Noor Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/3198.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5223",title:"Non-Destructive Testing",subtitle:null,isOpenForSubmission:!1,hash:"1cd0602adf345e3f19f63dfbf81651d0",slug:"non-destructive-testing",bookSignature:"Fausto Pedro Garcia Marquez, Mayorkinos Papaelias and Noor Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/5223.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6593",title:"Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"88cae11440930f7ba788d5cfedec5979",slug:"decision-making",bookSignature:"Fausto Pedro García Márquez, Alberto Pliego Marugán and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/6593.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6086",title:"Dependability Engineering",subtitle:null,isOpenForSubmission:!1,hash:"e8fbd4b0feef5494393639fa03a0f718",slug:"dependability-engineering",bookSignature:"Fausto Pedro García Márquez and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/6086.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3197",title:"Engineering Management",subtitle:null,isOpenForSubmission:!1,hash:"52723a3454f918817d45845dde4e8458",slug:"engineering-management",bookSignature:"Fausto Pedro García Márquez and Benjamin Lev",coverURL:"https://cdn.intechopen.com/books/images_new/3197.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9332",title:"Application of Decision Science in Business and Management",subtitle:null,isOpenForSubmission:!1,hash:"72ccbc5aab28621bad2e810c4bd5bd53",slug:"application-of-decision-science-in-business-and-management",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/9332.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8453",title:"Lean Manufacturing and Six Sigma",subtitle:"Behind the Mask",isOpenForSubmission:!1,hash:"9342a056651f34acc565b467a71e1e27",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",bookSignature:"Fausto Pedro García Márquez, Isaac Segovia Ramirez, Tamás Bányai and Péter Tamás",coverURL:"https://cdn.intechopen.com/books/images_new/8453.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8623",title:"Maintenance Management",subtitle:null,isOpenForSubmission:!1,hash:"91cc93ad76fdd6709b8c50c6ba7e4e0c",slug:"maintenance-management",bookSignature:"Fausto Pedro García Márquez and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/8623.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66899",title:"Plasmodium falciparum Protein Exported in Erythrocyte and Mechanism Resistance to Malaria",doi:"10.5772/intechopen.83700",slug:"-em-plasmodium-falciparum-em-protein-exported-in-erythrocyte-and-mechanism-resistance-to-malaria",body:'Malaria is one of the world’s most severe public health problems. It leads to high rates of morbidity and mortality in many underdeveloped countries, where children and pregnant women are the most affected groups. According to the World Malaria Report by the World Health Organization (WHO), 3.5 billion people from 106 countries live in areas where they are in risk of transmission, representing half of the world’s population [1]. On the other hand, malaria caused an estimated 200 million clinical episodes and 445,000 deaths, 90% of these deaths in Africa [2, 3]. Malaria is caused by parasites of the Plasmodium genus, which are intracellular eukaryotic organisms, with a complex life cycle. They commute between an invertebrate transmitter vector, where the sexual stages develop, and a vertebrate host, where the asexual stages take place. P. falciparum is responsible for the severe forms of malaria and the majority of annual deaths [4, 5].
Human malaria clinical signs and symptoms are a direct consequence of the parasite’s life cycle. Humans are infected with P. falciparum sporozoites, through the female Anopheles mosquito’s bite. Each sporozoite reaches the liver through blood or lymphatic circulation and multiplies forming a liver schizont, which differentiates into thousands of merozoites that are released into the bloodstream, after the schizont ruptures. Once released into the systemic circulation, the merozoites invade the red blood cells and initiate the intra-erythrocyte stage, which lasts approximately 48 hours. Immediately after the invasion, the growth and development staging begins first as rings (0–24 h), then as trophozoites (24–40 h), and finally as schizonts (40–48 h); the cycle ends with the host cell destruction and the release of new merozoites from circulating erythrocytes, then initiating another cycle [6] (Figure 1).
Life cycle of Plasmodium spp. A. Exoerythrocytic cycle (1). Anopheles mosquito inoculates the sporozoites with subsequent invasion in liver cells (2); generation of first pre-erythrocytic schizogony (3). B. Erythrocytic cycle. The rupture of the schizont (4) releases the merozoites into the bloodstream where they invade red blood cells (5) forming a trophozoite that ripens into schizont, whose rupture releases merozoites back into the torrent (6). Some trophozoites can mature into gametocytes (7) that are ingested by the mosquito (8). C. Sporogonic cycle. The gametocytes mature to macrogametes and flagellated microgametes (9) that, after fertilization, produce an ooquineto (10), which migrates from the mosquito to generate oocyst (11) that will release thousands of sporozoites (12). Adapted from http://www.dpd.cdc.gov/dpdx/HTML/ImageLibrary/Malaria_il.htm.
During the development and growth stages, the parasite causes successive changes in the architecture of the infected erythrocyte (remodeling), which are fundamental for its vital functions. These changes are the acquisition of extracellular environment nutrients, the attribution of cytoadhesive properties that contribute to spleen-clearance evasion, the generation of changes in the host membrane cytoskeleton that are necessary for efficient parasite progeny release, and the formation of new organelles, such as the Maurer’s clefts, tubulovesicular network, and the parasitophorous vacuole membrane (PVM) (Figure 2) [7, 8]. When the parasite enters the erythrocyte, it locates inside a parasitophorous vacuole (PV), which isolates it from the host cell cytoplasm, through the PVM. From then on, pathogen survival will depend on the efficient traffic of the molecules through the PVM and the plasma membrane [4, 9].
Merozoite invasion process in human erythrocytes. Description of invasion and internalization of the P. falciparum parasite in the host cell. (1) The nascent parasitophorous vacuole. (2) Contact closed. (A) Initial contact of merozoite to erythrocyte. (B) The adhesion of the merozoite to the erythrocyte is observed, through the specific recognition and interaction of antigens and antibodies, as well as the functional and structural role of the micronemes and rhoptries. (C) Process of invasion and development of the parasitophorous vacuole. (D) The internalization of the merozoite in the new host cell and the complete formation of the parasitophorous vacuole are detailed. Taken and adapted from Zuccala and Baum [30].
The erythrocyte is a cell of approximately 8 μm in diameter, highly specialized in O2 and CO2 transportation, without a nucleus and other organelles, useful for protein synthesis. It has the ability to transit the bloodstream over a 120-days lifetime. In addition, it has a remarkable capacity for deformability that allows its movement through the capillary microcirculation and splenic endothelial clefts in approximately 1 μm diameter [10]. The erythrocyte elastic properties are due to the cytoskeleton membrane, which is formed by an array of regular hexagonal proteins which makes up a two-dimensional mesh on the cell’s cytoplasmic surface. These structural proteins interact with membrane lipids to maintain fluidity and subdivide them into three protein types: cytoskeleton, integral, and anchor [11].
The membrane cytoskeleton proteins underlie just under the lipid bilayer and associate with other proteins, forming a dynamic protein network, responsible for maintaining the integrity of the erythrocyte, as it passes through narrow blood capillaries. Spectrin, actin, adducin, dematin, band 4.1, tropomyosin, and tropomodulin are within this group. Integral proteins are characterized for being embedded in the lipid bilayer and presenting intra and extracellular domains, such as band 3 and glycophorin A and C. Finally, anchoring proteins have the function of connecting the cytoskeleton proteins with integral proteins, such as ankyrins and band 4.2 proteins [12, 13].
Mechanisms of HbAS-related protection against P. falciparum. Adapted of Bunn [81].
The remodeling of the structures of the human erythrocytes for parasite of the malaria is generated between the process of invasion of merozoites. During the process, the parasite induces a transitory alteration of the structure of the membrane of the host cell, binging sites of the surface cellular [14]. More than 50 P. falciparum proteins have been identified which induce the process of invasion; however, some functional classes of elements such as merozoite surface protein (MSPs) have been described, which have demonstrated a structural complex around the envelope of the merozoites, related to PfEBAs (P. falciparum erythrocyte binding antigens) and PfRHs (P. falciparum reticulocytes binding protein), which are able of save organelles as micronemes and rhoptries [15, 16, 17].
In general, the erythrocyte membrane changes are set in motion with the merozoite invasion process. It has been described that the initial interaction between the merozoite and erythrocyte is probably a random collision, depending on the function of actin-myosin binding and specific molecular interactions between merozoite ligands and erythrocyte membrane receptors, which mediate cellular recognition and invasion of red blood cells [18]. This invasive process is carried out in four steps. The first step, called the initial contact with merozoite, takes place mainly by the interaction of proteins that are uniformly distributed on the surface of the merozoite, called glycosyl-phosphatidyl-inositol protein (GPI), with erythrocyte surface ligands, such as merozoite surface protein 1 (MSP1), whose receptor is band 3 protein in the erythrocyte membrane [19, 20]. The second step is called reorientation, which is produced for vertical arrangement of apical secretory organelles, such as rhoptries and micronemes. This step is mediated by a protein called apical membrane Antigen-1 (AMA1), which seems to establish the apical interaction of the adhesins with the erythrocyte; it is the border point between the weak union that occurs in the initial contact with MSP1 and irreversible bonds that occur between microneme proteins and erythrocyte membrane proteins [21, 22]. The third step is the tight-binding formation between various adhesins produced at the apical end of the parasite and its membrane receptors in the red blood cell, where the Duffy binding-like proteins (DBL) and reticulocyte binding proteins (RBP) bind. For example, surface DBL proteins of merozoite EBA 175 and EBA 140 (erythrocyte binding antigen 175 and 140) bind to erythrocyte membrane sialoglycoproteins, such as glycophorin A and C [23, 24]. On the other hand, while PfRh proteins bind to complement receptor 1 (CR1), signalization established by sensitive chymotrypsin receptor pathway and resistant to neuraminidase takes place [23, 25]. Once the parasite and erythrocyte tight junction is established, intake is mediated by the actin-myosin motor activation on the merozoite surface. This coincides with lipid and protein secretion, such as organelle-released proteases called rhoptries, micronemes, and mononemes. These proteases are associated to perform integral membrane proteins cleavage, such as band 3 and rupture of the membrane cytoskeletal proteins [26, 27].
During the invasion, proteins from the rhoptries and dense granules are secreted into the parasitophorous vacuole, and once it has developed to the ring phase, these proteins are exported to the cytoplasm of the infected erythrocyte to trigger the succession of effects of remodeling at the level of the host cell. It has been established that P. falciparum is capable of associating with Knobs, which are related to Knobs-proteins rich in histidines (KHARP). This type of formations allows the presentation of cytoadherence proteins exported by the parasite, which are coupled to the membrane, as is the case in particular of P. falciparum of erythrocyte membrane protein 1 (PfEMP1) [27].
Subsequently, the parasite invaginates the erythrocyte through a protein-free zone and initiates the formation of parasitophorous vacuole, which continues with a motility mechanism to enter the host cell. Rhoptries and dense granules secrete proteins during the invasion early ring phase, which are trafficked to different structures, such as parasitophorous vacuoles, cytosol, and erythrocyte membrane, triggering a series of events that modify the host cell [28].
Once inside the erythrocyte, P. falciparum is subjected to a trophic phase, followed by a replicative phase. The parasite modifies the host cell during the intra-erythrocytic period, conditioning it as its new habitat. It induces the formation of new permeability pathways, allowing it to provide itself with essential nutrients, dispose of waste products, modify the electrolytic composition, and decrease the colloid osmotic pressure of the erythrocyte, in order to survive in this new environment [29].
The infected erythrocyte enlarges in size, developing the formation of parasitophorous vacuole (PV), parasitophorous vacuole membrane (PVM), new membranous structures, such as the Maurer’s clefts (MC), tubulovesicular networks (TVN), and erythrocyte surface protrusion appearance called Knobs. Moreover, new type of channels in the PVM and alterations of the erythrocytic membrane channels are formed, in which virulence proteins are trafficked [7, 29, 30]. In addition to MC and TVM, other structures have been described, which are involved in export protein trafficking, such as electron-dense vesicles (EDV), vesicle-like structures (VLS), J points or J-Dots, named for J-domain proteins [31, 32, 33, 34].
Another host cell modification refers to P. falciparum infected erythrocyte cytoadherence to endothelial cells, resulting in a sequestration of mature parasites in capillaries and microvasculature [35]. The sequestration probably leads to microcirculation alterations and metabolic dysfunctions, which could be responsible for severe malaria manifestations [36]. The cytoadherence to endothelial cells confers at least two advantages for the parasite: (1) a more suitable microaerophilic environment for parasite metabolism and (2) evasion to splenic circulation, where infected erythrocytes would be destroyed [36, 37, 38, 39]. P. falciparum exports its proteins to the erythrocyte cytoplasm, where it binds to cytoskeletal components and alters the natural interactions of the membrane structural proteins, in order to achieve these major changes in the erythrocyte structure. Export proteins are encoded by 8% of P. falciparum parasite genome. It corresponds to host cell exported proteins, both in asexual and gametophytic phases. Table 1 lists the main P. falciparum export proteins, which participate in the remodeling process and present PEXEL motifs. However, non-PEXEL proteins such as PfEMP1, SURFIN, and Pf332 are also shown in Table 1, due to their importance in the infected erythrocyte remodeling process, but only PfEMP1.
Glucose-6-phosphate dehydrogenase (G6PD) pathway. G6PD, glucose-6-phosphate dehydrogenase, GPX, glutathione peroxidase; GR, glutathione reductase, 6PG, 6-phosphogluconate dehydrogenase; GSH, glutathione reduced; GSSG: glutathione oxidized. Adapted from Cappellini and Fiorelli [92].
Name of identification | Protein | Location | Molecular weight (kDa) | Putative function | References |
---|---|---|---|---|---|
KAHRP | Knob-associated histidine-rich protein | Erythrocyte cytoskeleton | 85–105 | Essential for the formation of Knobs; joins the erythrocyte spectrin, actin, and cytoplasmic tail of PfEMP-1 | [40, 41] |
MESA/PfEMP2 | Mature parasite-infected erythrocyte surface antigen | Erythrocyte cytoskeleton | 168 | It binds to the protein 4.1R. You can interrupt the interaction p55–4.1R | [41, 42, 43] |
RESA/PF155 | Ring-infected erythrocyte surface antigen | Erythrocyte cytoskeleton | 127 | Joins the spectrin. Suppresses the increase of heat-induced membrane. It can stabilize the erythrocyte membrane. Could prevent the invasion of erythrocytes parasitized | [44, 45, 46] |
Antigen 332 (Pf332) | P. falciparum antigen 332 | Erythrocyte cytoskeleton and Maurer’s clefts | 700 | Binds with the protein actin and provides deformability of erythrocytes | [47] |
GBP130 | Glycophorin binding protein 130 | Erythrocyte cytoplasm and membrane of parasitophorous vacuole | 105 | Decrease of rigidity | [48] |
PfEMP3 | P. falciparum erythrocyte membrane protein 3 | Erythrocyte cytoskeleton and Maurer’s clefts | 274–315 | Joins the spectrin. Interrupts the interaction of the actin-spectrin-4.1R protein complex. Involved in the trafficking of PfEMP1. | [41, 49] |
PfEMP1 | P. falciparum erythrocyte membrane protein 1 | Erythrocyte membrane and Maurer’s clefts | 200–250 | Cytoadherence ligand, antigenic variation, and interacts with KARHP | [50] |
RIFIN | Repetitive interspersed family | Maurer’s Clefts and erythrocyte surface | — | Possibly antigenic variability | [38] |
STEVOR | Subtelomeric variable open reading frame | Maurer’s Clefts and erythrocyte surface | — | Possibly antigenic variability | [51] |
SURFIN 4.2 | Surface-associated interspersed gene protein 4.2 | Maurer’s Clefts and erythrocyte surface | — | Possibly antigenic variability | [52] |
MAHRP1 | Membrane-associated histidine-rich protein 1 | Erythrocyte membrane | 28.9 | Generating the Maurer’s clefts or in protecting proteins within these structures | [53] |
REX-1 | Ring-exported protein 1 | Transmembrane | 83 | ND | [54] |
Parasites of the genus Plasmodium have co-evolved over 200 million years with the human species [55]. In this way, the increase of migrations in multiple regions and the establishment of settlements in certain areas have influenced the increase in endemicity produced by the successive exposure of the etiological agent of the disease; this high effect of selective pressure of the parasite has co-influenced the development of genetic variations linked to endemic populations, from which they have emerged over time polymorphic variants in erythrocytes in order to respond to the most severe symptoms of the disease, hindering the survival of the parasite or preventing the development of its entire life cycle. Many of these variations may be due to changes in structural proteins of the erythrocyte, alterations in hemoglobin (thalassemia’s and sickle cell anemia), or an incidence in the quantitative and functional level of enzyme activity involved in oxidative processes such as G6PD or pyruvate kinase [56, 57].
Currently, a global distribution of erythrocyte polymorphisms has been described, such as hemoglobinopathies (thalassemia’s, HbS, HbC, and HbE) and enzymatic alterations such as glucose-6-phosphate dehydrogenase deficiency (G6PD), which have their origin in response to the selective pressure exerted by malaria parasites on humans during the last 70,000 years [58]. Therefore, hemoglobinopathies and erythroenzymopathies have been attributed to different mechanisms that provide protection against severe manifestations of malaria; some of the relevant mechanisms are associated with reduced erythrocyte invasion, decreased intraerythrocytic growth, increased phagocytosis in infected erythrocytes, and increased immune response against parasitized erythrocytes [59]. Therefore, this type of erythrocyte polymorphisms can be related to resistance to malaria through immune mechanisms that can be a major health problem, due to the high frequency of carriers in endemic areas of malaria, mainly in the African continent where this It seriously affects the normal development of populations. Therefore, this type of genetic variants was originally characteristic of the tropics and subtropics; nowadays, there is a high dispersion in the whole world, product of the continuous migrations that induce an increased effect of the prevalence values of these diseases [60].
Hemoglobinopathies are a group of genetic alterations that involve a change in some of the subunits of hemoglobin and present an autosomal recessive inheritance pattern [61, 62]. These are divided into structural hemoglobinopathies, produced by the simple substitution of amino acids in the α and β chains of hemoglobin and thalassemic syndromes, which are manifested by the total or partial decrease in the synthesis of a globin chain [63]. The frequency of these polymorphisms in the world population and their geographical distribution are highly variable. In the case of hemoglobinopathies, it is estimated that every year more than 300,000 children with severe forms of these diseases are born worldwide, most of them in countries of low and medium income [64, 65]. Approximately 5% of the world population carries a sickle cell or thalassemia gene, and in some regions, the percentage of carriers can reach 25%. Approximately 60–70% of all births of children with some serious alteration of hemoglobin (Hb) occurs in Africa, being the sub-Saharan region the most affected [66, 67].
Hemoglobin S (HbS) is associated with a mutation in the β-globin gene where there is a change of thymine by adenine, thus coding a valine instead of glutamic acid (Glu6Val, βS). This mutation produces a hydrophobic modification in the deoxygenation of the Hb tetramer, which results in the union between the beta-1 and beta-2 chains of the two hemoglobin molecules (Hb). This union produces a polymer nucleus, which grows and invades erythrocytes, affecting architecture and flexibility and influencing cellular dehydration, with physical and oxidative cellular stress [68]. HbS is a hereditary trait that follows an autosomal recessive pattern, and therefore, it can present in a homozygous (HbSS) or heterozygous (HbAS) form. The HbSS form causes sickle cell anemia (SCA), while the heterozygote is considered a carrier of the trait [69].
It is estimated that around of 300 million people in the world, are diagnosed with sickle cell trait (SCT) a greater presence in Africa and the Mediterranean region, where the endemic areas of malaria are related to the occurrence of these hemoglobinopathies. In the United States, the prevalence of sickle cell traits is estimated at 8% for African-Americans and 0.05% for white Americans, suggesting an approximate incidence of 7.9 per 100,000 births. [70, 71].
At the metabolic level, it has been described that an increase in the production of ROS in the erythrocytes of individuals carrying the sickle trait shows a behavior similar to senescent erythrocytes. This phenomenon describes that aging causes erythrocyte cytosolic changes that affect antioxidant functioning, which can lead to the generation of a redox imbalance and induce the hemolysis and toxic accumulation of heme and Hb in the plasma [72, 73]. This oxidative imbalance tends to be even greater in the erythrocytes of carrier individuals, a process that increases in cytosolic and membrane transformations due to the decrease in its half-life. Hence, the infection of HbAS erythrocytes with malaria parasites causes an increase in the redox imbalance associated with the metabolic activity of the pathogens. However, the molecular effects of this imbalance are not fully established and therefore it is necessary to continue with their study to establish their role in the parasitic-host relationship.
Equally, have been suggested mechanisms which the sickle cell protects against malaria as shown by Pasvol et al., where an inhibition of growth of the parasite due to the polymerization of HbS and effect related with low oxygen levels is presented [74, 75]. Recently, Archer et al. demonstrated that infected erythrocytes HbAS showed a decrease in oxygen levels affecting the intracellular growth. These investigations have evidenced that growth inhibition produced by HbS-polymerized increments the cytoadherence, a condition favorable for inducing a reduction in the development of parasites [76].
Other mechanisms related have evidenced morphologic modifications in erythrocyte due to aberrant expression of PfEMP1 able of affect the binding of infected RBCs to host cells, and induce the diminution of virulence through the reduction of rosette formation and decreased cytoadherence [77]. Also, it has been described that the generation of antibodies against band-3 protein may be associated with formation of aggregated band-3 with impact in new sites for endothelium adhesion on erythrocyte with such polymorphisms and finally able cause conformational changes in band-3. Alike, it has been demonstrated that the parasite remodels the interaction of actin-cytoskeleton binding to enable the export of parasite-derived proteins to knobs on the parasitized RBC surface [58] Figure 3.
Thus, the mechanism established that during the invasive step in sickle cell, all are affected to a phenomenon of oxidative stress. This increase in ROS induces phagocytosis phenomenon related with hemoglobin denaturation, formation and hemichrome binding, aggregation protein as band 3 protein, development of antibody and it deposition, and binding of complement C3c fragments [78].
In this way, the increase of phagocytosis processes in HbAS erythrocytes infected with P. falciparum is remarkably advantageous for the host, in which a succession of associated mechanisms is triggered such as growth reduction and population density of parasites, young forms of the parasite are rapidly eliminated by the immune response, and it has been observed that mature forms (trophozoites and schizonts) adhere to the endothelium in smaller proportion in important organs (lungs, kidneys, brain, bone marrow, and placenta), which has led to a decrease in the severe symptoms of the disease (cerebral malaria, placental malaria, and respiratory disorders) [79, 80].
On the other hand, some molecular mechanisms have been established which have included the concept of microRNA (miRNAs). The development in cultures have founded the action of two miRNAs, miR-451 and let-7i, regulating of growth of parasites. Likewise, the incidence of miR-451 and let7i have induced reduction of parasitemia and a notable effect in the incorporation of hypoxanthine producing changes in characteristic of erythrocyte and defects during invasion of parasite, which have been associated with high specificity of sequences of miRNAs with anti-parasite function.
During much time, the association between α-thalassemia and malarial protection mechanism has been studied, reporting the presence of the α + variety in the studied population [82]. The α-thalassemia is able to induce hemolytic state and be associated with a reduction in erythrocyte survival, with an increased erythrocyte in circulating young erythrocytes [83]. The α-thalassemia is very common in malaria-endemic regions; it is considered to confer protection against clinical manifestations of the disease induced by P. falciparum. In vitro studies have evidenced that in α-thalassemic erythrocytes infected with Plasmodium, high levels of antibodies develop from their surface. Additionally, activation mechanisms in opsonized erythrocytes, complement-induced lysis and inhibition of sequestration of infected erythrocytes have been associated, which result as anti-malarial mechanisms that might be promoted by such antibodies [84, 85].
In other studies, the roles of microcytosis have been associated with the protection from P. falciparum-related hemoglobin decrease; in patients, a reduction of infection for part of parasite and most notary in homozygous α-thalassemic individuals have been evidenced, where a decline of hemoglobin levels, is observed and likewise, microcytosis is related with oxidative stress induced in altered erythrocytes with the presence of thalassemia and iron-deficiency. Finally, could be linked a development of process as low resetting in infected microcytic RBCs [86]. Likewise, α-thalassemia protects against severe malaria by attenuating the effect of parasite virulence and decreasing the amount of Hb loss during increased parasitemia. The α-thalassemia erythrocytes parasitized may be more susceptible to phagocytosis in vitro culture and unavailable than normal red cells in the formation of rosettes [87, 88]. Alike, has been related the complement receptor 1 (CR1), which is reduced on α-thalassemic erythrocytes infected, the diminution of CR1 expression in this type of cells are associated with a possible mechanism for reduction resetting [89]. Following, with less able to adhere to endothelial cells. Of this mode, studies have suggested that altered cells maintain that membrane band 3 may be a target for enhanced antibody binding to parasitized a-thalassemic cells [90, 91].
Worldwide, one of the most frequent polymorphic disorders at the level of erythrocytes is the deficiency of glucose-6-phosphate dehydrogenase (G6PD), a condition that is triggered by the decrease in the activity of glucose-6-phosphate dehydrogenase [92]. This disorder linked to genetics is located in the terminal region of the long arm of chromosome X (Xq28) and characterized by establishing the condition of deficiency or normal in men; and in the case of women, it is established that they can be heterozygous, homozygous, or normal [92, 93]. The heterozygous women have a copy of the gene that synthesizes the normal G6PD and another copy that produces the variant of the enzyme.
The active enzyme consists of identical subunits that form dimers and tetramers, which contain a nicotinamide-adenine dinucleotide phosphate (NADP) binding site [94, 95]. NADP binds to the enzyme, as a structural component and as a substrate for the reaction. As shown in Figure 4, G6PD catalyzes the entry of glucose-6-phosphate (G6P) into the pentose phosphate pathway, specifically that of hexose monophosphate, a reaction that produces glucose-6 oxidation, phosphate to 6-phosphogluconolactone, reducing NADP to NADPH [96].
In erythrocytes, it is the only source of NADPH, being essential to protect cells against physiologically high levels of oxidative damage, enzymatic mechanisms associated with increases in reduced glutathione (GSH) [92]. Where glutaredoxin intervenes and by means of which GSH protects the sulfhydryl groups of the hemoglobin and the erythrocyte membrane, but in the presence of oxidizing agents, in the form of free radicals or peroxides, the level of GSH decreases, although it can be restored by the action of glutathione reductase which does have an adequate NADPH supplement [75].
Wide mechanisms have been described for the study of role of G6PD-deficiency as elements protective during infection with P. falciparum. The distribution in the world with respect to malaria is similar to the mutated alleles G6PD; these observations have evidenced that first studies evaluated the connection between G6PD deficiency and malaria, with contradictory results. However, the allelic heterogeneity of G6PD deficiency may be related with susceptibility of P. falciparum when infected erythrocytes are present under this condition. Thereby, studies established by Ruwende and col. have demonstrated that G6PD A- alleles are associated with a reduction in the risk of severe malaria caused by P. falciparum, protection that are confer principally in heterozygote individuals [97]. Likewise, experimental investigations have evidenced a diminution in the growth of parasitized-erythrocytes with G6PD A and A- in Mediterranean population when contrast with normal subject. Thus, this has indicated the incidence of mechanism of initial phagocytosis, where infected RBC of G6PD-deficicients is induced to phagocytosis by macrophages in anterior stages of the development of parasite, an aspect that is related with protective mechanism against malaria [98, 99]. Equally, a direct relationship of activation of process as phagocytosis in ring stages of parasite in erythrocytes infected with this condition has been considered [99]. This mechanism is associated with an increased binding of autologous IgG and complements C3 fragments when were compared with infected-RBC normal individuals [100]. Finally, have been associated a succession of phenomena’s as the oxidation under increase of ROS into the erythrocytes and formation aggregated of band-3 protein [101].
Pyruvate kinase (PK) is an enzyme engaged in the conversion of phosphoenolpyruvate (PEP) to pyruvate. The catalysis of PK is an important element for formation of ATP in the glycolytic route [102]. PK plays a fundamental role in erythrocyte due to which cells depend on the production of ATP by glycolysis for the metabolic development and functionality of the cells [103]. The PK activity generally is increased in erythrocytes in the infection process. Likewise, have been associated to recognizing and the generation of the target of drug with P. falciparum infection [104]. PK deficiency is enzymatic alteration of the glycolytic route inducing non-spherocytic hemolytic anemia. The cause frequently linked is due to punctual mutations (1529A and 1456 T). PK deficiency presents worldwide distribution and is commonly prevalent in Caucasian populations [105].
It has been shown that PK deficiency is related to protection against infection in mice with Plasmodium chabaudi parasites, suggesting a similar effect of PK deficiency in humans. These effects have shown that PK-deficient human erythrocytes have induced diminution of malaria infection [106]. Other reports have indicated that possibly a protective effect against P. falciparum infection is generated, with alterations associated to replication on infected erythrocytes, where an invasive defect of erythrocytes in subjects bearing the homozygous mutation and to a preferential macrophage clearance of ring-infected erythrocytes is evidenced both in homozygous and heterozygous individuals [107].
Some phenomena have been associated with the deficiency of pyruvate kinase and infected erythrocytes, such as those established by the pleiotropic effect of the enzyme deficiency in the invasion of the parasite, which favors a substantial reduction of the growth of these and in the same way observes the activation of processes such as phagocytosis of infected erythrocytes in the ring stage that can provide protection against malaria, either by causing a reduction in the parasite burden or by reducing the number of erythrocytes infected with parasites in the trophozoites stages and schizonts that are available to join microvascular beds of vital organs [108].
These result in a reduced level of invasion of P. falciparum and erythrocytes of subjects with homozygous mutations. We also indicated that the possible biochemical differences in the intracellular medium, including the accumulation of glycolytic metabolic intermediates, did not cause a difference in the growth of parasites in erythrocytes between homozygotes and heterozygotes [109, 110]. To know even more the hypotheses of the reduction of the invasion observed in the erythrocytes of the subjects with homozygous mutations, it is also due to the capacity of the parasite, including the altered development of merozoites, the invasion of erythrocytes by merozoites was examined. It has been observed that the erythrocyte-tale merozoites had normal levels of invasion and replication in the erythrocytes of the control subjects [110].
We examined the phagocytic uptake of infected erythrocytes with P. falciparum (ring phase and mature phase) of case and control matter. Phagocytosis of infected erythrocytes in the ring stage of patients with homozygous mutations was higher than phagocytosis of uninfected erythrocytes. Also, an increased clearance has been observed by macrophages of erythrocytes infected in the ring stage of the parasite derivatives and heterozygotes for the PKLR mutation [108, 110].
Finally, it has led to establish that infected erythrocytes under this condition had a greater phagocytic phenomenon related to the development and deposition of hemichromes, IgG, and complement C3c [111, 112].
Malaria for years has been a study approach for scientists in the approach to the structural and functional study of the constituent proteins of the etiological agent, Plasmodium falciparum. A description of important proteins of the parasite has been established, as well as an approach of the main experimental studies that try to explain the molecular basis of each of the main erythrocyte polymorphisms shows a direct and significant resistance against the development of the parasite, and in this way, structural supports and detailed knowledge of some of these polymorphic modifications that show a complete field of study that will lead to the increasingly broad development of new tools for the compression and search for new pharmacological therapies are provided.
The author thanks University of Cartagena and Universitary Corporation Rafael Nuñez.
None.
AMA1 | apical membrane antigen-1 |
CAT | catalase |
CR1 | complement receptor 1 |
C3c | complement component C3c |
DBL | Duffy binding-like proteins |
EDV | electron-dense vesicles |
G6PD | glucose-6-phosphate dehydrogenase |
GPI | glycosyl-phosphatidyl-inositol protein |
GPX | glutathione peroxidase |
GR | glutathione reductase |
6PG | 6-phosphogluconate dehydrogenase |
GSH | glutathione reduced |
GSSG | glutathione oxidized |
HbAS | hemoglobin AS |
IgG | immunoglobulin G |
MC | Maurer’s clefts |
KHARP | Knobs-proteins rich in histidines |
mi-RNA | micro-ribonucleic acid |
MSP1 | merozoite surface protein 1 |
NADP | nicotinamide-adenine dinucleotide phosphate |
PV | parasitophorous vacuole |
PVM | parasitophorous vacuole membrane |
PfEMP1 | Plasmodium falciparum erythrocyte membrane protein 1 |
PKLR | pyruvate kinase isozymes R/L |
PK | pyruvate kinase |
ROS | reactive oxygen species |
RBP | reticulocyte binding proteins |
SCT | sickle cell trait |
TVN | tubulovesicular networks |
Stability constant of the formation of metal complexes is used to measure interaction strength of reagents. From this process, metal ion and ligand interaction formed the two types of metal complexes; one is supramolecular complexes known as host-guest complexes [1] and the other is anion-containing complexes. In the solution it provides and calculates the required information about the concentration of metal complexes.
Solubility, light, absorption conductance, partitioning behavior, conductance, and chemical reactivity are the complex characteristics which are different from their components. It is determined by various numerical and graphical methods which calculate the equilibrium constants. This is based on or related to a quantity, and this is called the complex formation function.
During the displacement process at the time of metal complex formation, some ions disappear and form a bonding between metal ions and ligands. It may be considered due to displacement of a proton from a ligand species or ions or molecules causing a drop in the pH values of the solution [2]. Irving and Rossotti developed a technique for the calculation of stability constant, and it is called potentiometric technique.
To determine the stability constant, Bjerrum has used a very simple method, and that is metal salt solubility method. For the studies of a larger different variety of polycarboxylic acid-, oxime-, phenol-containing metal complexes, Martel and Calvin used the potentiometric technique for calculating the stability constant. Those ligands [3, 4] which are uncharged are also examined, and their stability constant calculations are determined by the limitations inherent in the ligand solubility method. The limitations of the metal salt solubility method and the result of solubility methods are compared with this. M-L, MLM, and (M3) L are some types of examples of metal-ligand bonding. One thing is common, and that is these entire types metal complexes all have one ligand.
The solubility method can only usefully be applied to studies of such complexes, and it is best applied for ML; in such types of system, only ML is formed. Jacqueline Gonzalez and his co-worker propose to explore the coordination chemistry of calcium complexes. Jacqueline and et al. followed this technique for evaluate the as partial model of the manganese-calcium cluster and spectrophotometric studies of metal complexes, i.e., they were carried calcium(II)-1,4-butanediamine in acetonitrile and calcium(II)-1,2-ethylendiamine, calcium(II)-1,3-propanediamine by them.
Spectrophotometric programming of HypSpec and received data allows the determination of the formation of solubility constants. The logarithmic values, log β110 = 5.25 for calcium(II)-1,3-propanediamine, log β110 = 4.072 for calcium(II)-1,4-butanediamine, and log β110 = 4.69 for calcium(II)-1,2-ethylendiamine, are obtained for the formation constants [5]. The structure of Cimetidine and histamine H2-receptor is a chelating agent. Syed Ahmad Tirmizi has examined Ni(II) cimetidine complex spectrophotometrically and found an absorption peak maximum of 622 nm with respect to different temperatures.
Syed Ahmad Tirmizi have been used to taken 1:2 ratio of metal and cimetidine compound for the formation of metal complex and this satisfied by molar ratio data. The data, 1.40–2.4 × 108, was calculated using the continuous variation method and stability constant at room temperature, and by using the mole ratio method, this value at 40°C was 1.24–2.4 × 108. In the formation of lead(II) metal complexes with 1-(aminomethyl) cyclohexene, Thanavelan et al. found the formation of their binary and ternary complexes. Glycine,
Using the stability constant method, these ternary complexes were found out, and using the parameters such as Δ log K and log X, these ternary complex data were compared with binary complex. The potentiometric technique at room temperature (25°C) was used in the investigation of some binary complex formations by Abdelatty Mohamed Radalla. These binary complexes are formed with 3D transition metal ions like Cu2+, Ni2+, Co2+, and Zn2+ and gallic acid’s importance as a ligand and 0.10 mol dm−3 of NaNO3. Such types of aliphatic dicarboxylic acids are very important biologically. Many acid-base characters and the nature of using metal complexes have been investigated and discussed time to time by researchers [7].
The above acids (gallic and aliphatic dicarboxylic acid) were taken to determine the acidity constants. For the purpose of determining the stability constant, binary and ternary complexes were carried in the aqueous medium using the experimental conditions as stated above. The potentiometric pH-metric titration curves are inferred for the binary complexes and ternary complexes at different ratios, and formation of ternary metal complex formation was in a stepwise manner that provided an easy way to calculate stability constants for the formation of metal complexes.
The values of Δ log K, percentage of relative stabilization (% R. S.), and log X were evaluated and discussed. Now it provides the outline about the various complex species for the formation of different solvents, and using the concentration distribution, these complexes were evaluated and discussed. The conductivity measurements have ascertained for the mode of ternary chelating complexes.
A study by Kathrina and Pekar suggests that pH plays an important role in the formation of metal complexes. When epigallocatechin gallate and gallic acid combine with copper(II) to form metal complexes, the pH changes its speculation. We have been able to determine its pH in frozen and fluid state with the help of multifrequency EPR spectroscopy [8]. With the help of this spectroscopy, it is able to detect that each polyphenol exhibits the formation of three different mononuclear species. If the pH ranges 4–8 for di- or polymeric complex of Cu(II), then it conjectures such metal complexes. It is only at alkaline pH values.
The line width in fluid solutions by molecular motion exhibits an incomplete average of the parameters of anisotropy spin Hamilton. If the complexes are different, then their rotational correlation times for this also vary. The analysis of the LyCEP anisotropy of the fluid solution spectra is performed using the parameters determined by the simulation of the rigid boundary spectra. Its result suggests that pH increases its value by affecting its molecular mass. It is a polyphenol ligand complex with copper, showing the coordination of an increasing number of its molecules or increasing participation of polyphenol dimers used as ligands in the copper coordination region.
The study by Vishenkova and his co-worker [8] provides the investigation of electrochemical properties of triphenylmethane dyes using a voltammetric method with constant-current potential sweep. Malachite green (MG) and basic fuchsin (BF) have been chosen as representatives of the triphenylmethane dyes [9]. The electrochemical behavior of MG and BF on the surface of a mercury film electrode depending on pH, the nature of background electrolyte, and scan rate of potential sweep has been investigated.
Using a voltammetric method with a constant-current potential sweep examines the electrical properties of triphenylmethane dye. In order to find out the solution of MG and BF, certain registration conditions have been prescribed for it, which have proved to be quite useful. The reduction peak for the currents of MG and BF has demonstrated that it increases linearly with respect to their concentration as 9.0 × 10−5–7.0 × 10−3 mol/dm3 for MG and 6.0 × 10−5–8.0 × 10−3 mol/dm3 for BF and correlation coefficients of these values are 0.9987 for MG and 0.9961 for BF [10].
5.0 × 10−5 and 2.0 × 10−5 mol/dm3 are the values used as the detection limit of MG and BF, respectively. Stability constants are a very useful technique whose size is huge. Due to its usefulness, it has acquired an umbrella right in the fields of chemistry, biology, and medicine. No science subject is untouched by this. Stability constants of metal complexes are widely used in the various areas like pharmaceuticals as well as biological processes, separation techniques, analytical processes, etc. In the presented chapter, we have tried to explain this in detail by focusing our attention on the applications and solutions of stability of metal complexes in solution.
Stability or formation or binding constant is the type of equilibrium constant used for the formation of metal complexes in the solution. Acutely, stability constant is applicable to measure the strength of interactions between the ligands and metal ions that are involved in complex formation in the solution [11]. A generally these 1-4 equations are expressed as the following ways:
Thus
K1, K2, K3, … Kn are the equilibrium constants and these are also called stepwise stability constants. The formation of the metal-ligand-n complex may also be expressed as equilibrium constants by the following steps:
The parameters K and β are related together, and these are expressed in the following example:
Now the numerator and denominator are multiplied together with the use of [metal-ligand] [metal-ligand2], and after the rearranging we get the following equation:
Now we expressed it as the following:
From the above relation, it is clear that the overall stability constant βn is equal to the product of the successive (i.e., stepwise) stability constants, K1, K2, K3,…Kn. This in other words means that the value of stability constants for a given complex is actually made up of a number of stepwise stability constants. The term stability is used without qualification to mean that the complex exists under a suitable condition and that it is possible to store the complex for an appreciable amount of time. The term stability is commonly used because coordination compounds are stable in one reagent but dissociate or dissolve in the presence of another regent. It is also possible that the term stability can be referred as an action of heat or light or compound. The stability of complex [13] is expressed qualitatively in terms of thermodynamic stability and kinetic stability.
In a chemical reaction, chemical equilibrium is a state in which the concentration of reactants and products does not change over time. Often this condition occurs when the speed of forward reaction becomes the same as the speed of reverse reaction. It is worth noting that the velocities of the forward and backward reaction are not zero at this stage but are equal.
If hydrogen and iodine are kept together in molecular proportions in a closed process vessel at high temperature (500°C), the following action begins:
In this activity, hydrogen iodide is formed by combining hydrogen and iodine, and the amount of hydrogen iodide increases with time. In contrast to this action, if the pure hydrogen iodide gas is heated to 500°C in the reaction, the compound is dissolved by reverse action, which causes hydrogen iodide to dissolve into hydrogen and iodine, and the ratio of these products increases over time. This is expressed in the following reaction:
For the formation of metal chelates, the thermodynamic technique provides a very significant information. Thermodynamics is a very useful technique in distinguishing between enthalpic effects and entropic effects. The bond strengths are totally effected by enthalpic effect, and this does not make any difference in the whole solution in order/disorder. Based on thermodynamics the chelate effect below can be best explained. The change of standard Gibbs free energy for equilibrium constant is response:
Where:
R = gas constant
T = absolute temperature
At 25°C,
ΔG = (− 5.708 kJ mol−1) · log β.
The enthalpy term creates free energy, i.e.,
For metal complexes, thermodynamic stability and kinetic stability are two interpretations of the stability constant in the solution. If reaction moves from reactants to products, it refers to a change in its energy as shown in the above equation. But for the reactivity, kinetic stability is responsible for this system, and this refers to ligand species [14].
Stable and unstable are thermodynamic terms, while labile and inert are kinetic terms. As a rule of thumb, those complexes which react completely within about 1 minute at 25°C are considered labile, and those complexes which take longer time than this to react are considered inert. [Ni(CN)4]2− is thermodynamically stable but kinetically inert because it rapidly exchanges ligands.
The metal complexes [Co(NH3)6]3+ and such types of other complexes are kinetically inert, but these are thermodynamically unstable. We may expect the complex to decompose in the presence of acid immediately because the complex is thermodynamically unstable. The rate is of the order of 1025 for the decomposition in acidic solution. Hence, it is thermodynamically unstable. However, nothing happens to the complex when it is kept in acidic solution for several days. While considering the stability of a complex, always the condition must be specified. Under what condition, the complex which is stable or unstable must be specified such as acidic and also basic condition, temperature, reactant, etc.
A complex may be stable with respect to a particular condition but with respect to another. In brief, a stable complex need not be inert and similarly, and an unstable complex need not be labile. It is the measure of extent of formation or transformation of complex under a given set of conditions at equilibrium [15].
Thermodynamic stability has an important role in determining the bond strength between metal ligands. Some complexes are stable, but as soon as they are introduced into aqueous solution, it is seen that these complexes have an effect on stability and fall apart. For an example, we take the [Co (SCN)4]2+ complex. The ion bond of this complex is very weak and breaks down quickly to form other compounds. But when [Fe(CN)6]3− is dissolved in water, it does not test Fe3+ by any sensitive reagent, which shows that this complex is more stable in aqueous solution. So it is indicated that thermodynamic stability deals with metal-ligand bond energy, stability constant, and other thermodynamic parameters.
This example also suggests that thermodynamic stability refers to the stability and instability of complexes. The measurement of the extent to which one type of species is converted to another species can be determined by thermodynamic stability until equilibrium is achieved. For example, tetracyanonickelate is a thermodynamically stable and kinetic labile complex. But the example of hexa-amine cobalt(III) cation is just the opposite:
Thermodynamics is used to express the difference between stability and inertia. For the stable complex, large positive free energies have been obtained from ΔG0 reaction. The ΔH0, standard enthalpy change for this reaction, is related to the equilibrium constant, βn, by the well thermodynamic equation:
For similar complexes of various ions of the same charge of a particular transition series and particular ligand, ΔS0 values would not differ substantially, and hence a change in ΔH0 value would be related to change in βn values. So the order of values of ΔH0 is also the order of the βn value.
Kinetic stability is referred to the rate of reaction between the metal ions and ligand proceeds at equilibrium or used for the formation of metal complexes. To take a decision for kinetic stability of any complexes, time is a factor which plays an important role for this. It deals between the rate of reaction and what is the mechanism of this metal complex reaction.
As we discuss above in thermodynamic stability, kinetic stability is referred for the complexes at which complex is inert or labile. The term “inert” was used by Tube for the thermally stable complex and for reactive complexes the term ‘labile’ used [16]. The naturally occurring chlorophyll is the example of polydentate ligand. This complex is extremely inert due to exchange of Mg2+ ion in the aqueous media.
The nature of central atom of metal complexes, dimension, its degree of oxidation, electronic structure of these complexes, and so many other properties of complexes are affected by the stability constant. Some of the following factors described are as follows.
In the coordination chemistry, metal complexes are formed by the interaction between metal ions and ligands. For these type of compounds, metal ions are the coordination center, and the ligand or complexing agents are oriented surrounding it. These metal ions mostly are the transition elements. For the determination of stability constant, some important characteristics of these metal complexes may be as given below.
Ligands are oriented around the central metal ions in the metal complexes. The sizes of these metal ions determine the number of ligand species that will be attached or ordinated (dative covalent) in the bond formation. If the sizes of these metal ions are increased, the stability of coordination compound defiantly decreased. Zn(II) metal ions are the central atoms in their complexes, and due to their lower size (0.74A°) as compared to Cd(II) size (0.97A°), metal ions are formed more stable.
Hence, Al3+ ion has the greatest nuclear charge, but its size is the smallest, and the ion N3− has the smallest nuclear charge, and its size is the largest [17]. Inert atoms like neon do not participate in the formation of the covalent or ionic compound, and these atoms are not included in isoelectronic series; hence, it is not easy to measure the radius of this type of atoms.
The properties of stability depend on the size of the metal ion used in the complexes and the total charge thereon. If the size of these metal ions is small and the total charge is high, then their complexes will be more stable. That is, their ratio will depend on the charge/radius. This can be demonstrated through the following reaction:
An ionic charge is the electric charge of an ion which is formed by the gain (negative charge) or loss (positive charge) of one or more electrons from an atom or group of atoms. If we talk about the stability of the coordination compounds, we find that the total charge of their central metal ions affects their stability, so when we change their charge, their stability in a range of constant can be determined by propagating of error [18]. If the charge of the central metal ion is high and the size is small, the stability of the compound is high:
In general, the most stable coordination bonds can cause smaller and highly charged rations to form more stable coordination compounds.
When an electron pair attracts a central ion toward itself, a strong stability complex is formed, and this is due to electron donation from ligand → metal ion. This donation process is increasing the bond stability of metal complexes exerted the polarizing effect on certain metal ions. Li+, Na+, Mg2+, Ca2+, Al3+, etc. are such type of metal cation which is not able to attract so strongly from a highly electronegative containing stable complexes, and these atoms are O, N, F, Au, Hg, Ag, Pd, Pt, and Pb. Such type of ligands that contains P, S, As, Br and I atom are formed stable complex because these accepts electron from M → π-bonding. Hg2+, Pb2+, Cd2+, and Bi3+ metal ions are also electronegative ions which form insoluble salts of metal sulfide which are insoluble in aqueous medium.
Volatile ligands may be lost at higher temperature. This is exemplified by the loss of water by hydrates and ammonia:
The transformation of certain coordination compounds from one to another is shown as follows:
A ligand is an ion or small molecule that binds to a metal atom (in chemistry) or to a biomolecule (in biochemistry) to form a complex, such as the iron-cyanide coordination complex Prussian blue or the iron-containing blood-protein hemoglobin. The ligands are arranged in spectrochemical series which are based on the order of their field strength. It is not possible to form the entire series by studying complexes with a single metal ion; the series has been developed by overlapping different sequences obtained from spectroscopic studies [19]. The order of common ligands according to their increasing ligand field strength is
The above spectrochemical series help us to for determination of strength of ligands. The left last ligand is as weaker ligand. These weaker ligand cannot forcible binding the 3d electron and resultant outer octahedral complexes formed. It is as-
Increasing the oxidation number the value of Δ increased.
Δ increases from top to bottom.
However, when we consider the metal ion, the following two useful trends are observed:
Δ increases with increasing oxidation number.
Δ increases down a group. For the determination of stability constant, the nature of the ligand plays an important role.
The following factors described the nature of ligands.
The size and charge are two factors that affect the production of metal complexes. The less charges and small sizes of ligands are more favorable for less stable bond formation with metal and ligand. But if this condition just opposite the product of metal and ligand will be a more stable compound. So, less nuclear charge and more size= less stable complex whereas if more nuclear charge and small in size= less stable complex. We take fluoride as an example because due to their smaller size than other halide and their highest electro negativity than the other halides formed more stable complexes. So, fluoride ion complexes are more stable than the other halides:
As compared to S2− ion, O22− ions formed more stable complexes.
It is suggested by Calvin and Wilson that the metal complexes will be more stable if the basic character or strength of ligands is higher. It means that the donating power of ligands to central metal ions is high [20].
It means that the donating power of ligands to central metal ions is high. In the case of complex formation of aliphatic diamines and aromatic diamines, the stable complex is formed by aliphatic diamines, while an unstable coordination complex is formed with aromatic diamines. So, from the above discussion, we find that the stability will be grater if the e-donation power is greater.
Thus it is clear that greater basic power of electron-donating species will form always a stable complex. NH3, CN−, and F− behaved as ligands and formed stable complexes; on the other hand, these are more basic in nature.
We know that if the concentration of coordination group is higher, these coordination compounds will exist in the water as solution. It is noted that greater coordinating tendency show the water molecules than the coordinating group which is originally present. SCN− (thiocynate) ions are present in higher concentration; with the Co2+ metal ion, it formed a blue-colored complex which is stable in state, but on dilution of water medium, a pink color is generated in place of blue, or blue color complex is destroyed by [Co(H2O)6]2+, and now if we added further SCN−, the pink color will not appear:
Now it is clear that H2O and SCN− are in competition for the formation of Co(II) metal-containing complex compound. In the case of tetra-amine cupric sulfate metal complex, ammonia acts as a donor atom or ligand. If the concentration of NH3 is lower in the reaction, copper hydroxide is formed but at higher concentration formed tetra-amine cupric sulfate as in the following reaction:
For a metal ion, chelating ligand is enhanced and affinity it and this is known as chelate effect and compared it with non-chelating and monodentate ligand or the multidentate ligand is acts as chelating agent. Ethylenediamine is a simple chelating agent (Figure 1).
Structure of ethylenediamine.
Due to the bidentate nature of ethylenediamine, it forms two bonds with metal ion or central atom. Water forms a complex with Ni(II) metal ion, but due to its monodentate nature, it is not a chelating ligand (Figures 2 and 3).
Structure of chelating configuration of ethylenediamine ligand.
Structure of chelate with three ethylenediamine ligands.
The dentate cheater of ligand provides bonding strength to the metal ion or central atom, and as the number of dentate increased, the tightness also increased. This phenomenon is known as chelating effect, whereas the formation of metal complexes with these chelating ligands is called chelation:
or
Some factors are of much importance for chelation as follows.
The sizes of the chelating ring are increased as well as the stability of metal complex decreased. According to Schwarzenbach, connecting bridges form the chelating rings. The elongated ring predominates when long bridges connect to the ligand to form a long ring. It is usually observed that an increased a chelate ring size leads to a decrease in complex stability.
He interpreted this statement. The entropy of complex will be change if the size of chelating ring is increased, i.e., second donor atom is allowed by the chelating ring. As the size of chelating ring increased, the stability should be increased with entropy effect. Four-membered ring compounds are unstable, whereas five-membered are more stable. So the chelating ring increased its size and the stability of the formed metal complexes.
The number of chelating rings also decides the stability of complexes. Non-chelating metal compounds are less stable than chelating compounds. These numbers increase the thermodynamic volume, and this is also known as an entropy term. In recent years ligands capable of occupying as many as six coordination positions on a single metal ion have been described. The studies on the formation constants of coordination compounds with these ligands have been reported. The numbers of ligand or chelating agents are affecting the stability of metal complexes so as these numbers go up and down, the stability will also vary with it.
For the Ni(II) complexes with ethylenediamine as chelating agent, its log K1 value is 7.9 and if chelating agents are trine and penten, then the log K1 values are 7.9 and 19.3, respectively. If the metal ion change Zn is used in place of Ni (II), then the values of log K1 for ethylenediamine, trine, and penten are 6.0, 12.1, and 16.2, respectively. The log βMY values of metal ions are given in Table 1.
Metal ion | log βMY (25°C, I = 0.1 M) |
---|---|
Ca2+ | 11.2 |
Cu2+ | 19.8 |
Fe3+ | 24.9 |
Metal ion vs. log βMY values.
Ni(NH3)62+ is an octahedral metal complex, and at 25 °C its log β6 value is 8.3, but Ni(ethylenediamine)32+ complex is also octahedral in geometry, with 18.4 as the value of log β6. The calculated stability value of Ni(ethylenediamine)32+ 1010 times is more stable because three rings are formed as chelating rings by ethylenediamine as compared to no such ring is formed. Ethylenediaminetetraacetate (EDTA) is a hexadentate ligand that usually formed stable metal complexes due to its chelating power.
A special effect in molecules is when the atoms occupy space. This is called steric effect. Energy is needed to bring these atoms closer to each other. These electrons run away from near atoms. There can be many ways of generating it. We know the repulsion between valence electrons as the steric effect which increases the energy of the current system [21]. Favorable or unfavorable any response is created.
For example, if the static effect is greater than that of a product in a metal complex formation process, then the static increase would favor this reaction. But if the case is opposite, the skepticism will be toward retardation.
This effect will mainly depend on the conformational states, and the minimum steric interaction theory can also be considered. The effect of secondary steric is seen on receptor binding produced by an alternative such as:
Reduced access to a critical group.
Stick barrier.
Electronic resonance substitution bond by repulsion.
Population of a conformer changes due to active shielding effect.
The macrocyclic effect is exactly like the image of the chelate effect. It means the principle of both is the same. But the macrocyclic effect suggests cyclic deformation of the ligand. Macrocyclic ligands are more tainted than chelating agents. Rather, their compounds are more stable due to their cyclically constrained constriction. It requires some entropy in the body to react with the metal ion. For example, for a tetradentate cyclic ligand, we can use heme-B which forms a metal complex using Fe+2 ions in biological systems (Figure 4).
Structure of hemoglobin is the biological complex compound which contains Fe(II) metal ion.
The n-dentate chelating agents play an important role for the formation of more stable metal complexes as compared to n-unidentate ligands. But the n-dentate macrocyclic ligand gives more stable environment in the metal complexes as compared to open-chain ligands. This change is very favorable for entropy (ΔS) and enthalpy (ΔH) change.
There are so many parameters to determination of formation constants or stability constant in solution for all types of chelating agents. These numerous parameters or techniques are refractive index, conductance, temperature, distribution coefficients, refractive index, nuclear magnetic resonance volume changes, and optical activity.
Solubility products are helpful and used for the insoluble salt that metal ions formed and complexes which are also formed by metal ions and are more soluble. The formation constant is observed in presence of donor atoms by measuring increased solubility.
To determine the solubility constant, it involves the distribution of the ligands or any complex species; metal ions are present in two immiscible solvents like water and carbon tetrachloride, benzene, etc.
In this method metal ions or ligands are present in solution and on exchanger. A solid polymers containing with positive and negative ions are ion exchange resins. These are insoluble in nature. This technique is helpful to determine the metal ions in resin phase, liquid phase, or even in radioactive metal. This method is also helpful to determine the polarizing effect of metal ions on the stability of ligands like Cu(II) and Zn(II) with amino acid complex formation.
At the equilibrium free metal and ions are present in the solution, and using the different electrometric techniques as described determines its stability constant.
This method is based upon the titration method or follows its principle. A stranded acid-base solution used as titrate and which is titrated, it may be strong base or strong acid follows as potentiometrically. The concentration of solution using 103− M does not decomposed during the reaction process, and this method is useful for protonated and nonprotonated ligands.
This is the graphic method used to determine the stability constant in producing metal complex formation by plotting a polarograph between the absences of substances and the presence of substances. During the complex formation, the presence of metal ions produced a shift in the half-wave potential in the solution.
If a complex is relatively slow to form and also decomposes at measurable rate, it is possible, in favorable situations, to determine the equilibrium constant.
This involves the study of the equilibrium constant of slow complex formation reactions. The use of tracer technique is extremely useful for determining the concentrations of dissociation products of the coordination compound.
This method is based on the study of the effect of an equilibrium concentration of some ions on the function at a definite organ of a living organism. The equilibrium concentration of the ion studied may be determined by the action of this organ in systems with complex formation.
The solution of 25 ml is adopted by preparing at the 1.0 × 10−5 M ligand or 1.0 × 10−5 M concentration and 1.0 × 10−5 M for the metal ion:
The solutions containing the metal ions were considered both at a pH sufficiently high to give almost complete complexation and at a pH value selected in order to obtain an equilibrium system of ligand and complexes.
In order to avoid modification of the spectral behavior of the ligand due to pH variations, it has been verified that the range of pH considered in all cases does not affect absorbance values. Use the collected pH values adopted for the determinations as well as selected wavelengths. The ionic strengths calculated from the composition of solutions allowed activity coefficient corrections. Absorbance values were determined at wavelengths in the range 430–700 nm, every 2 nm.
For a successive metal complex formation, use this method. If ligand is protonate and the produced complex has maximum number of donate atoms of ligands, a selective light is absorbed by this complex, while for determination of stability constant, it is just known about the composition of formed species.
Bjerrum (1941) used the method stepwise addition of the ligands to coordination sphere for the formation of complex. So, complex metal–ligand-n forms as the following steps [22]. The equilibrium constants, K1, K2, K3, … Kn are called stepwise stability constants. The formation of the complex metal-ligandn may also be expressed by the following steps and equilibrium constants.
Where:
M = central metal cation
L = monodentate ligand
N = maximum coordination number for the metal ion M for the ligand
If a complex ion is slow to reach equilibrium, it is often possible to apply the method of isotopic dilution to determine the equilibrium concentration of one or more of the species. Most often radioactive isotopes are used.
This method was extensively used by Werner and others to study metal complexes. In the case of a series of complexes of Co(III) and Pt(IV), Werner assigned the correct formulae on the basis of their molar conductance values measured in freshly prepared dilute solutions. In some cases, the conductance of the solution increased with time due to a chemical change, e.g.,
It is concluded that the information presented is very important to determine the stability constant of the ligand metal complexes. Some methods like spectrophotometric method, Bjerrum’s method, distribution method, ion exchange method, electrometric techniques, and potentiometric method have a huge contribution in quantitative analysis by easily finding the stability constants of metal complexes in aqueous solutions.
All the authors thank the Library of University of Delhi for reference books, journals, etc. which helped us a lot in reviewing the chapter.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118373},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"18"},books:[{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocyte",subtitle:null,isOpenForSubmission:!0,hash:"b770f09e3f87daa5d8525fa78f771405",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!0,hash:"6a079df045b086b404399c5ed4ac049a",slug:null,bookSignature:"Prof. Amit Agrawal, Dr. Roshan Sutar and Dr. Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5244},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"178",title:"Endocrinology",slug:"medicine-endocrinology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:70,numberOfAuthorsAndEditors:1910,numberOfWosCitations:1274,numberOfCrossrefCitations:603,numberOfDimensionsCitations:1647,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-endocrinology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9163",title:"The Eye and Foot in Diabetes",subtitle:null,isOpenForSubmission:!1,hash:"0702b8cb35abbd7ac1fe4d80a7d092ad",slug:"the-eye-and-foot-in-diabetes",bookSignature:"Jeffery Grigsby and Fethi Derbel",coverURL:"https://cdn.intechopen.com/books/images_new/9163.jpg",editedByType:"Edited by",editors:[{id:"83508",title:"Dr.",name:"Jeffery",middleName:"Glen",surname:"Grigsby",slug:"jeffery-grigsby",fullName:"Jeffery Grigsby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7848",title:"Selected Chapters from the Renin-Angiotensin System",subtitle:null,isOpenForSubmission:!1,hash:"38e89685aa86d8cbff0718f3813ae625",slug:"selected-chapters-from-the-renin-angiotensin-system",bookSignature:"Aleksandar Kibel",coverURL:"https://cdn.intechopen.com/books/images_new/7848.jpg",editedByType:"Edited by",editors:[{id:"183303",title:"Dr.",name:"Aleksandar",middleName:null,surname:"Kibel",slug:"aleksandar-kibel",fullName:"Aleksandar Kibel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7980",title:"Hormone Therapy and Replacement in Cancer and Aging-related Diseases",subtitle:null,isOpenForSubmission:!1,hash:"4133a5c51dc2f19f331815450c49c6dd",slug:"hormone-therapy-and-replacement-in-cancer-and-aging-related-diseases",bookSignature:"Leticia B. A. Rangel, Hephzibah Kirubamani, Ian Victor Silva and Paulo Cilas Morais Lyra Junior",coverURL:"https://cdn.intechopen.com/books/images_new/7980.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",middleName:null,surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",isOpenForSubmission:!1,hash:"bfbc5538173f11acb0f9549a85b70489",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",editedByType:"Edited by",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8224",title:"Growth Disorders and Acromegaly",subtitle:null,isOpenForSubmission:!1,hash:"889cf2b5a21e42ccdf34e5861c1cc0a4",slug:"growth-disorders-and-acromegaly",bookSignature:"Ahmed R.G. and Ahmet Uçar",coverURL:"https://cdn.intechopen.com/books/images_new/8224.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"Ahmed",middleName:null,surname:"R.G.",slug:"ahmed-r.g.",fullName:"Ahmed R.G."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9077",title:"Goiter",subtitle:"Causes and Treatment",isOpenForSubmission:!1,hash:"50c68d066757342ba23799d17c4474bc",slug:"goiter-causes-and-treatment",bookSignature:"N.K. Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/9077.jpg",editedByType:"Edited by",editors:[{id:"136647",title:"Dr.",name:"N.K.",middleName:null,surname:"Agrawal",slug:"n.k.-agrawal",fullName:"N.K. Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7017",title:"Obesity",subtitle:null,isOpenForSubmission:!1,hash:"d9510ee94510a6d1c8953ca9ef6e009d",slug:"obesity",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/7017.jpg",editedByType:"Edited by",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7020",title:"Thymus",subtitle:null,isOpenForSubmission:!1,hash:"d5e32bf6c19eb7408108a84bc3d37948",slug:"thymus",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7020.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7061",title:"Blood Glucose Levels",subtitle:null,isOpenForSubmission:!1,hash:"71d38173067c610b03c51dec97dd031d",slug:"blood-glucose-levels",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/7061.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7865",title:"Type 2 Diabetes",subtitle:"From Pathophysiology to Modern Management",isOpenForSubmission:!1,hash:"f8b817f1959240ca2551ece7b8d03d75",slug:"type-2-diabetes-from-pathophysiology-to-modern-management",bookSignature:"Mira Siderova",coverURL:"https://cdn.intechopen.com/books/images_new/7865.jpg",editedByType:"Edited by",editors:[{id:"242582",title:"Associate Prof.",name:"Mira",middleName:null,surname:"Siderova",slug:"mira-siderova",fullName:"Mira Siderova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",isOpenForSubmission:!1,hash:"34880b7b450ef96fa5063c867c028b02",slug:"adipose-tissue-an-update",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6269",title:"Aldosterone-Mineralocorticoid Receptor",subtitle:"Cell Biology to Translational Medicine",isOpenForSubmission:!1,hash:"d0cae03d8e497eaafcf13cc3eeec531f",slug:"aldosterone-mineralocorticoid-receptor-cell-biology-to-translational-medicine",bookSignature:"Brian Harvey and Frederic Jaisser",coverURL:"https://cdn.intechopen.com/books/images_new/6269.jpg",editedByType:"Edited by",editors:[{id:"128629",title:"Dr.",name:"Brian",middleName:null,surname:"Harvey",slug:"brian-harvey",fullName:"Brian Harvey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:70,mostCitedChapters:[{id:"42122",doi:"10.5772/52675",title:"Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses",slug:"jasmonate-biosynthesis-perception-and-function-in-plant-development-and-stress-responses",totalDownloads:4355,totalCrossrefCites:14,totalDimensionsCites:39,book:{slug:"lipid-metabolism",title:"Lipid Metabolism",fullTitle:"Lipid Metabolism"},signatures:"Yuanxin Yan, Eli Borrego and Michael V. Kolomiets",authors:[{id:"141200",title:"Prof.",name:"Michael",middleName:null,surname:"Kolomiets",slug:"michael-kolomiets",fullName:"Michael Kolomiets"},{id:"141211",title:"Dr.",name:"Yuanxin",middleName:null,surname:"Yan",slug:"yuanxin-yan",fullName:"Yuanxin Yan"}]},{id:"42121",doi:"10.5772/52781",title:"Metabolism of Plasma Membrane Lipids in Mycobacteria and Corynebacteria",slug:"metabolism-of-plasma-membrane-lipids-in-mycobacteria-and-corynebacteria",totalDownloads:4020,totalCrossrefCites:5,totalDimensionsCites:27,book:{slug:"lipid-metabolism",title:"Lipid Metabolism",fullTitle:"Lipid Metabolism"},signatures:"Paul K. Crellin, Chu-Yuan Luo and Yasu S. Morita",authors:[{id:"143195",title:"Dr.",name:"Yasu",middleName:"S.",surname:"Morita",slug:"yasu-morita",fullName:"Yasu Morita"},{id:"144799",title:"Dr.",name:"Paul",middleName:null,surname:"Crellin",slug:"paul-crellin",fullName:"Paul Crellin"},{id:"166027",title:"Mr.",name:"Chu-Yuan",middleName:null,surname:"Luo",slug:"chu-yuan-luo",fullName:"Chu-Yuan Luo"}]},{id:"42117",doi:"10.5772/51819",title:"The Role of Copper as a Modifier of Lipid Metabolism",slug:"the-role-of-copper-as-a-modifier-of-lipid-metabolism",totalDownloads:3437,totalCrossrefCites:7,totalDimensionsCites:25,book:{slug:"lipid-metabolism",title:"Lipid Metabolism",fullTitle:"Lipid Metabolism"},signatures:"Jason L. Burkhead and Svetlana Lutsenko",authors:[{id:"139755",title:"Dr",name:null,middleName:null,surname:"Lutsenko",slug:"lutsenko",fullName:"Lutsenko"}]}],mostDownloadedChaptersLast30Days:[{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1661,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"63301",title:"Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake",slug:"role-of-pi3k-akt-pathway-in-insulin-mediated-glucose-uptake",totalDownloads:2306,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"blood-glucose-levels",title:"Blood Glucose Levels",fullTitle:"Blood Glucose Levels"},signatures:"Ewa Świderska, Justyna Strycharz, Adam Wróblewski, Janusz Szemraj, Józef Drzewoski and Agnieszka Śliwińska",authors:null},{id:"62672",title:"An Overview of Melatonin as an Antioxidant Molecule: A Biochemical Approach",slug:"an-overview-of-melatonin-as-an-antioxidant-molecule-a-biochemical-approach",totalDownloads:2179,totalCrossrefCites:8,totalDimensionsCites:16,book:{slug:"melatonin-molecular-biology-clinical-and-pharmaceutical-approaches",title:"Melatonin",fullTitle:"Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches"},signatures:"Aysun Hacışevki and Burcu Baba",authors:[{id:"248612",title:"Associate Prof.",name:"Aysun",middleName:null,surname:"Hacışevki",slug:"aysun-hacisevki",fullName:"Aysun Hacışevki"},{id:"248614",title:"Ph.D.",name:"Burcu",middleName:null,surname:"Baba",slug:"burcu-baba",fullName:"Burcu Baba"}]},{id:"42117",title:"The Role of Copper as a Modifier of Lipid Metabolism",slug:"the-role-of-copper-as-a-modifier-of-lipid-metabolism",totalDownloads:3436,totalCrossrefCites:7,totalDimensionsCites:25,book:{slug:"lipid-metabolism",title:"Lipid Metabolism",fullTitle:"Lipid Metabolism"},signatures:"Jason L. Burkhead and Svetlana Lutsenko",authors:[{id:"139755",title:"Dr",name:null,middleName:null,surname:"Lutsenko",slug:"lutsenko",fullName:"Lutsenko"}]},{id:"31314",title:"Synthetic and Plant Derived Thyroid Hormone Analogs",slug:"synthetic-and-plant-derived-thyroid-hormone-analogs",totalDownloads:12824,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"thyroid-and-parathyroid-diseases-new-insights-into-some-old-and-some-new-issues",title:"Thyroid and Parathyroid Diseases",fullTitle:"Thyroid and Parathyroid Diseases - New Insights into Some Old and Some New Issues"},signatures:"Suzana T. Cunha Lima, Travis L. Merrigan and Edson D. Rodrigues",authors:[{id:"103114",title:"Dr.",name:"Suzana",middleName:"Telles",surname:"Cunha Lima",slug:"suzana-cunha-lima",fullName:"Suzana Cunha Lima"},{id:"109953",title:"BSc.",name:"Travis L.",middleName:null,surname:"Merrigan",slug:"travis-l.-merrigan",fullName:"Travis L. Merrigan"},{id:"136565",title:"Dr.",name:"Edson D.",middleName:null,surname:"Rodrigues",slug:"edson-d.-rodrigues",fullName:"Edson D. Rodrigues"}]},{id:"57931",title:"Corticosteroids and Their Use in Respiratory Disorders",slug:"corticosteroids-and-their-use-in-respiratory-disorders",totalDownloads:1319,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"corticosteroids",title:"Corticosteroids",fullTitle:"Corticosteroids"},signatures:"Ibrahim A. Janahi, Abdul Rehman and Noor Ul-Ain Baloch",authors:[{id:"191897",title:"Prof.",name:"Ibrahim",middleName:null,surname:"Janahi",slug:"ibrahim-janahi",fullName:"Ibrahim Janahi"},{id:"212576",title:"Dr.",name:"Abdul",middleName:null,surname:"Rehman",slug:"abdul-rehman",fullName:"Abdul Rehman"},{id:"212577",title:"Dr.",name:"Noor",middleName:null,surname:"Baloch",slug:"noor-baloch",fullName:"Noor Baloch"}]},{id:"56894",title:"Approach to Diagnosis of Salivary Gland Disease from Nuclear Medicine Images",slug:"approach-to-diagnosis-of-salivary-gland-disease-from-nuclear-medicine-images",totalDownloads:697,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"salivary-glands-new-approaches-in-diagnostics-and-treatment",title:"Salivary Glands",fullTitle:"Salivary Glands - New Approaches in Diagnostics and Treatment"},signatures:"Michihiro Nakayama, Atsutaka Okizaki, Kaori Nakajima and Koji\nTakahashi",authors:null},{id:"61064",title:"Secretions of Human Salivary Gland",slug:"secretions-of-human-salivary-gland",totalDownloads:1705,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"salivary-glands-new-approaches-in-diagnostics-and-treatment",title:"Salivary Glands",fullTitle:"Salivary Glands - New Approaches in Diagnostics and Treatment"},signatures:"Anahita Punj",authors:null},{id:"46392",title:"Surgical Management of Hyperthyroidism",slug:"surgical-management-of-hyperthyroidism",totalDownloads:2203,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"thyroid-disorders-focus-on-hyperthyroidism",title:"Thyroid Disorders",fullTitle:"Thyroid Disorders - Focus on Hyperthyroidism"},signatures:"Z. Al Hilli, C. Cheung, E.W. McDermott and R.S. Prichard",authors:[{id:"43971",title:"Dr.",name:"Ruth",middleName:null,surname:"Prichard",slug:"ruth-prichard",fullName:"Ruth Prichard"}]},{id:"64672",title:"Sialorrhea: A Guide to Etiology, Assessment, and Management",slug:"sialorrhea-a-guide-to-etiology-assessment-and-management",totalDownloads:1437,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"salivary-glands-new-approaches-in-diagnostics-and-treatment",title:"Salivary Glands",fullTitle:"Salivary Glands - New Approaches in Diagnostics and Treatment"},signatures:"Işıl Adadan Güvenç",authors:[{id:"36790",title:"M.D.",name:"Işıl",middleName:null,surname:"Adadan Güvenç",slug:"isil-adadan-guvenc",fullName:"Işıl Adadan Güvenç"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-endocrinology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/175715/tudor-mocan",hash:"",query:{},params:{id:"175715",slug:"tudor-mocan"},fullPath:"/profiles/175715/tudor-mocan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()