Recent advances in endoscopic technology have generated an increasing interest in strengthening the collaboration between clinicians and computers scientist to develop intelligent systems that can provide additional information to clinicians in the different stages of an intervention. The objective of this chapter is to identify clinical drawbacks of colonoscopy in order to define potential areas of collaboration. Once areas are defined, we present the challenges that colonoscopy images present in order computational methods to provide with meaningful output, including those related to image formation and acquisition, as they are proven to have an impact in the performance of an intelligent system. Finally, we also propose how to define validation frameworks in order to assess the performance of a given method, making an special emphasis on how databases should be created and annotated and which metrics should be used to evaluate systems correctly.
Part of the book: Screening for Colorectal Cancer with Colonoscopy