Operational requirements of SHM systems.
\r\n\t
\r\n\tThe aim of this book project is to compile the updated research work on medicinal applications of noble metal complexes mainly focusing the structure activity relationship of metal complexes with targeting biological components.
Petroleum oil refining is an essential industry and an important element of the economic infrastructure. Refineries are large compared to other industrial plants because their production and storage capacities are designed to assure volume profitability. The industry deals with considerable amounts of flammable and toxic substances and is thus inherently hazardous. If loss of containment is not prevented or controlled, it can have serious economic and environmental consequences. The reduction of accidents is driving the development of better control technologies and risk management strategies. Corrosion remains one of the challenges which is further elevated because of ageing infrastructure and variation in concentration of crude oil.
According to a report from eMARS (Major Accident Reporting System) [1], corrosion of equipment is an important source of accidents in refineries, being responsible for one in five major refinery accidents occurring in the EU since 1984. The magnitude of a refinery unit and the complexity of the processes are great and a wide variety of equipment such as trays, drums and towers are subject to corrosion problems. The pipeline infrastructure and storage tanks are particularly vulnerable and have high risk profiles due to the volumes they may contain. The same report analysed 99 corrosion failures, 71% of them originated in pipe works and 15% of them occurred in storage tanks.
Pipelines serve as basic components of refinery infrastructure as well as the chief transmission line between refineries and remote sites delivering the products to distribution points and customers. They are generally constructed from a variant of carbon steel and so are naturally susceptible to corrosion. The intense temperatures and temperature fluctuations, and presence of corrosive agents can accelerate the corrosion process. Corrosion can cause oil leaks which may lead to explosion with severe consequences. One example is an underground oil pipeline operated by Sinopec, China’s largest oil refiner [2], which exploded following an oil leak due to corrosion. The blast killed 44 people and injured 136, and led to disruption in electricity and water supply and evacuation of around 18,000 people.
Failure of storage tanks is not as prevalent as pipe work failures but due to the hazardous substances stored, they are well represented in major accidents in the process industries. Storage tanks are extensively used in refineries to store fossil fuel, acids, solvents, benzene, sour water, asphalt and related products (heated storage). Both types of storage tanks are vulnerable to corrosion. Crude oil storage tanks suffer more aggressive corrosion compared to other refinery equipment due to the oil sulphur content. Another study on storage tank accidents [3] showed that 74% of accidents involving them occurred in Petro-chemical refineries with 85% of the accidents leading to fire and explosions. One such incident happened at a fuel storage facility in Brazil in 2015 [4] which took more than 4 days to bring under control with 110 firefighters, road blockages and the shut-down of ports (Figure 1).
The damage from (a) oil leakage of a corroded buried pipeline in China [2] and (b) tank at a fuel storage facility in Brazil [4], which led to explosions with severe consequences and put human in danger.
Over the years, numerous non-destructive testing (NDT) techniques have been used to inspect the condition of pipelines and storage tanks, e.g. penetrant testing, magnetic particle testing, radiography, eddy current, thermography, acoustic emission and conventional ultrasonic testing [5]. Many of these techniques only offer localised inspection. Pipe inspection using these techniques requires removal of insulation to access pipe surfaces and may even require erection of scaffolding for difficult-to-access locations. For storage tanks, exterior corrosion, whether general or localised at crevices, is easy to detect using the aforementioned inspection methods. But for inspection of internal tank floors from exposure to corrosive agents in the product, requires the tank to be emptied and cleaned to gain access. These operations are both time-consuming and expensive and cannot be used in-service.
Less than rigorous inspection is considered a major cause of corrosion failure [1]. For this reason, there has been increased emphasis on the development of damage prognosis systems that inform the operator of a structure’s health and of any developing damage. This will enable accurate estimation of the remaining useful life of the structures and can transform maintenance procedures from schedule-driven to condition-based implementation. These systems will significantly decrease the time these structures are offline, hence cutting life-cycle costs and labour requirements. Structural Health Monitoring (SHM) serves an essential part of any damage prognosis system. It monitors the structures whilst they are in-service and provides information about any detected damage.
The integration of Guided Wave Testing (GWT) technology into SHM is growing rapidly as it offers a remote solution with the ability to screen large structures. This chapter will detail the advances in SHM technologies using GWT for the two most critical metallic components in the Oil & Gas industry: pipelines and storage tanks. A brief description of GWT and the underlying physics of Ultrasonic Guided Waves (UGW) for tubular and plate like structures is provided. Its application to SHM of pipelines and storage tanks is described and the state-of-the-art in the enabling technologies including transducers and their coupling (transducer system) and data processing is presented. The design, operation and performance of SHM devices for pipelines and storage tanks are presented, and their current limitations are highlighted to direct future research and development activities.
Much research has been conducted on the use of UGWs to inspect elongated engineering structures, i.e. pipes, plates, rails and cables, because of their inherent long range propagation [6]. Commercial GWT systems have evolved vastly over the past two decades to fulfil many industrial inspection requirements. For pipes, initial realisation of UGW propagation in cylindrical structures by Gazis et al. [7], Zemanek [8] and Silk and Bainton [9], led to initial development of a GWT system [10, 11, 12] for pipes which were commercialised [13, 14] and rapidly adopted by the Oil and Gas industry. Worlton [15] and Viktorov [16] originally explored the potential of UGW for NDT of plate-like structures. Based on this, Mažeika et al. [17] studied the potential for GWT of tank floors.
Rayleigh waves [16] are surface waves that exist in half-space, a surface backed by a semi-infinite volume. These waves have an elliptical vibration with the major axis of vibration perpendicular to the direction of propagation. They can penetrate to a depth of 1.5
Displacement of the fundamental symmetric (S0) and asymmetric (A0) wave mode. Note the displacement from the line of symmetry (red dashed line).
Just like plates, hollow cylindrical tubes also have a thin cross section bounded by two surfaces. Lamb wave theory of plates assumes an infinite plate extent, whereas in cylinders, the circumferential curvature results in a periodic boundary condition in one dimension. This increases the complexity of Lamb waves in tubes, and many more modes of wave propagation occur in tubes than in plates. In pipes, three families of modes based on their displacement patterns are present. Axially symmetric wave modes—Longitudinal (L) and Torsional (T); and non-axially symmetric—Flexural (F) modes are illustrated in Figure 3. The L and T modes in cylindrical structures are analogous to the Lamb waves and SH modes of vibration in plates, respectively. The wave mode designation is defined by Meitzler [19] and includes two numbers, for example L(0,1), where the first number is the circumferential wavenumber (also known as the order) and the second number represents the sequential mode. All axially symmetric torsional and longitudinal modes are zero order modes. Flexural modes are non-axially symmetric and of order higher than zero.
Displacement of the axisymmetric L(0,1); L(0,2) and T(0,1) wave modes. Note the dominant radial, axial and circumferential displacements from the central axis, respectively.
Phase velocity (
At any given frequency, a number of wave modes may be present in the structure. The wave modes with frequency dependent velocities are called dispersive as they spread in space over time. Dispersion curves illustrate guided waves and their behaviour with frequency for each possible mode in the given structure. Commercial software packages [20, 21] are available to generate dispersion curves for multi-layered plates and cylindrical structures. Figure 4 shows the dispersion curves computed for a 6 inch Schedule 40 pipe (168.3 mm outer diameter, 7.11 mm wall thickness) and a 1 mm thick steel plate [material properties used, density (
Dispersion curves for 6 inch schedule 40 steel pipe (left) and 1 mm thick steel plate (right); showing the relationship between group velocity and frequency for different modes.
For the pipe, axisymmetric L(0,1), T(0,1) and L(0,2) modes are highlighted and their respective associated flexural modes, F(n,1), F(n,2) and F(n,3) are coloured red. It should be noted that L(0,2) and T(0,1) in pipes are analogous to A0 and SH0 wave modes in plates. It can be seen that the T(0,1) wave mode is completely non-dispersive for all frequencies of interest for GWT as the phase velocity dispersion curve is flat. L(0,2) is relatively non-dispersive above a certain frequency and L(0,1) is relatively dispersive in comparison to the other two axisymmetric modes. Compared to a pipe, relatively low numbers of modes are present in plates, which makes mode separation and signal interpretation much less challenging. For GWT, it is desirable to use non-dispersive wave modes for easy data interpretation.
In contrast to conventional ultrasonic testing (UT), where high frequencies are used to examine the material directly under the test location, in GWT, low frequency ultrasound is guided through the structural boundaries and can travel tens of metres. A transducer can excite all modes that exist within its frequency bandwidth and this can complicate the received signals, making their interpretation difficult. Dispersion and the presence of multiple guided wave modes are the two main problems for GWT [22], and for practical applications, it is important for the transducer system to excite a single, non-dispersive wave mode [23]. A procedure for identifying suitable modes for a particular inspection task has been proposed by Wilcox [24] which considers the properties of the structure (dispersion, attenuation and sensitivity) and transducer (excitability, detectability and selectivity).
There are a number of different transduction technologies for excitation and detection of UGW, including Electromagnetic Acoustic Transducer (EMAT) [25], magnetostrictive devices [26], laser [27], piezoelectric and piezocomposite transducers [28]. Piezoelectric transducers offer the most promising solution due to their stability and reliability, and cost-effectiveness with simple and light-weight construction [29]. Lead zirconate titanate (PZT) has been a popular choice for UGW as it shows good electromechanical properties (electromechanical coupling, k > 0.7) which is essential to achieve large coverage. Linear and circular PZT arrays on plates have achieved inspection range of 3000 times the dimensions of the array. Application of PZT material is however limited to temperature below ~150°C (1/2 Tc) above which it experiences accelerated performance degradation over time [30]. Piezoelectric materials for SHM at higher temperatures are available [31, 32] for steamlines.
For pipes, excitation of axisymmetric wave modes [L(0,2) and T(0,1)] using piezoelectric transducers requires a circumferential ring of transducers. The circumferential spacing between the transducers in the array should be even for a high level of mode purity. All transducers in the ring are excited equally and concurrently to launch these axisymmetric modes. Apart from being non-dispersive, both of these modes provide uniform stress over the whole pipe cross section area and provide 100% coverage. Two rings of dry-coupled piezoelectric shear transducers [33] can be used to obtain unidirectional propagation of the L(0,2) mode with propagation distances approaching 50 metres. The second axisymmetric mode, L(0,1), is excited alongside L(0,2) (Figure 5), and can complicate the interpretation of results [34]. Therefore, an additional ring of transducers is required to suppress this undesired L(0,1) mode. This however adds to the cost of the system, significantly for larger diameter pipes. On the contrary, the T(0,1) mode is the only axisymmetric torsional mode in the frequency range of interest for GWT, so to obtain a single mode and unidirectional excitation, only two rings of transducers are required. The torsional mode requires an excitation force in the circumferential direction. This can be achieved by displacing the shear transducer used for axial longitudinal excitation by 90°. To cancel the propagation of non-axisymmetric Flexural modes, the number of transducers in a circumferential ring should be greater than the highest order of flexural mode present in the chosen frequency range [35].
Displacement patterns and waveforms generated by array of shear transducers aligned (a) circumferentially and (b) axially. U1, U2 and U3 represent radial, circumferential and axial displacement caused by transducer vibration measured using a 3D vibrometer.
For plates, the A0 Lamb mode is the easiest omnidirectional mode to excite as it only requires a point-source exerting a pure out-of-plane force on the surface of the plate. It is also the mode which has the smallest wavelength for a given frequency, therefore offering better resolution to defects compared to the S0 mode. However, due to the attenuation and higher dispersion characteristics, this mode has been predominantly neglected in favour of S0 and SH0. Figure 6 shows the propagation of these three modes excited using uniaxial in-plane vibration.
Propagation of ultrasonic guided wave modes in a 3.5 m diameter, 10 mm thick steel plate from a uniaxial in-plane vibration.
Commercially available in-plane thickness shear transducers can generate all fundamental plate modes in the GWT operating frequency range. Both Lamb modes are generated in the axis of vibration while the SH0 mode is generated perpendicular to the axis of vibration.
A typical GWT architecture in Figure 7 shows the key components of the system. Apart from the transducers, the system comprises of a portable computer (PC) to control the test, and a pulser-receiver connected to the transducers to transmit and receive the ultrasonic signal to and from the structure under test. Narrow band signals such as several cycles of sine wave modulated with a window function (e.g. hamming), are generally used. These narrow band signals offer good signal strength and avoid dispersion while propagating long distances. The centre frequency of these signals are chosen based on the desired wave mode to achieve low dispersion over the frequencies in the narrow band.
Architecture of a typical guided wave inspection system [36].
There are two modes of operation: pulse-echo and pitch-catch. Pulse-echo mode is more common and utilises the same transducers to excite the UGW and receive the reflected signals as illustrated in Figure 7. Pitch-catch mode uses two sets of transducers, one to excite the UGW and the other to receive, and is only used if high resolution or a high inspection range are required. As the UGW propagates in the structure, a proportion of the energy contained in the propagating wave front will be reflected when an acoustic impedance change occurs at a feature or discontinuity in the structure. This enables full coverage of the cross section of the plate or pipe, detecting and locating both internal and external defects without disrupting operation.
Since the initial developments of GWT of pipes in late 1990s, several studies have been carried out to understand the interaction of T(0,1) and L(0,2) guided wave modes with pipe features (flanges and pipe supports) [37] and defects [35], and the effect of different defect characteristics and excitation frequencies has also been reported [38, 39]. This has led to definitions and standards for GWT instrumentation, data collection and analysis in ISO 18211:2016 [40]. When an axisymmetric mode is incident on an axisymmetric pipe feature such as a uniform weld or a flange, axisymmetric modes are reflected. With a non-axisymmetric feature such as corrosion, a non-axisymmetric wave will also be reflected back to the transducer array. The presence and axial location of defects can thus be determined by analysing these reflections and their time of arrival. Although the L(0,2) mode has shown ~2.5 times more flaw sensitivity compared to T(0,1) [34], it is difficult to excite in pure form and requires complex signal processing due to its dispersive nature. It is also affected by fluid in the pipe, so the torsional mode is more commonly used in practice. GWT using T(0,1) is most effective on straight sections achieving several tens of metres of inspection range but recent studies have evaluated its performance on bends [41].
The desire to move from current periodic structural maintenance to a more cost-effective condition-based maintenance (CBM) philosophy to ensure integrity of critical structures has fostered research and development activities to develop SHM solutions. SHM using UGW has found a variety of practical applications for elongated engineering structures including pipes, plates, ship hulls, rails and cables, because of its inherent long range propagation [42].
The operational requirements of SHM systems for pipelines and storage tanks are tabulated in Table 1. Currently, costly acquisition of SHM data is only justifiable for structures with significantly high failure consequences. Transducer technologies play a critical role in the design of SHM system as they are permanently installed on the structure and required to repeatedly transmit excitation signals and analyse the received responses.
Operational requirement | Pipelines | Storage tank floor |
---|---|---|
Operating temperature | −10 to 150°C | −10 to 60°C |
Signal to noise | <6 dB | <6 dB |
Operating frequency range | 20–100 kHz | Resonant frequency |
Transmission range | Up to 100 m | 30–100 m |
Frequency of data collection | Once a week | Once a week (depending on the condition) |
Wave mode selection | T(0,1) | S0 and SH0 |
Signal processing | Thresholding/outlier analysis Baseline subtraction Pattern recognition | Tomography Pattern recognition Neural networking Baseline subtraction |
Data acquisition | Pulse-echo/pitch-catch | Pitch-catch |
Operational requirements of SHM systems.
The transducers may need to be attached in environmentally hostile, safety-critical or difficult-to-access areas and therefore they should be designed to perform reliably under prolonged exposure to harsh environmental and operational conditions (EOCs). Therefore, low cost and reliability are the two main factors to consider when designing a SHM sensor system for pipelines and storage tanks. One cost-effective approach is to use a single pulser-receiver and PC to collect monitoring data from multiple sensor locations at junction points, which can be located in easily accessible location. This significantly reduces cost of repeated access and of the overall system.
Current state-of-the-art in pipeline monitoring solutions includes corrosion coupons, acoustic emission and magnetostrictive sensors, flexible eddy current arrays, flexible ultrasonic transducers, guided wave sensors, impedance spectroscopy, microwave backscattering and fibre optic sensors. A review of these monitoring technologies can be found in [43]. Corrosion sensors based on electrical resistance and electromechanical impedance spectroscopy can only provide coverage over a small area and are not suitable for non-uniform corrosion artefacts such as pits. Recent advances in acoustic emission (AE) sensor technology [44, 45] have led to corrosion detection and monitoring solutions where acoustics signals from micro-fractures and delamination of the oxide are analysed. These emissions release much less energy than emission from crack growth where AE has shown great potential. In low noise environments AE could be used to detect signals from corrosion with tens of metres range using monitoring frequencies of tens of kilohertz. However, in a live plant, high process noise requires several hundred kilohertz of monitoring frequencies and coverage is limited <0.5 m and requires complex signal processing. For this reason, AE is limited for this application. Magnetostrictive sensor (MsS) is another technology for pipeline monitoring first developed and patented by SwRI® [46]. They have lower power output compared to piezoelectric transducer, however, recent advancements have reported significant improvements in their power output, sensitivity and flaw characterisation [47]. Piezoelectric sensing offers the most promising solution due to their stability, reliability, and cost-effectiveness as described in Section 2.2. This has enabled the development of several SHM solutions. Guided Ultrasonic Ltd. offers one such monitoring system gPIMS [48] and this system’s stability and defect detection capabilities have been demonstrated [49] at temperatures up to 90°C. Another example is the system developed by the authors and its installation, operation and performance is reported [50]. Figure 8 shows some of these pipeline monitoring devices.
Commercial pipeline SHM systems (left to right): MsS [46], gPIMS [48] and iPerm [50].
Monitoring of a tank floor is more important compared to the tank wall, due to the fact that degradation of the tank floor is not visible until it becomes severe. A tank floor comprises a large number of plates (dependent on the tank diameter) of 6–8 mm thickness joined with lap welds. SHM of tank floors using UGW is challenging due to this complicated layout, the propagation distance requirement, level of attenuation, and wave reflections and mode conversions at boundaries. GWT of above-ground storage tanks (AST) is an emerging technology and was first explored in 2006 by Mažeika et al. [17]. S0 mode was chosen as the principal mode of interest due to low energy losses from the fluid inside the tank compared to A0 mode [51]. Considering the large area and complexity of tank floor designs, guided waves should be transmitted with as much energy as possible. To achieve full coverage, a Pitch-Catch configuration (through transmission) is preferred for data acquisition and the appropriate transducer array layout was studied by Mažeika et al. [17] and Feng et al. [52].
Transducer bonding is also problematic as the tank annular chime gets heavily corroded over time due to environmental influences. Previous studies on selection of sensor location have evaluated two scenarios: wave excitation on tank annular chime; and tank wall. Currently, normal mode transducers (elongated type) are installed on the annular chime of the tank to transmit guided waves across the floor plate, and a tomographic technique is used to map the structural health of the tank floor [53]. The SH0 mode is an interesting alternative to the S0 mode for this application due to its non-dispersive characteristic [54]. Advances in flexible shear mode transducers led to a recent study [55] on their application to SHM of AST floors. This study evaluated the two modes of interest: S0 mode for normal excitation; and SH0 mode for shear excitations. Sensor location on both the tank wall and annular chime were considered for the two modes. The sensor location is illustrated in Figure 9.
Schematic of a tank (top) and layout of the point of excitation and reception of the two cases studied (bottom)—excitation and reception from the tank floor in Case 1 and tank wall in Case 2.
The wave propagation for both cases is illustrated in Figure 10. A significant amplitude drop for the applied normal load on the tank wall was observed in comparison to the tank floor. However, in the case of shear loading, insignificant amplitude drop was observed.
FEA showing UGW excitation on tank annular chime and tank wall: applied (a) normal and (b) shear stress on tank chime; and (c) normal and (d) shear stress on tank wall.
The application of shear stress on tank wall for guided wave testing of tank floors was thus realised. This increases the potential market for tank floor inspection using UGW as the tank wall can be used to bond shear transducers for structural health monitoring.
Several investigations into the effect of environmental and operational conditions on the recorded ultrasonic signals have been carried out, and change of temperature has been shown to be the main source of signal fluctuations [56, 57, 58]. The influence of temperature on GWT is a combination of effects due to the structure’s mechanical properties and the effects on ultrasonic transducers and their bonding. Previous study has reported that, for small ambient temperature variations of a few degrees, the effect on transducer performance is much less significant than that on the wave propagation [59]. The UGW signals will undergo changes in the amplitude and phase. The change in UGW signal amplitude is attributable to changes in temperature-dependent properties of the ultrasonic transducer, particularly the piezoelectric materials and adhesives. To minimise this variability, careful selection of adhesives and transducer material for target temperature is recommended. The phase shift in the UGW signal is due to the change in wave propagation velocity due to variation in the mechanical properties of the waveguide [60], i.e. pipe or tank floor in this study. The material properties of relevance include elastic and shear moduli, and the density; which in turn relates to the elasto-acoustic properties of the material, acoustic absorption and ultrasonic wave velocity. Thermal expansion adds to this effect by changing the propagation distance directly and indirectly through changes in the thickness of the plate or the pipe. The relationship between the difference in time of arrival (TOA) of the signal and the change in temperature of the structure can be described as:
where
The issues described in Section 4.1 led to several investigations within the SHM research community and a number of EOC compensation strategies have been proposed. Their main objective is to achieve UGW propagation time and amplitude correction for enhanced defect sensitivity. These correction strategies can be classified into two techniques: data-driven and analytical physics-based.
The data-driven techniques requires a large set of baseline measurements from the structure at different temperatures. A signal from the ‘bank’ of baselines is then selected to minimise the difference relative to the test signal for a particular temperature. This method is called Optimum Baseline Selection (OBS). A number of selection criteria including mean square deviation [56] and maximum residual amplitude [62] have been proposed. This method has limitations for cases when a large set of baselines is not available and if the temperature of the selected baseline is different from the temperature of the test signal. Baseline signal stretch (BSS) was introduced as a complimentary technique that in its simplest form requires only one single baseline at a reference temperature. In BSS, time domain stretching is performed to adjust the selected baseline and the local coherence is estimated as a function of time. BSS can be performed in both time and frequency domain to achieve similar performance [63]. A number of researchers have explored these methods to provide enhanced temperature compensation with a reduced number of baseline data sets [62, 63, 64, 65]. The temperature resolution of the baseline set is defined by the capability of BSS method as the stretching required for large temperature difference leads to distortion of the signal’s frequency content. The performance of BSS depends on signal complexity and mode purity and. For practical application, a temperature step of 1–2°C is recommended for baseline dataset [63]. Recently developed modified-BSS (MBBS) method outperformed BSS and is more effective for temperature differences of up to 13°C [66]. BSS can be computation intensive and alternative methods with improved computational speed have been proposed that operate on signals in the stretch factor and scale-transform domain [67].
Physics-based analytical techniques for temperature compensation [68, 69] utilise underlying physical principles such as changes in material properties and thermal expansion (described in Section 4.2) for transducer signal reconstruction at different temperatures. The advantage of these techniques is that it does not require a large set of baseline sensor measurements from the structure. The performance of these analytical temperature compensation models is shown to be at par with the state-of-the-art data driven techniques. They are however limited to simple structural geometries and boundary conditions. Combinations of analytical and data-driven strategies that require fewer baselines are being explored [70] which will offer an efficient, practical and useful approach for temperature compensation.
A method for damage detection must be applied to the corrected data to see whether the structure being monitored has developed any damage. In structures containing high densities of structural elements, the time-traces obtained are often too complex to be directly interpreted due to a large number of overlapping reflections. A popular approach for SHM is baseline subtraction, which is based on the comparison of structure’s ultrasonic response at original state (baseline) with response at a later stage. The subtracted residual signal will remove reflections from pipe or tank floor features and isolate any damage scattered signals as illustrated in Figure 11.
Baseline subtraction of UGW time traces (a) undamaged structure (b) damaged structure (c) defect signal after baseline subtraction [71].
For sensor arrays Full-Matrix Capture (FMC) is a data acquisition process which records all possible transmit-receive combinations of UGW data. This data collection matrix is symmetric due to reciprocity (Figure 12) and only the lower and upper triangular parts of the matrix need be recorded. This data can then be used to obtain tomography images of the structure or perform sound energy focusing techniques to improve SNR.
Transmit-receive matrices for the imaging algorithms; (a) common source method (b) synthetic aperture focusing technique and (c) total focusing method [72].
For complex structures and if the data corresponding to the damage state is not known a priori, damage detection strategies based on unsupervised algorithms are used. One such strategy is based on the Outlier Analysis (OA) algorithm which extracts damage sensitive features from the UGW signals and aims to identify if they have deviated from their baseline distribution using Mahalanobis squared distance [73]. OA can be applied as univariate and multivariate depending on a number of features. For univariate implementation, root mean square (RMS) of the signal has been successfully used as a damage sensitive feature for detection of corrosion type defects in plates [56] and pipes [74]. To increase the damage sensitivity, multivariate OA is recommended, where a number of features are extracted from the UGW signals and classical methods of multivariate statistics such as principal component analysis (PCA) are applied. For UGW, the features of interest include time-of-flight, frequency centres, energies, modes of scattered waves, and time-frequency spread. A review of the feature extraction approaches based on time-frequency representations such as short-time Fourier transform, Wigner-Ville distribution, Hilbert-Huang transform, and wavelet transform can be found in [75]. Recent advances in the field of artificial intelligence led to researchers formulating defect detection as a machine learning problem. A study using an Artificial Neural Network (ANN) based strategy was applied for damage classification [73] and was reported to outperform OA for damage detection using just one feature. Such supervised machine learning strategies will however require data from the structure with known types and levels of damage, which may not always be present.
This chapter presents the advances in guided wave technology for structural health monitoring of two of the most critical metallic assets, pipelines and storage tanks, in the Oil and Gas industry. These SHM technologies support cost-effective asset integrity management by enabling a condition based maintenance model, moving away from conventional routine inspection. The advances in SHM technologies of pipes and tanks are presented. Operational requirements of these SHM systems are discussed with a thorough review of the state-of-the-art and fundamentals of pipelines and tank floor inspection using UGW. Limitations of SHM for high temperature pipelines have also been identified for future research and development.
Bioremediation and natural reduction are also seen as a solution for emerging contaminant problems; microbes are very helpful to remediate the contaminated environment. Number of microbes including aerobic, anaerobic bacteria and fungi are involved in bioremediation process. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. There are two types of factors these are biotic and abiotic conditions are determine rate of degradation. Currently, different methods and strategies are applied for bioremediation process.
Environmental pollution has been on the rise in the past few decades due to increased human activities such as population explosion, unsafe agricultural practices, unplanned urbanization, deforestation, rapid industrialization and non-judicious use of energy reservoirs and other anthropogenic activities. Among the pollutants that are of environmental and public health concerns due to their toxicities are: chemical fertilizer, heavy metals, nuclear wastes, pesticides, herbicides, insecticides greenhouse gases, and hydrocarbons. Thousands of hazardous waste sites have been identified and estimated is that more will be identified in the coming decades. Release of pollutants into the environment comes from illegal dumping by chemical companies and industries. Many of the techniques utilized for site clean-up in the past, such as digging up the contaminated soil and hauling it away to be land filled or incinerated have been prohibitively expensive and do not provide permanent solution. More recent techniques such as vapor extraction and soil venting are cost effective but incomplete solution.
Bioremediation is a process where biological organisms are used to remove or neutralize an environmental pollutant by metabolic process. The “biological” organisms include microscopic organisms, such as fungi, algae and bacteria, and the “remediation”—treating the situation.
In the Earth’s biosphere, microorganisms grow in the widest range of habitats. They grow in soil, water, plants, animals, deep sea, and freezing ice environment. Their absolute numbers and their appetite for a wide range of chemicals make microorganisms the perfect candidate for acting as our environmental caretakers.
“Bioremediation is a waste management technique that includes the use of living organisms to eradicate or neutralize pollutants from a contaminated site.”
“Bioremediation is a ‘treatment techniques’ that uses naturally occurring organisms to break down harmful materials into less toxic or non-toxic materials.”
Bioremediation technologies came into extensive usage and continue growing today at an exponential rate. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. In the past two decades, there have been recent developments in bioremediation techniques with the decisive goal being to successfully restore polluted environments in an economic, eco-friendly approach. Researchers have developed different bioremediation techniques that restore polluted environments. The micro-organisms used in bioremediation can be either indigenous or non-indigenous added to the contaminated site. Indigenous microorganisms present in polluted environments hold the key to solving most of the challenges associated with biodegradation and bioremediation of pollutant [1]. Environmentally friendly and cost effective are among the major advantages of bioremediation compared to both chemical and physical methods of remediation.
A mechanism of bioremediation is to reduce, detoxify, degrade, mineralize or transform more toxic pollutants to a less toxic. The pollutant removal process depends mainly on the pollutant nature, which includes pesticides, agrochemicals, chlorinated compounds, heavy metals, xenobiotic compounds, organic halogens, greenhouse gases, hydrocarbons, nuclear waste, dyes plastics and sludge. Cleaning technique apply to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms (Figure 1).
Bioremediation approaches for environmental clean-up.
Microorganisms play an important role on nutritional chains that are important part of the biological balance in life. Bioremediation involves the removal of the contaminated materials with the help of bacteria, fungi, algae and yeast. Microbes can grow at below zero temperature as well as extreme heat in the presence of hazardous compounds or any waste stream. The two characters of microbes are adaptability and biological system made them suitable for remediation process [2]. Carbon is the main requirement for microbial activity. Bioremediation process was carried out by microbial consortium in different environments. These microorganisms comprise Achromobacter, Arthrobacter, Alcaligenes, Bacillus, Corynebacterium, Pseudomonas, Flavobacterium, Mycobacterium, Nitrosomonas, Xanthobacter, etc. [3].
There are groups of microbes which are used in bioremediation such as:
Aerobic: aerobic bacteria have degradative capacities to degrade the complex compounds such as Pseudomonas, Acinetobacter, Sphingomonas, Nocardia, Flavobacterium, Rhodococcus, and Mycobacterium. These microbes have been reported to degrade pesticides, hydrocarbons, alkanes, and polyaromatic compounds. Many of these bacteria use the contaminants as carbon and energy source.
Anaerobic: anaerobic bacteria are not as regularly used as aerobic bacteria. There is an increasing interest in aerobic bacteria used for bioremediation of chlorinated aromatic compounds, polychlorinated biphenyls, and dechlorination of the solvent trichloroethylene and chloroform, degrading and converting pollutants to less toxic forms.
Bioremediation process is degrading, removing, changing, immobilizing, or detoxifying various chemicals and physical pollutants from the environment through the activity of bacteria, fungi, algae and plants. Enzymatic metabolic pathways of microorganisms facilitate the progress of biochemical reactions that help in degradation of the pollutant. Microorganisms are act on the pollutants only when they have contact to the compounds which help them to generate energy and nutrients to multiply cells. The effectiveness of bioremediation depends on many factors; including, the chemical nature and concentration of pollutants, the physicochemical characteristics of the environment, and their accessibility to existing microorganisms [4].
The factors are mainly microbial population for degrading the pollutants, the accessibility of contaminants to the microbial population and environment factors like type of soils, pH, temperature, oxygen and nutrients.
Biotic factors are helpful for the degradation of organic compounds by microorganisms with insufficient carbon sources, antagonistic interactions among microorganisms or the protozoa and bacteriophages. The rate of contaminant degradation is frequently dependent on the concentration of the contaminant and the amount of catalyst present in biochemical reaction. The major biological factors are included enzyme activity, interaction (competition, succession, and predation), mutation, horizontal gene transfer, its growth for biomass production, population size and its composition [5, 6].
The interaction of environmental contaminants with metabolic activity, physicochemical properties of the microorganisms targeted during the process. The successful interaction between the microbes and pollutant depends on the environmental situations. Microbial growth and activity are depended on temperature, pH, moisture, soil structure, water solubility, nutrients, site conditions, oxygen content and redox potential, deficiency of resources and physico-chemical bioavailability of pollutants, concentration, chemical structure, type, solubility and toxicity. This above factors are control degradation kinetics [5, 7].
Biodegradation of pollutant can occur under range of pH (6.5–8.5) is generally optimal for biodegradation in most aquatic and terrestrial environment. Moisture affects the metabolism of contaminant because it depends on the kind and amount of soluble constituents that are accessible as well as the pH and osmotic pressure of terrestrial and aquatic systems [8].
Superficially, bioremediation techniques can be carried out ex-situ and in-situ site of application (Figure 1). Pollutant nature, depth and amount of pollution, type of environment, location, cost, and environmental policies are the selection standards that are considered for selecting any bioremediation technique. Performance based on oxygen and nutrient concentrations, temperature, pH, and other abiotic factors that determine the success of bioremediation processes [9, 10].
Ex-situ bioremediation techniques involve digging pollutants from polluted sites and successively transporting them to another site for treatment. Ex-situ bioremediation techniques are regularly considered based on the depth of pollution, type of pollutant, degree of pollution, cost of treatment and geographical location of the polluted site. Performance standards also regulate the choice of ex-situ bioremediation techniques.
Solid-phase treatment
Solid-phase bioremediation is an ex-situ technology in which the contaminated soil is excavated and placed into piles. It is also includes organic waste like leaves, animal manures and agriculture wastes, domestic, industrial wastes and municipal wastes. Bacterial growth is moved through pipes that are distributed throughout the piles. Air pulling through the pipes is necessary for ventilation and microbial respiration. Solid-phase system required huge amount of space and cleanups require more time to complete as compared to slurry-phase processes. Solid-phase treatment processes include biopiles, windrows, land farming, composting, etc. [11].
Slurry-phase bioremediation
Slurry-phase bioremediation is a relative more rapid process compared to the other treatment processes. Contaminated soil is combined with water, nutrient and oxygen in the bioreactor to create the optimum environment for the microorganisms to degrade the contaminants which are present in soil. This processing involves the separation of stones and rubbles from the contaminated soil. The added water concentration depends on the concentration of pollutants, the biodegradation process rate and the physicochemical properties of the soil. After completion of this process the soil is removed and dried up by using vacuum filters, pressure filters and centrifuges. The subsequent procedure is soil disposition and advance treatment of the resultant fluids.
There are far more than nine types of bioremediation, but the following are the most common ways in which it is used.
Bioremediation includes above-ground piling of dug polluted soil, followed by aeration and nutrient amendment to improve bioremediation by microbial metabolic activities. This technique comprises aeration, irrigation, nutrients, leachate collection and treatment bed systems. This specific ex-situ technique is progressively being measured due to its useful features with cost effectiveness, which allows operative biodegradation conditions includes pH, nutrient, temperature and aeration are effectively controlled. The biopile use to treat volatile low molecular weight pollutants; it can also be used effectively to remediate polluted very cold extreme environments [12, 13, 14]. The flexibility of biopile allows remediation time to be shortened as heating system can be integrated into biopile design to increase microbial activities and contaminant availability thus increasing the rate of biodegradation [15]. Additionally, heated air can be injected into biopile design to deliver air and heat in tandem, in order to facilitate enhanced bioremediation. Bulking agents such as straw saw dust, bark or wood chips and other organic materials have been added to enhance remediation process in a biopile construct. Although biopile systems connected to additional field ex-situ bioremediation techniques, such as land farming, bioventing, biosparging, robust engineering, maintenance and operation cost, lack of power supply at remote sites, which would facilitate constant air circulation in contaminated piled soil through air pump. Additional, extreme heating of air can lead to soil drying undertaking bioremediation, which will inhibit microbial activities and which stimulate volatilization than biodegradation [16].
Windrows is bioremediation techniques depends on periodic rotating the piled polluted soil to improve bioremediation by increasing microbial degradation activities of native and transient hydrocarbonoclastic present in polluted soil. The periodic turning of polluted soil increase in aeration with addition of water, uniform distribution of nutrients, pollutants and microbial degradation activities, accordingly increase the rate of bioremediation, which can be proficient through acclimatization, biotransformation and mineralization. Windrow treatment as compared to biopile treatment, showed higher rate of hydrocarbon removal however, the effectiveness of the windrow for hydrocarbon removal from the soil [17]. However, periodic turning associated with windrow treatment not the best selection method to implement in bioremediation of soil polluted with toxic volatiles compounds. The use of windrow treatment has been associated in greenhouse gas (CH4) release due to formation of anaerobic zone inside piled polluted soil, which frequently reduced aeration [18].
Land farming is the simplest, outstanding bioremediation techniques due to its low cost and less equipment requirement for operation. It is mostly observed in ex-situ bioremediation, while in some cases of in-situ bioremediation technique. This consideration is due to the site of treatment. Pollutant depth is important in land farming which can be carried out ex-situ or in-situ. In land farming, polluted soils are regularly excavated and tilled and site of treatment speciously regulates the type of bioremediation. When excavated polluted soil is treated on-site, it is ex-situ as it has more in common than other ex-situ bioremediation techniques. Generally, excavated polluted soils are carefully applied on a fixed layer support above the ground surface to allow aerobic biodegradation of pollutant by autochthonous microorganisms [19]. Over all, land farming bioremediation technique is very simple to design and implement, requires low capital input and can be used to treat large volume of polluted soil with minimal environmental impact and energy requirement [20].
Bioreactor is a vessel in which raw materials are converted to specific product(s) following series of biological reactions. There are different operational modes of bioreactors, which include: batch, fed-batch, sequencing batch, continuous and multistage. Bioreactor provides optimal growth conditions for bioremediation. Bioreactor filled with polluted samples for remediation process. The bioreactor based treatment of polluted soil has several advantages as compared to ex-situ bioremediation procedures. Bioreactor-based bioremediation process having excellent control of pH, temperature, agitation and aeration, substrate and inoculum concentrations efficiently reduces bioremediation time. The ability to control and manipulate process parameters in a bioreactor implies that biological reactions. The flexible nature of bioreactor designs allows maximum biological degradation while minimizing abiotic losses [21].
Advantages of ex-situ bioremediation
Suitable for a wide range of contaminants
Suitability relatively simple to assess from site investigation data
Biodegradation are greater in a bioreactor system than or in solid-phase systems because the contaminated environment is more manageable and more controllable and predictable.
Disadvantages
Not applicable to heavy metal contamination or chlorinated hydrocarbons such as trichloroethylene.
Non-permeable soil requires additional processing.
The contaminant can be stripped from soil via soil washing or physical extraction before being placed in bioreactor.
These techniques comprise treating polluted substances at the pollution site. It does not need any excavation and by little or no disturbance in soil construction. Perfectly, these techniques should to be cost effective compared to ex-situ bioremediation techniques. Some in-situ bioremediation techniques like bioventing, biosparging and phytoremediation may be enhanced, while others may be progress without any form of improvement such as intrinsic bioremediation or natural attenuation. In-situ bioremediation techniques have been effectively used to treat chlorinated solvents, heavy metals, dyes, and hydrocarbons polluted sites [22, 23, 24].
In-situ bioremediation is two types; these are intrinsic and engineered bioremediation.
Intrinsic bioremediation
Intrinsic bioremediation also known as natural reduction is an in-situ bioremediation technique, which involves passive remediation of polluted sites, without any external force (human intervention). This process deals with stimulation of indigenous or naturally occurring microbial population. The process based on both microbial aerobic and anaerobic processes to biodegrade polluting constituents containing those that are recalcitrant. The absence of external force implies that the technique is less expensive compared to other in-situ techniques.
Engineered in-situ bioremediation
The second approach involves the introduction of certain microorganism to the site of contamination. Genetically Engineered microorganisms used in the in-situ bioremediation accelerate the degradation process by enhancing the physicochemical conditions to encourage the growth of microorganisms.
Bioventing techniques involve controlled stimulation of airflow by delivering oxygen to unsaturated (vadose) zone in order to increase activities of indigenous microbes for bioremediation. In bioventing, amendments are made by adding nutrients and moisture to increase bioremediation. That will achieve microbial transformation of pollutants to a harmless state. This technique has gained popularity among other in-situ bioremediation techniques [25].
This technique combines vacuum-enhanced pumping, soil vapor extraction and bioventing to achieve soil and ground water remediation by indirect providing of oxygen and stimulation of contaminant biodegradation [26]. This technique is planned for products recovery from remediating capillary, light non-aqueous phase liquids (LNAPLs), unsaturated and saturated zones. This technique used to remediate soils which are contaminated with volatile and semi-volatile organic compounds. The method uses a “slurp” that spreads into the free product layer, which pulls up liquids from this layer. The pumping machine transports LNAPLs to the surface by upward movement, where it becomes separated from air and water. In this technique, soil moisture bounds air permeability and declines oxygen transfer rate, which reducing microbial activities. Although this technique is not suitable for low permeable soil remediation, it is cost effective operation procedure due to less amount of ground water, minimizes storage, treatment and disposal costs.
This technique is similar to bioventing in this air is injected into soil subsurface to improve microbial activities which stimulate pollutant removal from polluted sites. However, in bioventing, air is injected in saturated zone, which can help in upward movement of volatile organic compounds to the unsaturated zone to stimulate biodegradation process. The efficiency of biosparging depends on two major factors specifically soil permeability and pollutant biodegradability. In bioventing and soil vapor extraction (SVE), biosparing operation is closely correlated technique known as in-situ air sparging (IAS), which depend on high air-flow rates for volatilization of pollutant, whereas biosparging stimulates biodegradation. Biosparging has been generally used in treating aquifers contaminated with diesel and kerosene.
Phytoremediation is depolluting the contaminated soils. This technique based on plant interactions like physical, chemical, biological, microbiological and biochemical in contaminated sites to diminish the toxic properties of pollutants. Which is depending on pollutant amount and nature, there are several mechanisms such as extraction, degradation, filtration, accumulation, stabilization and volatilization involved in phytoremediation. Pollutants like heavy metals and radionuclides are commonly removed by extraction, transformation and sequestration. Organic pollutants hydrocarbons and chlorinated compounds are mostly removed by degradation, rhizoremediation, stabilization and volatilization, with mineralization being possible when some plants such as willow and alfalfa are used [27, 28].
Some important factors of plant as a phytoremediator include: root system, which may be fibrous or tap depending on the depth of pollutant, above ground biomass, toxicity of pollutant to plant, plant existence and its adaptability to predominant environmental conditions, plant growth rate, site monitoring and above all, time mandatory to achieve the preferred level of cleanliness. In addition, the plant must be resistant to diseases and pests [29]. In phytoremediation removal of pollutant includes uptake, translocation from roots to shoots. Further, translocation and accumulation depends on transpiration and partitioning [30]. However, the process is possible to change, depending on other factors such as nature of contaminant and plant. The mostly plants growing in any polluted site are good phytoremediators. Therefore, the success of any phytoremediation method mainly depends on improving the remediation potentials of native plants growing in polluted sites either by bioaugmentation with endogenous or exogenous plant. One of the major advantages of using plants to remediate polluted site is that some precious metals can bioaccumulate in some plants and recovered after remediation, a process known as phytomining.
This technique is commonly observed as a physical method for remediating contaminated groundwater. However, biological mechanisms are precipitation degradation and sorption of pollutant removal used in PRB method. The substitute terms such as biological PRB, bio-enhanced PRB, passive bioreactive barrier, have been suggested to accommodate the biotechnology and bioremediation aspect of the technique. In general, PRB is an in-situ technique used for remediating heavy metals and chlorinated compounds in groundwater pollution [31, 32].
In-situ bioremediation methods do not required excavation of the contaminated soil.
This method provides volumetric treatment, treating both dissolved and solid contaminants.
The time required to treat sub-surface pollution using accelerated in-situ bioremediation can often be faster than pump and treat processes.
It may be possible to completely transform organic contaminants to innocuous substances like carbon dioxide, water and ethane.
It is a cost effective method because there is minimal site disruption.
Depending on specific site, some contaminants may not be absolutely transformed to harmless products.
If transformation stops at an intermediate compound, the intermediate may be more toxic and/or mobile than parent compound some are recalcitrant contaminants cannot be biodegradable.
When incorrectly applied, injection wells may become blocked by profuse microbial growth due to addition of nutrients, electron donor and electron acceptor.
Heavy metals and organic compounds concentration inhibit activity of indigenous microorganisms.
In-situ bioremediation usually required microorganism’s acclimatization, which may not develop for spills and recalcitrant compounds.
Bioremediation techniques are varied and have demonstrated effective in restoring polluted sites. Microorganisms play fundamental role in bioremediation; consequently, their diversity, abundance and community structure in polluted environments offer insight into the chance of any bioremediation technique providing other environmental factors, which can inhibit microbial activities. Advanced Molecular techniques such as ‘Omics’ includes genomics, proteomics, metabolomics and transcriptomics have contributed towards microbial identification, functions, metabolic and catabolic pathways, with microbial based methods. Nutrient availability, low population or absence of microbes with degradative capabilities, and pollutant bioavailability may delay the achievement of bioremediation. Since bioremediation depends on microbial process, biostimulation and bioaugmentation approaches speed up microbial activities in polluted sites. Biostimulation increase microbial activities by the addition of nutrients to a polluted sample. Microorganisms are abundantly present in different type of environmental condition, it is noticeable that pollutant degrading microbes are naturally present in polluted contaminated sites, their growth and metabolic activities may depends on pollutant type and concentration; later, we can use of agro-industrial wastes, which contains nitrogen, phosphorus and potassium as a nutrient source most polluted sites. Microbial consortium has been reported to degrade pollutants more efficiently than pure isolates [33].
This activity due to metabolic diversities of individual isolates, which potency create from their isolation source, adaptation process, pollutant composition, and synergistic effects, which may lead to complete and rapid degradation of pollutants when such isolates are mixed together [34]. Additional so, both bioaugmentation and biostimulation were effective in removing pollutant such as polyaromatic hydrocarbons (PAHs) from heavily polluted sample compared to non-amended setup (control) [35].
Although bioaugmentation has recognized effective method, it has been shown to increase the degradation of many compounds. If proper biodegrading microorganisms are not present in soil or if microbial populations decreased because of contaminant toxicity, specific microorganisms can be added as “introduced organisms” to improve the current populations and the possibility that the inoculated microorganisms may not survive in the new environment make bioaugmentation a very uncertain method. This process is known as bioaugmentation. Bioremediation technique in which natural or genetically engineered bacteria with unique metabolic profiles are used to treat sewage or contaminated water or soil. The use of alginate, agar, agarose, gelatin, gellan gum and polyurethane as carrier materials solve some of the challenges associated with bioaugmentation [36].
Biosurfactants are chemical equivalents having ecofriendly and biodegradable properties. However, high construction cost and low scalability application of biosurfactants to polluted site are uneconomical. Agro-industrial wastes combination are nutrient sources for development of biosurfactant producers during fermentation process. Application of several bioremediation techniques will help increase remediation efficiency [37].
Enhancing bioremediation ability with organized use of genetically engineered microorganisms (GEM) is a favorable approach. This is due to possibility of engineering a designer biocatalyst target pollutant including recalcitrant compounds by combining a novel and efficient metabolic pathways, widening the substrate range of existing pathways and increasing stability of catabolic activity [38].
However, parallel gene transfer and multiplication of GEM in an environmental application are encouraging approach. Bacterial containment systems, in which any GEM escaping an environment to reconstruct polluted environment.
Further, derivative pathway of genetically engineering microorganisms with a target polluted compound using biological approach could increase bioremediation efficiency. Nanomaterials decline the toxicity of pollutant to microorganisms because nanomaterials having increase surface area and lower activation energy, which reduce time and cost of bioremediation [39].
Bioremediation must be considered as appropriate methods that can applied to all states of matter in the environment
Solids (soils, sediment and sludge)
Liquids (ground water, surface water and industrial waste water
Gases (industrial air emissions)
Sub-surface environments (saturated and vadose zones).
The general approaches to bioremediation are the (i) intrinsic (natural) bioremediation, (ii) biosimulation (environmental modifications, through nutrient application and aeration, and (iii) bioaugmentation (addition of microbes).
The biological community exploited for bioremediation generally consists of the native soil microflora. However, higher plants can also be manipulated to enhance toxicant removal (phytoremediation), especially for remediation of metal contaminated soils.
All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.
It is a natural process; it takes a little time, as an adequate waste treatment process for contaminated material such as soil. Microbes able to degrade the contaminant, the biodegradative populations become reduced. The treatment products are commonly harmless including cell biomass, water and carbon dioxide.
It needs a very less effort and can commonly carry out on site, regularly without disturbing normal microbial activities. This also eradicates the transport amount of waste off site and the possible threats to human health and the environment.
It is functional in a cost effective process as comparison to other conventional methods that are used for clean-up of toxic hazardous waste regularly for the treatment of oil contaminated sites. It also supports in complete degradation of the pollutants; many of the toxic hazardous compounds can be transformed to less harmful products and disposal of contaminated material.
It does not use any dangerous chemicals. Nutrients especially fertilizers added to make active and fast microbial growth. Because of bioremediation change harmful chemicals into water and harmless gases, the harmful chemicals are completely destroyed.
Simple, less labor intensive and cheap due to their natural role in the environment.
Contaminants are destroyed, not simply transferred to different environmental.
Nonintrusive, possibly allowing for continued site use.
Current way of remediating environment from large contaminates and acts as ecofriendly sustainable opportunities.
It is restricted for biodegradable compounds. Not all compounds are disposed to quick and complete degradation process.
There are particular new products of biodegradation may be more toxic than the initial compounds and persist in environment.
Biological processes are highly specific, ecofriendly which includes the presence of metabolically active microbial populations, suitable environmental growth conditions and availability of nutrients and contaminants.
It is demanding to encourage the process from bench and pilot-scale to large-scale field operations. Contaminants may be present as solids, liquids and gases. It often takes longer than other treatment preferences, such as excavation and removal of soil or incineration.
Research is needed to develop and engineer bioremediation technologies that are appropriate for sites with complex mixtures of contaminants that are not evenly dispersed in the environment.
Bioremediation is limited to those compounds that are biodegradable. This method is susceptible to rapid and complete degradation. Products of biodegradation may be more persistent or toxic than the parent compound in the environment.
Specificity
Biological processes are highly specific. Important site factors mandatory for success include the presence of metabolically capable microbial populations, suitable environmental growth conditions, and appropriate levels of nutrients and contaminants.
Scale up limitation
It is difficult to scale up bioremediation process from batch and pilot scale studies applicable to large scale field operations.
Technological advancement
More research is required to develop modern engineer bioremediation technologies that are suitable for sites with composite combinations of contaminants that are not equally distributed in the environment. It may be present as solids, liquids and gases forms.
Time taking process
Bioremediation takes longer time compare to other treatment options, such as excavation and removal of soil from contaminated site.
Regulatory uncertainty
We are not certain to say that remediation is 100% completed, as there is no accepted definition of clean. Due to that performance evaluation of bioremediation is difficult, and there is no acceptable endpoint for bioremediation treatments.
Biodegradation is very fruitful and attractive option to remediating, cleaning, managing and recovering technique for solving polluted environment through microbial activity. The speed of undesirable waste substances degradation is determined in competition with in biological agents like fungi, bacterial, algae inadequate supply with essential nutrient, uncomfortable external abiotic conditions (aeration, moisture, pH, temperature), and low bioavailability. Bioremediation depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. The leading step to a successful bioremediation is site description, which helps create the most suitable and promising bioremediation technique (ex-situ or in-situ). Ex-situ bioremediation techniques tend to be more costly due to excavation and transportation from archeological site. However, they can be used to treat wider range of pollutants. In contrast, in-situ techniques have no extra cost for excavation; however, on-site installation cost of equipment, attached with effectively and control the subsurface of polluted site can reduce some ineffective in-situ bioremediation methods. Geological characteristics of polluted sites comprising soil, pollutant type and depth, human habitation site and performance of every bioremediation technique should be integrated in determining the most appropriate and operative bioremediation technique to successfully treatment of polluted sites.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"591",title:"Reverse Engineering",slug:"reverse-engineering",parent:{title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:1,numberOfAuthorsAndEditors:33,numberOfWosCitations:23,numberOfCrossrefCitations:8,numberOfDimensionsCitations:21,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"reverse-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1387",title:"Reverse Engineering",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"5f87643af49fef069017d4c31295ee52",slug:"reverse-engineering-recent-advances-and-applications",bookSignature:"Alexandru C. Telea",coverURL:"https://cdn.intechopen.com/books/images_new/1387.jpg",editedByType:"Edited by",editors:[{id:"108150",title:"Dr.",name:"A.C.",middleName:null,surname:"Telea",slug:"a.c.-telea",fullName:"A.C. Telea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"30511",doi:"10.5772/32931",title:"GUIsurfer: A Reverse Engineering Framework for User Interface Software",slug:"guisurfer-a-generic-reverse-engineering-framework-for-interactive-system-analysis",totalDownloads:2101,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"José Creissac Campos, João Saraiva, Carlos Silva and João Carlos Silva",authors:[{id:"93250",title:"Prof.",name:"Joao",middleName:null,surname:"Silva",slug:"joao-silva",fullName:"Joao Silva"},{id:"93253",title:"Prof.",name:"Joao",middleName:null,surname:"Saraiva",slug:"joao-saraiva",fullName:"Joao Saraiva"},{id:"93260",title:"Prof.",name:"Jose",middleName:null,surname:"Creissac",slug:"jose-creissac",fullName:"Jose Creissac"},{id:"93280",title:"MSc",name:"Carlos",middleName:"Eduardo",surname:"Silva",slug:"carlos-silva",fullName:"Carlos Silva"}]},{id:"30510",doi:"10.5772/33586",title:"Software Reverse Engineering in the Domain of Complex Embedded Systems",slug:"software-reverse-engineering-in-the-domain-of-complex-embedded-systems",totalDownloads:2487,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Holger M. Kienle, Johan Kraft and Hausi A. Müller",authors:[{id:"96251",title:"Dr.",name:"Holger",middleName:null,surname:"Kienle",slug:"holger-kienle",fullName:"Holger Kienle"},{id:"96256",title:"Dr.",name:"Johan",middleName:null,surname:"Kraft",slug:"johan-kraft",fullName:"Johan Kraft"},{id:"129157",title:"Prof.",name:"Hausi",middleName:null,surname:"Muller",slug:"hausi-muller",fullName:"Hausi Muller"}]},{id:"30512",doi:"10.5772/32473",title:"MDA-Based Reverse Engineering",slug:"mda-based-reverse-engineering",totalDownloads:2515,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Liliana Favre",authors:[{id:"91655",title:"Prof.",name:"Liliana",middleName:null,surname:"Favre",slug:"liliana-favre",fullName:"Liliana Favre"}]}],mostDownloadedChaptersLast30Days:[{id:"30516",title:"A Systematic Approach for Geometrical and Dimensional Tolerancing in Reverse Engineering",slug:"a-systematic-approach-for-geometrical-and-dimensional-tolerancing-in-reverse-engineering",totalDownloads:3876,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"George J. Kaisarlis",authors:[{id:"89709",title:"Dr.",name:"George",middleName:null,surname:"Kaisarlis",slug:"george-kaisarlis",fullName:"George Kaisarlis"}]},{id:"30510",title:"Software Reverse Engineering in the Domain of Complex Embedded Systems",slug:"software-reverse-engineering-in-the-domain-of-complex-embedded-systems",totalDownloads:2487,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Holger M. Kienle, Johan Kraft and Hausi A. Müller",authors:[{id:"96251",title:"Dr.",name:"Holger",middleName:null,surname:"Kienle",slug:"holger-kienle",fullName:"Holger Kienle"},{id:"96256",title:"Dr.",name:"Johan",middleName:null,surname:"Kraft",slug:"johan-kraft",fullName:"Johan Kraft"},{id:"129157",title:"Prof.",name:"Hausi",middleName:null,surname:"Muller",slug:"hausi-muller",fullName:"Hausi Muller"}]},{id:"30515",title:"Surface Reconstruction from Unorganized 3D Point Clouds",slug:"surface-reconstruction-from-unorganized-3d-point-clouds",totalDownloads:4007,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Patric Keller, Martin Hering-Bertram and Hans Hagen",authors:[{id:"93856",title:"Dr.",name:"Patric",middleName:null,surname:"Keller",slug:"patric-keller",fullName:"Patric Keller"},{id:"99573",title:"Prof.",name:"Martin",middleName:null,surname:"Hering-Bertram",slug:"martin-hering-bertram",fullName:"Martin Hering-Bertram"},{id:"124276",title:"Prof.",name:"Hans",middleName:null,surname:"Haggen",slug:"hans-haggen",fullName:"Hans Haggen"}]},{id:"30511",title:"GUIsurfer: A Reverse Engineering Framework for User Interface Software",slug:"guisurfer-a-generic-reverse-engineering-framework-for-interactive-system-analysis",totalDownloads:2101,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"José Creissac Campos, João Saraiva, Carlos Silva and João Carlos Silva",authors:[{id:"93250",title:"Prof.",name:"Joao",middleName:null,surname:"Silva",slug:"joao-silva",fullName:"Joao Silva"},{id:"93253",title:"Prof.",name:"Joao",middleName:null,surname:"Saraiva",slug:"joao-saraiva",fullName:"Joao Saraiva"},{id:"93260",title:"Prof.",name:"Jose",middleName:null,surname:"Creissac",slug:"jose-creissac",fullName:"Jose Creissac"},{id:"93280",title:"MSc",name:"Carlos",middleName:"Eduardo",surname:"Silva",slug:"carlos-silva",fullName:"Carlos Silva"}]},{id:"30519",title:"Reverse Engineering Gene Regulatory Networks by Integrating Multi-Source Biological Data",slug:"reverse-engineering-gene-regulatory-networks-by-integrating-multi-source-biological-data",totalDownloads:2422,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Yuji Zhang, Habtom W. Ressom and Jean-Pierre A. Kocher",authors:[{id:"94742",title:"Dr.",name:"Yuji",middleName:null,surname:"Zhang",slug:"yuji-zhang",fullName:"Yuji Zhang"},{id:"128447",title:"Dr.",name:"Habtom",middleName:null,surname:"Ressom",slug:"habtom-ressom",fullName:"Habtom Ressom"},{id:"132971",title:"Dr.",name:"Jean-Pierre",middleName:null,surname:"Kocher",slug:"jean-pierre-kocher",fullName:"Jean-Pierre Kocher"}]},{id:"30517",title:"A Review on Shape Engineering and Design Parameterization in Reverse Engineering",slug:"3d-shape-engineering-and-design-parameterization",totalDownloads:3323,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Kuang-Hua Chang",authors:[{id:"91448",title:"Prof.",name:"Kuang-Hua",middleName:null,surname:"Chang",slug:"kuang-hua-chang",fullName:"Kuang-Hua Chang"}]},{id:"30513",title:"Reverse Engineering Platform Independent Models from Business Software Applications",slug:"reverse-engineering-platform-independent-models-from-business-software-applications",totalDownloads:1904,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Rama Akkiraju, Tilak Mitra and Usha Thulasiram",authors:[{id:"107881",title:"Ms.",name:"Rama",middleName:null,surname:"Akkiraju",slug:"rama-akkiraju",fullName:"Rama Akkiraju"}]},{id:"30518",title:"Integrating Reverse Engineering and Design for Manufacturing and Assembly in Products Redesigns: Results of Two Action Research Studies in Brazil",slug:"integrating-reverse-engineering-and-design-for-manufacturing-and-assembly-in-the-redesigns-of-produc",totalDownloads:3178,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Carlos Henrique Pereira Mello, Carlos Eduardo Sanches da Silva, José Hamilton Chaves Gorgulho Junior, Fabrício Oliveira de Toledo, Filipe Natividade Guedes, Dóris Akemi Akagi and Amanda Fernandes Xavier",authors:[{id:"89409",title:"Dr.",name:"Carlos",middleName:"Henrique Pereira",surname:"Mello",slug:"carlos-mello",fullName:"Carlos Mello"},{id:"100423",title:"Prof.",name:"Carlos Eduardo Sanches",middleName:null,surname:"Silva",slug:"carlos-eduardo-sanches-silva",fullName:"Carlos Eduardo Sanches Silva"},{id:"100424",title:"Prof.",name:"José Hamilton Chaves",middleName:null,surname:"Gorgulho Junior",slug:"jose-hamilton-chaves-gorgulho-junior",fullName:"José Hamilton Chaves Gorgulho Junior"},{id:"100425",title:"Mr.",name:"Fabrício Oliveira",middleName:null,surname:"Toledo",slug:"fabricio-oliveira-toledo",fullName:"Fabrício Oliveira Toledo"},{id:"100426",title:"Mr.",name:"Filipe Natividade",middleName:null,surname:"Guedes",slug:"filipe-natividade-guedes",fullName:"Filipe Natividade Guedes"},{id:"127759",title:"Ms.",name:"Doris Akemi",middleName:null,surname:"Akagi",slug:"doris-akemi-akagi",fullName:"Doris Akemi Akagi"},{id:"129697",title:"MSc.",name:"Amanda Fernandes",middleName:null,surname:"Xavier",slug:"amanda-fernandes-xavier",fullName:"Amanda Fernandes Xavier"}]},{id:"30514",title:"Reverse Engineering the Peer to Peer Streaming Media System",slug:"reverse-engineering-the-peer-to-peer-streaming-media-system",totalDownloads:1670,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Chunxi Li and Changjia Chen",authors:[{id:"99897",title:"Dr.",name:"Chunxili",middleName:null,surname:"Li",slug:"chunxili-li",fullName:"Chunxili Li"},{id:"99916",title:"Prof.",name:"Changjia",middleName:null,surname:"Chen",slug:"changjia-chen",fullName:"Changjia Chen"}]},{id:"30512",title:"MDA-Based Reverse Engineering",slug:"mda-based-reverse-engineering",totalDownloads:2515,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"reverse-engineering-recent-advances-and-applications",title:"Reverse Engineering",fullTitle:"Reverse Engineering - Recent Advances and Applications"},signatures:"Liliana Favre",authors:[{id:"91655",title:"Prof.",name:"Liliana",middleName:null,surname:"Favre",slug:"liliana-favre",fullName:"Liliana Favre"}]}],onlineFirstChaptersFilter:{topicSlug:"reverse-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/175304/katharina-sporbeck",hash:"",query:{},params:{id:"175304",slug:"katharina-sporbeck"},fullPath:"/profiles/175304/katharina-sporbeck",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()