Means of rooting depth (m) for various pasture cultivars at Hamilton and Warrak in March 2005 (Nie et al., 2008).
\r\n\tIn order to understand the detailed content, these parameters are also divided into different classes such as inert, readily biodegradable, soluble COD, etc. However, still we do not possess detailed knowledge on organics in water sources or wastewater streams. Therefore, during the last decade, scientists tried to divide organics into different classes and understand their treatment potential and natural pathways. This book aims to fill out a very significant gap in this research field. Different treatment processes, monitoring and water determination chapters on dissolved organics, emerging organic pollutants, endocrine disruptors, emerging disinfection by-products, microplastic etc. in water or wastewater are welcome to this book project.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"358ff11fd43b59f3a36498ef0494189d",bookSignature:"Associate Prof. Taner Yonar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8934.jpg",keywords:"COD, BOD, TOC, treatment, toxicity, fire retardents, bioacumulaion, treatment, pesticides, hormones, sources of microplastics, effects on health",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 11th 2019",dateEndSecondStepPublish:"July 2nd 2019",dateEndThirdStepPublish:"August 31st 2019",dateEndFourthStepPublish:"November 19th 2019",dateEndFifthStepPublish:"January 18th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar",profilePictureURL:"https://mts.intechopen.com/storage/users/190012/images/system/190012.png",biography:"Prof. Dr. Taner Yonar is a Professor of Uludag University, Engineering Faculty, Environmental Engineering Department. He has received his B.Sc. (1996) degree from the Environmental Engineering Department, Uludag University. He received his M.Sc. (1999) and Ph.D. (2005) degrees in Environmental Technology from Uludag University, Institute of Sciences. He did his post-doctoral research in the UK, at Newcastle University, Chemical Engineering and Advanced Materials Department (2011). He teaches graduate and undergraduate level courses in Environmental Engineering on water and wastewater treatment and advanced treatment technologies. He works on advanced oxidation, membrane processes, and electrochemical processes. He is the editor of three books (published by IntechOpen) and the author of over 80 research papers.",institutionString:"Uludağ University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Uludağ University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10026",title:"Electrodialysis",subtitle:null,isOpenForSubmission:!1,hash:"ffef55f8ffe48f096acaa5f6329ed76f",slug:"electrodialysis",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/10026.jpg",editedByType:"Edited by",editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18731",title:"Use of Perennial Grass in Grazing Systems of Southern Australia to Adapt to a Changing Climate",doi:"10.5772/23949",slug:"use-of-perennial-grass-in-grazing-systems-of-southern-australia-to-adapt-to-a-changing-climate",body:'\n\t\tGrasslands and rangelands occupy over 70% of the earth’s land area (Holechek et al., 2004; World Resource Institute, 2000), and are a major source of meat, milk and fibre production in the world. The rising demand for meat and milk in the past 30 – 40 years and the adverse impact from climate varibility have placed great pressure on the productive and sustainable use of grazing lands (Delgado, 2005; Nie & Norton, 2009). By 2020, it is predicted that developing countries will consume 72 m tons more meat and 152 m tons more milk compared to 2002/03 whereas developed countries’ increases will be 9 and 18 m tons for meat and milk, respectively (Delgado, 2005).
\n\t\t\tAustralia is the world’s driest inhabited continent. Half of its total land area has an average annual rainfall (AAR) of less than 300 mm. Around 60% is used for agriculture, of which over 90% is used for grazing (Peeters, 2008). A particular feature of the continent is the high rainfall variability which makes selecting the right pasture species/cultivars, optimising pasture and grazing management and avoiding overgrazing very challenging. About 5% of Australia’s grazing lands have been sown to introduced plant species and these improved pastures support a large proportion of the domestic livestock. The improved pasture species are productive and generally have high nutritive characteristics; however, their persistence is often poor due to the limited capacity to sustain a suite of varying soil, climatic and management conditions. A pasture survey in south west Victoria revealed that the majority of pastures were dominated by low-producing, ‘unimproved’ grass species (Quigley et al., 1992), and similar results were found in southern New South Wales (NSW; Virgona & Hildebrand, 2007).
\n\t\t\tThe main perennial pasture grasses sown in southern Australia are perennial ryegrass (Lolium perenne), phalaris (Phalaris aquatica), tall fescue (Festuca arundinaceum syn. Lolium arundinaceum), and cocksfoot (Dactylis glomerata) (Reed, 1996). These grasses differ in their requirements of rainfall, temperature and soil type and fertility for growth, therefore have a varying degree of adaptation in different regions. Plant breeders have developed new cultivars to improve one or more attributes for each of the grasses. Agronomists working with other specialists such as animal and soil scientists have developed management systems to accommodate the expression of the attributes from the new cultivars. At present there are large variations between cultivars within each species, not to mention between species.
\n\t\t\tIn rangelands and marginal land classes such as steep hill or stony country where improved perennial grasses cannot be sown or do not persist, Australian native grasses are often the dominant perennial species. Native grasses have grown and evolved in Australia for millions of years, and are generally well adapted to the soil and climatic conditions. While there has been debate on the yield and nutritive value of native grasses compared with improved exotic species, there is a general consensus that native grasses are better adapted to low fertility soils and low input farming systems that receive low and unreliable rainfall.
\n\t\t\tClimate change projections for Australia indicate increasing temperatures, varying rainfall patterns across regions, and elevated atmospheric carbon dioxide (CO2) concentrations (CSIRO & BoM, 2007), which are likely to affect the productivity of pasture-based systems, although the overall effect is likely to vary regionally, depending on the combination of those changes (Harle et al., 2007; Howden et al., 2008; Mc Keon et al., 2009). The predicted long-term (up to 2070) rainfall patterns indicate a higher chance of rainfall reduction in southern than in north, central and eastern Australia (CSIRO & BoM, 2007). The rainfall reductions in southern Australia are projected to be largest in winter and spring.
\n\t\t\tResearch into the responses of perennial grasses to climate, soil and management factors has long been a major target for agronomists, breeders and physiologists to improve the resistance/adaptation attributes and management of these plants. The challenge is how we can place these responses and improved attributes in a systems context and achieve production and sustainability goals in practice. This chapter discusses the past and current research on perennial grasses and their management systems that may lead to the development of adaptation strategies to climate change in southern Australia.
\n\t\tHistorically, Australia’s flora did not evolve under grazing by large groups of herbivores (Moore, 1970). Native species (predominantly native perennial grasses) were adapted to low fertility soils, periodic burning and infrequent grazing by soft-footed animals at low grazing pressures. The process of deterioration of native pastures started from the early 1800s when cloven-hoofed animals in closely managed groups were introduced. The failure of early European settlers to appreciate the consequences of the regular pattern of droughts, and the exploding rabbit population exacerbated the process. In the 1890s, severe droughts, livestock death and the demise of the pastoral resources attracted the attention of the press, governments, pastoralists and scientists, which were recognised as a major national problem. In the 1950s, widespread management change and introduction of new pasture species were made to halt pasture decline in many parts of temperate Australia. These included the introduction of temperate perennial grasses and subterranean clover (Trifolium subterraneum), the widespread use of phosphorus fertiliser, the formulation of policies to restrict stock numbers, and the development of economic means of rabbit control (Kemp & Michalk, 1993).
\n\t\t\tAustralian native grass is a general term to describe a diverse range of grasses that have evolved in Australia for millions of years. There are about 1000 native grass species in Australia, which are well adapted to the harsh and varying climate, and play an important part in maintaining ecosystem health (Nie & Mitchell, 2006). The agronomic and environmental values of Australian native grasses were generally undervalued until recently when severe environmental problems such as dryland salinity were clearly demonstrated as being associated with the clearance of native vegetation. Studies (Dorrough et al., 2004; Eddy, 2002; Nie et al., 2005; Nie & Zollinger 2008; Waters et al., 2000) have found that native grasses not only have significant environmental value, but their agronomic characteristics such as dry matter (DM) accumulation, persistence and nutritive characteristics should also be given more objective judgement as many native species may better adapt to some environments and produce higher amounts and more nutritious feed for grazing animals than improved exotic species.
\n\t\t\tThe introduction of exotic plants and animals with extensive clearing, heavy stocking and ploughing of fields led to the disappearance of most native grasslands, particularly in temperate Australia. However, this did not result in a massive increase in the coverage of grasslands by the improved species. Up to date, the proportion of Australia’s grazing lands that have been sown to introduced plant species is still low (approximately 5%; Peeters, 2008), although these improved pastures support >40% of our domestic livestock (Hutchinson, 1992). Improved pastures were mainly sown in medium to high rainfall (>550 mm AAR) environments with high fertiliser and management inputs due to their lack of persistence in harsher environments.
\n\t\t\tAmong the four major improved temperate perennial grasses in Australia, perennial ryegrass is most widely sown in high rainfall (>650 mm AAR) and high fertility zones (Reed, 1996). Most Australian dairy farmers operate in more heavily (compared with sheep and beef) fertilised, high rainfall or irrigated areas and rely almost exclusively on perennial ryegrass. The minimum rainfall required by the grass increases with lower latitudes (e.g. 650 mm AAR for Victoria, 700 mm for southern New South Wales, and 800 mm for northern New South Wales) and decreases with higher altitudes. Perennial ryegrass is highly nutritious, fast establishing and very productive over the growing seasons. It is well adapted to medium to heavy textured soils and generally will not persist on light soils. Drought tolerance and persistence are a limitation of the grass in comparison with other major perennial grasses (Nie et al., 2004; Slack et al., 2000).
\n\t\t\tTall fescue and phalaris are commonly used where soils are heavy textured and waterlogging can be severe. Both species are deep rooted and generally tolerate soil moisture stress better than perennial ryegrass (Moore et al., 2006; Nie et al., 2008). They can grow and persist well in medium to high rainfall (>550 mm AAR) environments. Tall fescue has two types with distinct growth patterns, summer active and winter active, which can be used to balance the feed supply across seasons. Both types provide nutritious feed in late spring and early summer although their growth rates vary considerably between summer and winter (Moore et al., 2006). Phalaris is often sown to improve the balance of seasonal feed supply and increase stocking rate in wool and lamb production systems (Reed, 2006). It is sensitive to aluminium toxicity induced by soil acidity (pH in CaCl2 < 4.2) and the use of lime is needed to aid persistence on acid soils (Reed, 2006).
\n\t\t\tCocksfoot is well suited to free drained, light textured soils. It is useful in areas of lower rainfall, strong soil acidity and low fertility. There are three types of cocksfoot: temperate (or continental; ssp. glomerata), Mediterranean (or Hispanic; ssp. hispanica) and intermediate types (ssp. glomerata x hispanica) (Volaire and Lelièvre, 1997). Temperate and intermediate types of cocksfoot are summer active whereas Hispanic type (Spanish cocksfoot) is highly summer dormant. The Hispanic cocksfoot is one of the most drought tolerant among the perennial grass species and can grow and persist well in the Mediterranean regions which receive around 300 mm AAR (Harris et al., 2008).
\n\t\t\tOther perennial grasses such as tall wheat grass (Thinopyrum ponticum), perennial veldt grass (Ehrharta calycina), panic grasses (e.g. Panicum maximum) and kikuyu grass (Pennisetum clandestinum) are also sown in targeted regions or areas of southern Australia. For instance, tall wheat grass is tolerant of high levels of salinity and is used in saline soils where other improved perennial species will not grow (Reed, 2006). Kikuyu grass and panic grasses have been evaluated and sown on coarse-textured soils including deep sands in Western Australia (Moore et al., 2006).
\n\t\tAustralia is the hottest and driest inhabited continent in terms of duration and intensity of heat. Temperatures above 45°C have been recorded at nearly all stations more than 150 km from the coast and at many places on the north-west and southern coasts (NATMAP, 1986). Half of Australia’s total land area has an average annual rainfall of less than 300 mm and about 80% has less than 600 mm (Fig. 1). In southern Australia, whether in the Mediterranean or temperate environments, rainfall is often winter dominant and highly variable, with frequent droughts lasting up to several seasons.
\n\t\t\tThe main climate change variables that are likely to be important in their impact on perennial grass growth and survival are temperature, rainfall and the concentration of CO2 in the atmosphere (Cullen et al., 2009; Howden et al., 2008). Since 1910 the average maximum and minimum temperature in Australia have risen by 0.7ºC and 1.1ºC, respectively (Alexander et al., 2007) and this trend is predicted to continue at higher rates in the next 50 – 70 years (Hennessy et al., 2007). The average annual temperature is projected to rise between 0.4 and 2ºC over most of Australia by 2030, with an accompanying increase in the likelihood of extreme hot and wet days (Harle et al., 2007). Potential evaporation (or evaporative demand) is also likely to increase with increasing temperatures.
\n\t\t\tAnnual rainfall in southern Australia has dropped since 1950 (Smith 2004). Predicted further reductions in rainfall together with the increases in evaporation are anticipated to result in up to 20% more droughts by 2030 (Mpelasoka et al., 2007). Projected changes in seasonal rainfall by 2030 range from -20% to +5% for spring rainfall in the southwest high rainfall zone to -5% to +15% for autumn rainfall in the south-eastern wheat-sheep zone (Harle et al., 2007). The most pronounced decreases are predicted for winter and spring, although some coastal areas of the high rainfall zone may become wetter in summer, and some areas of the eastern sheep-wheat zone may become wetter in autumn.
\n\t\t\tThe International Panel on Climate Change projections for the atmospheric CO2 concentration in the year 2030 range from 400 to 480 ppm, compared to about 280 ppm in the pre-industrial era and 380 ppm currently (Cullen et al., 2009; Harle et al., 2007). The breadth of this range is due to uncertainties associated with different socio-economic assumptions in greenhouse gas emission scenarios, the carbon removal processes (carbon sinks) and the magnitude of climate feedback on the terrestrial biosphere.
\n\t\t\tThe climate change that has been observed in Australia and the likely trend of further changes have shown significant impacts on the grazing industries and the need to develop pasture plants and grazing systems to address the issues (Cullen et al., 2009). While the changes in temperature and rainfall generally have a negative impact on perennial grass growth and survival, the elevated atmospheric CO2 concentration could promote pasture growth in the absence of other climate changes (Wand et al., 1999). Cullen et al. (2009) predicted a 22 – 37% increase in dry matter (DM) production of temperate grass dominated pastures in southern Australia, simulated by raising the atmospheric CO2 from 380 to 550 ppm. These increases will be affected by pasture species (e.g. C3 vs C4 grasses) and soil nutrients (Long et al., 2004; Lüsher et al., 2006).
\n\t\t\tRainfall distribution in Australia (Australian Government Bureau of Meteorology Climate Data Online; copyright Commonwealth of Australia reproduced by permission; adapted from Nie & Norton, 2009).
The biggest concerns associated with climate change for Australian grazing industries are the negative impacts of changes in rainfall and temperature which have already been a long-term challenge to ensure sustainability in pasture and animal production. The more extreme temperatures and the reduced and more variable rainfall predicted in southern Australia are likely to shorten the growing season, reduce pasture yield and nutritive value (Harle et al., 2007), and more importantly impose a higher risk for the perennial species to survive and persist (Nie & Norton, 2009). It is therefore imperative to understand the potential role that perennial plants, particularly perennial grasses, can play in a changing climate and develop adaptive strategies and systems that can deliver sustainability as well as profitability for the livestock industries.
\n\t\tRainfall reduction and more extreme temperatures are the two most significant features of the current climate change and projections for future change that could adversely affect temperate perennial grasses in southern Australia. Decline of sown grass species has already been common in most pastures, because of their poor adaptation to the more severe and more variable climatic conditions (Beattie, 1994). A pasture survey in south west Victoria revealed the majority of pastures were dominated by low-producing, ‘unimproved’ grass species (Quigley et al., 1992). Similar results were also found in southern New South Wales (Virgona & Hildebrand, 2007). In native pastures, perennial species are predominantly native grasses which are often low in botanical composition due to climate, soil nutrient and management constraints (Garden et al., 2001; Nie et al., 2005).
\n\t\t\tIn response to soil moisture and heat stress, perennial grasses have developed adaptive traits in order to survive under stressful environment conditions. Major traits that have shown to increase the resistance of perennial grass plants to drought and hot weather include rooting depth and summer dormancy. Other traits such as water-soluble carbohydrate (WSC) concentrations in tiller bases may also be beneficial in improving drought tolerance (Volaire & Lelièvre, 1997). Research into these traits or other mechanisms to support plant resistance has been limited to a small number of the species/cultivars. Further research is needed to have a better understanding of these traits for a wider range of grasses and to find or develop more adaptive traits.
\n\t\t\tRooting depth is a trait that contributes to a species overall strategy of response to water stress. It determines the accessibility of a plant to moisture in the soil profile, which is particularly important for perennial species in avoiding dehydration and coping with environmental stress (water and nutrient deficiency) across seasons, years and landscapes (Levitt, 1980; Nie et al., 2008; White et al., 2003). Therefore, the benefits of deep roots in perennial grasses are expressed and become more critical when plants encounter severe moisture stress.
\n\t\t\t\tRooting depth of perennial grasses are generally much greater than annual grasses (Lolicato, 2000), and can vary dramatically between species, and between the environments in which they are grown. In a study to investigate the performance of a range of perennial grasses in southern Australia (Nie et al., 2008), rooting depth of 11 temperate perennial grasses and one cultivar of kikuyu grass (Pennisetum clandestinum cv. Whittet) was measured at two sites (Hamilton and Warrak in western Victoria, Australia) contrasting in rainfall, soil type and slope (Table 1; Reed et al., 2008). The cultivar with the deepest root system (up to 2 m) was Whittet kikuyu grass, followed by phalaris and tall fescue cultivars (rooting depths between 1.12 and 1.5 m at Hamilton and 0.84 and 0.96 m at Warrak). Interestingly, cocksfoot was the lowest in rooting depth at Hamilton, but higher than perennial ryegrass at Warrak, a site with shallower soil and lower rainfall than Hamilton. Mean rooting depth across all species was 1.3 m at Hamilton (ranging from 0.9 to 2.01 m) and 0.9 m at Warrak (ranging from 0.75 to 1.27 m) (Table 1). The differences were associated with differences in rainfall, soil structure and fertility between the two sites (Nie et al., 2008). Hamilton had the higher rainfall over the experimental period and higher soil fertility, which allowed plants to develop roots under less moisture stress and lower nutrient deficiency. The compacted stony–gravel conglomerate layer in the subsoil at Warrak may have also contributed to a more shallow root system.
\n\t\t\t\tField studies to quantify the relationship between rooting depth and persistence in perennial grasses are always challenging, not only because persistence can be affected by many factors (Nie et al., 2004), but also the survival mechanisms of different species vary between species and between cultivars within a species. Nevertheless, regression analysis
\n\t\t\t\t\n\t\t\t\t\t\t\t\tSpecies\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tCultivar\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tHamilton\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tWarrak\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tMean\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Phalaris aquatica | \n\t\t\t\t\t\t\tAustralian | \n\t\t\t\t\t\t\t1.50 | \n\t\t\t\t\t\t\t0.88 | \n\t\t\t\t\t\t\t1.19 | \n\t\t\t\t\t\t
P. aquatica | \n\t\t\t\t\t\t\tAtlas PG | \n\t\t\t\t\t\t\t1.49 | \n\t\t\t\t\t\t\t0.84 | \n\t\t\t\t\t\t\t1.16 | \n\t\t\t\t\t\t
P. aquatica | \n\t\t\t\t\t\t\tHoldfast | \n\t\t\t\t\t\t\t1.12 | \n\t\t\t\t\t\t\t0.94 | \n\t\t\t\t\t\t\t1.03 | \n\t\t\t\t\t\t
P. aquatica | \n\t\t\t\t\t\t\tLandmaster | \n\t\t\t\t\t\t\t1.47 | \n\t\t\t\t\t\t\t1.11 | \n\t\t\t\t\t\t\t1.29 | \n\t\t\t\t\t\t
Dactylis glomerata | \n\t\t\t\t\t\t\tCurrie | \n\t\t\t\t\t\t\t0.93 | \n\t\t\t\t\t\t\t0.81 | \n\t\t\t\t\t\t\t0.87 | \n\t\t\t\t\t\t
D. glomerata | \n\t\t\t\t\t\t\tPorto | \n\t\t\t\t\t\t\t0.90 | \n\t\t\t\t\t\t\t0.92 | \n\t\t\t\t\t\t\t0.91 | \n\t\t\t\t\t\t
Festuca arundinaceum | \n\t\t\t\t\t\t\tFraydo | \n\t\t\t\t\t\t\t1.28 | \n\t\t\t\t\t\t\t0.89 | \n\t\t\t\t\t\t\t1.09 | \n\t\t\t\t\t\t
F. arundinaceum | \n\t\t\t\t\t\t\tResolute MaxP | \n\t\t\t\t\t\t\t1.43 | \n\t\t\t\t\t\t\t0.91 | \n\t\t\t\t\t\t\t1.17 | \n\t\t\t\t\t\t
F. arundinaceum | \n\t\t\t\t\t\t\tAU Triumph | \n\t\t\t\t\t\t\t1.39 | \n\t\t\t\t\t\t\t0.96 | \n\t\t\t\t\t\t\t1.18 | \n\t\t\t\t\t\t
Lolium perenne | \n\t\t\t\t\t\t\tAVH 4 | \n\t\t\t\t\t\t\t1.05 | \n\t\t\t\t\t\t\t0.76 | \n\t\t\t\t\t\t\t0.90 | \n\t\t\t\t\t\t
L. perenne | \n\t\t\t\t\t\t\tAvalon | \n\t\t\t\t\t\t\t1.24 | \n\t\t\t\t\t\t\t0.75 | \n\t\t\t\t\t\t\t0.99 | \n\t\t\t\t\t\t
Pennisetum clandestinum | \n\t\t\t\t\t\t\tWhittet | \n\t\t\t\t\t\t\t2.01 | \n\t\t\t\t\t\t\t1.27 | \n\t\t\t\t\t\t\t1.64 | \n\t\t\t\t\t\t
Means of rooting depth (m) for various pasture cultivars at Hamilton and Warrak in March 2005 (Nie et al., 2008).
on the data collected over 4 years from the above experiment has shown a positive relationship between rooting depth of the perennial grasses and their persistence (expressed as %change of plant frequency from year 2 to year 4) for most perennial grasses tested except two cultivars, Atlas PG phalaris and Currie cocksfoot at the Warrak site (Fig. 2). However, there was no clear relationship between the two attributes for the same species and cultivar at the Hamilton site, presumably due to the large differences in rainfall, soil and topography between the two sites. The Hamilton site was flat with Brown Chromosol soil and mean annual rainfall of 640 mm (ranging from 523 to 750 mm) whereas the Warrak site was on a slope with Red Kurosol soil and mean annual rainfall of 480 mm (ranging from 438 to 525 mm) over the 4-year (2002 – 2005) experimental period (Reed et al., 2008). The harsher environmental conditions at Warrak allowed the expression of the deep rooting merits of the perennial grasses. Atlas PG phalaris and Currie cocksfoot did not fit well with the regression analysis of the Warrak data, probably because they have different survival mechanisms under water stress. For instance, Volaire and Lelievre (2001) observed that Currie cocksfoot had the ability to continue extraction of soil water at low levels of available soil moisture, suggesting this as a significant factor in its survival under prolonged drought.
\n\t\t\t\tApparently increased rooting depth can also improve pasture growth rate and production due to higher accessibility to soil moisture/nutrients and dehydration avoidance under water deficit. Cullen et al. (2009) compared the pasture growth rate and yield between two rooting depths (0.4 vs 0.6 m) by modelling a high greenhouse gas emission scenario in 2070 in a high rainfall perennial grass-based pasture environment of southern Australia. The 2070 climate change projections for the site are 3.3ºC increase in temperature and 22% reduction in rainfall in comparison to a 30-year (1971-2000) historical baseline climate. Mean predicted total annual pasture production increased from 10.5 t DM/ha at a rooting depth of 0.4 m to 11.6 t DM/ha at a rooting depth of 0.6 m, largely due to extended growing season and increased growth rate (an increase of 10 kg DM/ha.day) in spring (Fig. 3). The pasture yields were lower than the baseline simulation at a rooting depth of 0.4 m (12.9 t DM/ha). With the deeper root system, the predicted mean annual drainage was reduced from 270 to 252 mm.
\n\t\t\t\tThe relationship between rooting depth and persistence expressed as percentage change in perennial grass frequency from year 2 to year 4 in a perennial grass (see Table 1 for cultivar list) evaluation experiment at Warrak, Victoria, Australia (circled dots are Atlas PG phalaris and Currie cocksfoot; data source: Nie et al., 2008).
Predicted pasture growth rate (kg DM/ha.day) at rooting depths of 0.4 m (2070 High) and 0.6 m (2070 High Deep rooted) in a 2070 High climate scenario, and at a depth of 0.4 m in the baseline climate scenario in a high rainfall environment of southern Australia (Adapted from Cullen et al., 2009).
Summer dormancy is an adaptive response of perennial grasses to water and heat stress over summer, which is believed to play a significant role in promoting drought resistance for temperate perennial grasses (Reed et al., 2004; Volaire & Norton, 2006). The mechanisms comprising the summer dormancy trait, the history of the concept and research into dormancy as well as an explanation of how summer dormancy are associated with survival have been reviewed by Volaire & Norton (2006). Based on a set of field protocols and four types of responses – leaf growth in summer, senescence of mature herbage, dehydration of enclosed bases of the youngest leaves and formation of resting organs, they grouped temperate perennial grasses into three distinguished populations: 1) population that maintain active growth under irrigation; 2) population that cease growth completely for a minimum of 4 weeks during summer and 3) population that exhibit reduced growth, associated with partial senescence of foliage, but no dehydration of leaf bases (Volaire and Norton, 2006). These classifications are more or less associated with the terms that are commonly used for temperate grasses – summer active, summer dormant and summer semi-dormant.
\n\t\t\t\tMany studies on summer dormancy trait have been focused on cocksfoot, which has relatively shallower roots, but persists well when grown on stressful soils (light textured) with frequent droughts. In the 1950s, Knight (1960) undertook early studies with a range of cocksfoots of Mediterranean and northern European origin to identify the characteristic signs (e.g. foliage senescence and cessation of growth) of summer dormancy in Mediterranean populations. The results showed that the Mediterranean germplasm had markedly better summer drought survival than the northern European genotypes (Knight, 1960 and 1966). Further studies by Biddiscombe et al. (1977) broadened the range of species and included perennial ryegrass, phalaris and tall fescue as well as cocksfoot. They assessed the effect of summer dormancy on growth and persistence of these species in south-western Western Australia.
\n\t\t\t\tDormancy level in the studies (Biddiscombe et al., 1977) was measured by the ratio, number of new shoots per plant : number of live buds per plant, 12 days after removal of plants in the field and rewatering in late summer (February). The ratio indicated the level of live buds that became active after summer drought – the higher the ratio, the less dormant is the plant. The results from a drier site on a sandy soil showed a strong negative exponential relationship (R2 = 0.94; P < 0.01) between summer dormancy ratio and plant survival in the final year (Year 4) (Fig. 4). All cocksfoot and phalaris lines had higher survival rates than the perennial ryegrass lines. Interestingly, the 3 tall fescue lines varied dramatically in final year plant survival, i.e. the cultivar Melik had > 70% of plant survival whereas the other two lines had < 35%. Melik is a highly winter-active cultivar of tall fescue (Reed et al., 2004) whereas the two other lines are summer active. Like rooting depth, summer dormancy did not show benefits on plant survival at a high rainfall site (annual rainfall 1120 mm) in this study.
\n\t\t\t\tThere has been less information on summer dormancy in tall fescue. Norton et al. (2006) tested two contrasting cultivars of tall fescue, Demeter and Flecha, under drought, full irrigation and simulated mid-summer storm. Though not expressing as high a level of dormancy as was seen in the earlier research with cocksfoot, Flecha exhibited responses associated with partial summer dormancy and used less soil water over summer which helped it to fully survive a severe summer drought and produce a higher post-drought
\n\t\t\t\tThe relationship between dormancy ratio and plant survival four years after establishment (Data source: Biddiscombe et al., 1977).
autumn yield. In contrast, the summer-active Demeter suffered a 25% loss in basal cover. Just as in the dormant cocksfoot, a high and stable level of dehydrins was observed in Flecha, which may be associated with a membrane stabilising role that these proteins play during drought. Information on summer dormancy in most other perennial grasses in Australia is severely lacking. There is also a trade-off between summer dormancy and herbage production since complete dormancy has been associated mostly with populations of low yield potential (Volaire & Norton, 2006).
\n\t\t\tWater-soluble carbohydrates provide the most readily available source of energy for grazing animals, and increased WSC concentrations in herbage are considered as an option to alleviate the seasonal deficiencies in the nutritive value of perennial ryegrass (Smith et al., 1998). Apart from their role as nutrients, WSC may have a role in plants’ response to drought. Volaire & Lelièvre (1997) found that the total WSC reserves in leaf bases of cocksfoot plants increased by 35% on average during drought. Fructans are the most abundant WSC in some perennial grasses such as cocksfoot and tall fescue, which differ in the degree of polymerisation (DP). High DP fructans are likely to constitute a pool of reserves that is used as substrate as soon as rewatering occurs after moisture stress (Volaire, 1994, 1995). Plants that are adapted to moisture stress (e.g. some of the cocksfoot lines) tend to orientate their metabolism and enzymatic activity towards the constitution of a reserve pool of high DP fructans as soon as drought is imposed (Volaire & Lelièvre, 1997). High DP fructan concentrations are also known to increase in the pseudostem of the perennial ryegrass during drought (Thomas, 1991). The high WSC perennial ryegrass cultivar Aurora had high growth and yield stability during drought and good regrowth after drought (Amin & Thomas, 1996).
\n\t\t\t\tPerennial grass plants exhibit different leaf morphological traits which, although more qualitative than quantitative, may well contribute to dehydration avoidance under moisture stress. Bolger et al. (2005) studied a range of native and introduced perennial grasses of south-eastern Australia and observed that the grasses showed different leaf morphological traits at 3 distinct stages of soil drying and plant dehydration. The 3 stages are: Stage I – water is freely available and transpiration from plants leaves remains unaffected as soil water declines; Stage II – soil water availability begins to limit plant uptake, and plant transpiration declines progressively with declining available soil water; Stage III – plant transpiration and stomatal conductance have reached minimal levels, water loss from the plant is constrained and leaves die. In their observation (Bolger et al., 2005), cocksfoot and Kangaroo grass (Themeda spp.) folded their leaves whereas wallaby grass (Austrodanthonia caespitosa) and Eragrostis tightly rolled their leaves at the beginning of Stage III. In contrast, red grass (Bothriochloa spp.) and phalaris rapidly shed most of their leaves at the beginning of Stage III, a ‘plastic’ response reducing leaf area and water loss and thereby contributing to dehydration avoidance. Species such as A. racemosa did not fold, roll, or shed leaves rapidly at the beginning of Stage III, but accumulated a large amount of cuticular wax on leaves to reduce water loss. A. caespitose rolled its leaves and had a large amount of cuticular wax as well.
\n\t\t\t\tAn important mechanism that is believed to contribute to the stress tolerance and persistence of perennial ryegrass and tall fescue is the mutualistic association between the perennial grasses and the asymptomatic fungal endophytes, Neotyphodium lolii (Latch, Christensen and Samuels) Glenn, Bacon and Hanlin (formerly Acremonium lolii Latch, Christensen and Samuels) in perennial ryegrass and N. coenophialum (Morgan, Jones and Gams) Glenn, Bacon and Hanlin in tall fescue (Heeswijck & Mc Donald, 1992; Quigley, 2000). Endophytes can produce alkaloids, of which ergovaline, lolitrem B, and peramine are the most important and therefore have commonly been studied (Rowan et al., 1986). Ergovaline and lolitrem B are toxic to grazing livestock, whereas peramine deters insect attack but has no known effect on domestic animals (Gallagher et al., 1984). The role of endophytes in protecting their grass hosts from insect attack was first reported by Prestidge et al. (1982) in New Zealand, and later in Australia (Heeswijck and McDonald, 1992). Improved resistance of endophyte-infected perennial ryegrass to insects has provided a graphic demonstration of the benefits that endophytes can confer on their host plant. Studies (Heeswijck & McDonald, 1992; Hill et al., 1990; Reed et al., 1985) of the effects on other plant attributes such as seedling establishment and tolerance to water stress showed that the performance of the perennial grasses was enhanced by increased levels of endophyte infection. The greater tolerance of endophyte-infected grasses to drought may result from the effect of the fungus on host-water relations, and it has been suggested that improved osmotic adjustment and turgor maintenance in the basal meristematic and elongating zone of vegetative tillers are involved (West et al., 1990). More information is needed to verify how and to what degree endophytes can contribute to drought tolerance and plant survival in varying environmental conditions. A study by Pecetti et al. (2007) showed that the effect of endophyte presence on persistence was nil in the Mediterranean site and slightly positive in the subcontinental location. They concluded that Mediterranean conditions may be too extreme for any enhancement of persistence to be solely provided by the endophyte, and the physiological adaptation of the grass germplasm was more critical for these environments. The development of novel endophytes in the past decades have aimed to strengthen the ability of endophyte-infected perennial grasses in stress tolerance and resistance to insect attack and reduce toxicity to grazing animals.
\n\t\t\tSelection for greater seasonal and yearly productivity, higher nutritive value and lower establishment costs has long been the key breeding objectives for perennial temperate grasses in southern Australia (Oram & Lodge, 2003). This continues to be the major focus in perennial ryegrass improvement for dairy pastures. Over the past decade, however, emphasis has been placed on persistence, adaptation to a wider range of soil conditions, lower toxicity, greater compatibility with legumes, and resistance to pests and diseases, particularly for extensive sheep and cattle grazing pastures due to the changes of climatic conditions experienced in the regions. Waller & Sale (2001) reviewed the persistence problems encountered by perennial ryegrass and concluded that grazing management to encourage seedling recruitment, better genotypes and improved management of soil fertility and pH would be beneficial for high survival of the species. Attempts have also been made to introduce drought resistant traits from natural ryegrass populations persisted in marginal rainfall environments or genes from other persistent plant species such as tall fescue (Humphreys & Pasakinskiene, 1996; Humphreys & Thomas, 1993; Oram & Lodge, 2003).
\n\t\t\tWhile perennial ryegrass is highly valuable in establishment, production and feed quality for livestock, it is not generally considered a suitable plant for low rainfall environments in southern Australia. Indeed there are few cultivars of any temperate perennial grasses commercially available for farmers in temperate regions that receive <500 mm annual rainfall (Harris et al., 2008; Reed, 1996). Therefore, attempts have been made to introduce and incorporate genes from plants of low rainfall origin, such as the Mediterranean and North Africa. Australia was one of the first countries to deliberately exploit Mediterranean ecotypes of perennial grasses, due to climatic similarities, the value of pasture plants from the regions and the discovery and domestication of the Mediterranean grass phalaris (Culvenor, 2009; Oram et al., 2009). The adaptation of the perennial temperate grasses into lower rainfall environments has been substantially expanded in Australia by the replacement of early northern European introductions with more drought-hardy and summer-dormant germplasm from Mediterranean regions (Culvenor, 2009). A number of cultivars based on Mediterranean ecotypes were released during the 1950s to the 1970s. For example, Sirocco phalaris was released after selection of a Moroccan accession for seed production (Oram, 1990). Currie cocksfoot selected from an Algerian accession was released in 1958.
\n\t\t\tRecent emphasis on persistence under low and variable rainfall conditions in southern Australia has seen an increased exploitation of more summer-dormant hispanic cocksfoot germplasm. Two new commercial cultivars, Sendace and Uplands, based on hispanica accessions collected in Spain were released for drought-prone environments (Hurst and Hall, 2005a,b). More recently (2004 – 2008), work has been conducted in Victoria and northern NSW, to develop improved cultivars of cocksfoot and tall fescue for medium to low rainfall environments of southern Australia. Four elite cocksfoot lines of fine- to very fine-leaved hispanic type were developed for further evaluation (Harris et al., 2008). These lines showed excellent persistence and yielded 34 to 40% higher than Currie, the commonly sown cocksfoot cultivar, following a severe summer drought period in 2006 (e.g. 270 mm annual rainfall at a site in Victoria). Experimental varieties of tall fescue based on Sardinian accessions with good summer and winter production and persistence, and a separate variety based on northern African accessions that were highly persistent but retained green leaf over summer on the North-West Slopes of NSW, were also selected in this project (Harris et al., 2008). Further evaluation of these lines has been undertaken to verify their adaptation and persistence across multiple regions in Victoria and NSW.
\n\t\tRecent recognition of the value of native grass pastures, and their drought resistance and ability to grow in infertile or acidic soils, has led to the selection and release of cultivars in several species (Garden et al., 1996; Lodge, 1996; Oram & Lodge, 2003). In practice, however, native grasses have been largely ignored for sown pastures in Australia, because of the superiority of exotic improved grasses in high-input livestock grazing systems, the biased comparisons of native and introduced pastures (Johnston et al., 1999), and the difficulties in achieving large-scale seed production and successful pasture establishment of native grasses. Native grasses are primarily distributed in areas with low fertility and acidic soils and marginal land classes such as steep hill country where overgrazing, land degradation and climate change impacts have resulted in low groundcover by pasture plant over summer and autumn. These not only have a significant economic (e.g. lack of green feed and low stocking rate) but also environmental impact (e.g. soil/nutrient runoff, recharge and loss of biodiversity) on the grazing industries in southern Australia (Nie et al., 2009).
\n\t\t\tWhile it is not currently practical to sow native grasses on a large scale, it is beneficial and critical to develop management strategies to rehabilitate degraded native pastures where native grass population is low (<30%). Over the past decades, a number of studies (e.g. Garden et al., 2000; Nie & Zollinger, 2008) have been undertaken in southern Australia to look into management strategies, grazing management in particular, for the restoration of native grasses. The studies have been focused on three mechanisms that can lead to success: 1) seedling recruitment of native grasses; 2) spread of existing native grass plants; and 3) stronger competition of native grasses with other species (either through seeds or plants). A management option that can promote one or all of the three is deferred grazing that matches the timing of grazing or resting of a pasture to an appropriate growth stage of the pasture grasses (Nie & Mitchell, 2006). For instance, withholding grazing from mid-spring to mid-summer allows desirable perennial plants to set seed and conserve energy, leading to higher recruitment rates of new plants and tillers in autumn and winter. Grazing heavily after annual grass stem elongation but before seed head emergence, followed by resting over spring and summer, will increase the amount of seed produced by perennials while reducing the seed by annuals. A series of experiments have been conducted to develop deferred grazing strategies for native grass restoration on marginal land classes (Nie & Mitchell, 2006; Nie & Zollinger, 2008; Nie et al., 2009). Key results are summarised below.
\n\t\t\tThere are several types of deferred grazing which have been designed to achieve different management targets (Nie & Mitchell, 2006). The higher the proportion of desirable native species, the more effective the deferred grazing will be in the restoration process.
\n\t\t\t\tLong-term deferred grazing involves no defoliation from October to the autumn break (the first significant rainfall event of the autumn/winter growing season) in the following year to build up the soil seed reserves and moisture and restore ground cover by perennial species. This strategy aims to rehabilitate degraded paddocks with low percentage of perennial species (e.g. 5-10%) quickly and effectively.
\n\t\t\t\tShort-term deferred grazing involves no defoliation between October and January each year, aiming to increase soil seed reserves and plant population density, and to use feed in mid summer when there is generally a feed shortage. In addition, this treatment may reduce fire risk by grazing long grasses down in early summer.
\n\t\t\t\tWith optimised deferred grazing, the withholding time from grazing depends on morphological development of the pasture plants. This deferred grazing starts after annual grass stems elongate but before seed heads emerge so that the growing points of annual grass plants can be effectively removed by grazing. The completion of this grazing strategy depends on pasture conditions (seed set, growth and herbage on offer), generally from late summer to early autumn. This strategy aims to reduce the amount of seed produced by annual grasses and alter pasture composition – lifting the proportion of perennials while suppressing the annual grasses through seed production.
\n\t\t\t\tTimed grazing is an alternative form of the long-term deferred grazing. It is used to build up the soil seed reserve, restore ground cover and recruit new plants. Pasture is grazed using a large mob of sheep greater than 100 sheep/ha over a short grazing period ranging from 10 to 20 days depending on size of paddock, followed by a resting period up to 130 days. This strategy targets the rehabilitation of much degraded paddocks with a very low percentage of desirable species (e.g. ~5%).
\n\t\t\t\t\tIn addition, strategic management of pastures can be combined with all types of deferred grazing to deliver the best outcomes. This is often referred to as strategic deferred grazing. For instance, onion grass (Romulea rosea) control and fertiliser application can be applied following optimised deferred grazing in an onion grass infested paddock, which may greatly increase the yield and nutritive value of pastures.
\n\t\t\t\tSoil seed reserve is the number of seeds in topsoil (0 – 3 cm) measured in autumn (Nie & Mitchell, 2006). It is an indication of seed production from a grazing system in the previous seasons. The germinated seed population (an estimation of soil seed reserve) of perennial and annual grasses, two major species categories in a hill pasture, varied greatly under different grazing regimes (Fig. 5). Long-term, short-term and optimised deferred grazing produced 637 – 1850 perennial grass seeds/m2 whereas set stocking had 570 seeds/m2. Optimised deferred grazing was the most effective treatment to reduce annual grass seed production, with the germinated seed population being the lowest among the other grazing regimes.
\n\t\t\t\tThe results from a long-term grazing experiment (Nie & Mitchell, 2006) have shown that deferred grazing regimes significantly increased perennial (predominantly native grasses) and reduced annual grass tiller density (Table 2). However, there were no significant differences in the densities of onion grass, legumes and broadleaf weeds.
\n\t\t\t\t\tGerminated seed population (seeds/m2) under short-term, long-term and optimised deferred grazing and set stocking (adapted from Nie & Mitchell, 2006).
Treatment | \n\t\t\t\t\t\t\t\tPG | \n\t\t\t\t\t\t\t\tAG | \n\t\t\t\t\t\t\t\tONG | \n\t\t\t\t\t\t\t\tLegume | \n\t\t\t\t\t\t\t\tWeed | \n\t\t\t\t\t\t\t
Short deferred | \n\t\t\t\t\t\t\t\t8338 | \n\t\t\t\t\t\t\t\t5396 | \n\t\t\t\t\t\t\t\t3159 | \n\t\t\t\t\t\t\t\t630 | \n\t\t\t\t\t\t\t\t466 | \n\t\t\t\t\t\t\t
Long deferred | \n\t\t\t\t\t\t\t\t9003 | \n\t\t\t\t\t\t\t\t4713 | \n\t\t\t\t\t\t\t\t3552 | \n\t\t\t\t\t\t\t\t460 | \n\t\t\t\t\t\t\t\t239 | \n\t\t\t\t\t\t\t
Optimised deferred | \n\t\t\t\t\t\t\t\t9998 | \n\t\t\t\t\t\t\t\t2558 | \n\t\t\t\t\t\t\t\t3800 | \n\t\t\t\t\t\t\t\t411 | \n\t\t\t\t\t\t\t\t245 | \n\t\t\t\t\t\t\t
Set stocked | \n\t\t\t\t\t\t\t\t6245 | \n\t\t\t\t\t\t\t\t8890 | \n\t\t\t\t\t\t\t\t4786 | \n\t\t\t\t\t\t\t\t681 | \n\t\t\t\t\t\t\t\t248 | \n\t\t\t\t\t\t\t
Mean plant density (tillers or plants/m2) of perennial grass (PG), annual grass (AG), onion grass (ONG), legume and broadleaf weed (Weed), under different grazing regimes from a 4-year grazing experiment (adapted from Nie & Mitchell, 2006).
Ground cover remained greater than 70% up to mid January regardless of how the pasture was grazed (Fig. 6). However, when a large amount of dead annual grass under set stocking was removed by grazing from January to March, ground cover declined dramatically, before increasing in autumn (April/May) after some rainfall. Ground cover was consistently higher with all deferred grazing regimes due to limitation of grazing over summer/autumn and increased perennial native grass population (Nie et al., 2005).
\n\t\t\t\tHerbage production under deferred grazing regimes increased by 31 – 66% compared with set stocking, two years after deferred grazing regimes were implemented (Table 3). Overall, deferred grazing treatments increased dry matter digestibility (DMD), crude protein content (CP) and metablisable energy (ME), but reduced neutral detergent fibre (NDF), in comparison with set stocking. The increases range from 2 – 13% for DMD, 10 – 30% for CP and 4 – 18% for ME. Short-term and long-term deferred grazing reduced NDF by 7% and 3%, respectively, but optimised deferred grazing did not, compared with set stocking. The results largely came from increased density and ground cover by perennial native grasses under deferred grazing (Nie & Mitchell, 2006). An economic analysis on deferred grazing and other grazing regimes revealed that this management strategy can conservatively increase stocking rates by between 25 to 50% within 3 years on hill country currently carrying less than 8 DSE/ha (J Moll Pers. Comm.).
\n\t\t\t\t\tGround cover over summer/autumn under short-term deferred grazing (■), long-term deferred grazing (♦), optimised deferred grazing (▲) and set stocking (--) (adapted from Nie et al. 2005).
\n\t\t\t\t\t\t\t\t\tTreatment\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tHA\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tDMD\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tCP\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tME\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tNDF\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tShort-term deferred\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t3500 | \n\t\t\t\t\t\t\t\t59.1 | \n\t\t\t\t\t\t\t\t12.7 | \n\t\t\t\t\t\t\t\t8.6 | \n\t\t\t\t\t\t\t\t62.0 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tLong-term deferred\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t4141 | \n\t\t\t\t\t\t\t\t56.0 | \n\t\t\t\t\t\t\t\t11.1 | \n\t\t\t\t\t\t\t\t8.0 | \n\t\t\t\t\t\t\t\t64.5 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tOptimised deferred\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t4433 | \n\t\t\t\t\t\t\t\t53.4 | \n\t\t\t\t\t\t\t\t10.8 | \n\t\t\t\t\t\t\t\t7.6 | \n\t\t\t\t\t\t\t\t66.8 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tSet stocking\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t2662 | \n\t\t\t\t\t\t\t\t52.2 | \n\t\t\t\t\t\t\t\t9.8 | \n\t\t\t\t\t\t\t\t7.3 | \n\t\t\t\t\t\t\t\t66.5 | \n\t\t\t\t\t\t\t
Herbage accumulation (HA, kg DM/ha) from July 2005 – July 2006 and mean nutritive value: DMD – dry matter digestibility (%); CP – crude protein (%); ME - metabolisable energy (MJ/kg DM); and NDF - neutral detergent fibre (%) under various grazing regimes (adapted from Nie & Zollinger, 2008).
Deferred grazing has a profound effect on below ground plant growth. Root biomass under deferred grazing was increased deeper in the 0-60 cm soil profile compared with set stocking (Nie et al., 1997). With deferred grazing, about 85% of the roots were in the 0-20 cm soil and 15% in the 20-60 cm soil whereas under set stocking over 95% of the total root biomass was in the 0-20 cm soil profile, and only <5% was within 20-60 cm profile. The effect of grazing wet soils has been recognised as a potential problem for soil health. Stock treading has been shown to increase soil compaction and decrease soil porosity and water infiltration. Management options to reverse compaction without cultivation are desirable. Deferred grazing can reduce soil bulk density by over 10%, increase soil pore size and water movement rate through the removal of stock treading, the growth and subsequent decay of plant roots and the activity of soil fauna, such as earthworms. It also increased the soil moisture content of the 0-10 cm of topsoil (Nie et al., 1997).
\n\t\t\t\tThe significantly lower annual rainfall experienced in southern Australia over the past decade together with long term climate change projections have placed great emphasis on the use of pastures for the grazing industries that are more tolerant to drought and heat stress and persistent under varying climatic and soil conditions. Perennial temperate grasses, both improved exotic and native species, are the key components of pastures for livestock grazing in southern Australia. The four commonly sown improved perennial grasses, perennial ryegrass, phalaris, tall fescue and cocksfoot possess intrinsic traits, have different growth patterns and require suitable environmental conditions to be productive and persistent. Adaptive traits such as rooting depth and summer dormancy have been exploited to develop new cultivars; however, the research has been focused on limited traits and species (e.g. summer dormancy for cocksfoot) and there is a need to expand the breadth of research in term of species, their adaptive traits and technologies to define the traits. Unlike improved exotic perennial grasses, there has been little research on the adaptive traits and plant development for Australian native grasses, although they have evolved in Australia for millions of years and are well adapted to the soil and climate. Nevertheless, recent studies in southern Australia have developed grazing management strategies to restore degraded native pastures. The results have demonstrated the economical and environmental benefits of using deferred grazing to rejuvenate native grasses to adapt to edaphically and climatically stressed landscapes.
\n\t\tI thank Drs Joe Jacobs, Margaret Roaside, Ralph Behrendt, Michelle Jones Lennon, Chris Korte and Fiona Robertson, and Reto Zollinger for their constructive comments and critique on the manuscript. Information from a wide range of sources has been used in the chapter. These sources include research projects that have been funded by investors such as the Victorian Department of Primary Industries, Future Farm Industries Cooperative Research Centre (formerly CRC for Plant-based Management of Dryland Salinity), Meat and Livestock Australia, Australian Wool Innovation, Grains Research and Development Corporation, Glenelg-Hopkins Catchment Management Authority and the Australian Government National Action Plan for Salinity and Water Quality.
\n\t\tTitanium (Ti) is a lustrous metal with a silver color. This metal exists in two different physical crystalline state called body centered cubic (bcc) and hexagonal closed packing (hcp), shown in Figure 1 (a) and (b), respectively. Titanium has five natural isotopes, and these are 46Ti, 47Ti, 48Ti, 49Ti, 50Ti. The 48Ti is the most abundant (73.8%).
\n\nCrystalline state of titanium: (a) bcc, and (b) hcp [8].
Titanium has high strength of 430 MPa and low density of 4.5 g/cm3, compared to iron with strength of 200 MPa and density of 7.9 g/cm3. Accordingly, titanium has the highest strength-to-density ratio than all other metals. However, titanium is quite ductile especially in an oxygen-free environment. In addition, titanium has relatively high melting point (more than 1650°C or 3000°F), and is paramagnetic with fairly low electrical and thermal conductivity. Further, titanium has very low bio-toxicity and is therefore bio-compatible. Furthermore, titanium readily reacts with oxygen at 1200°C (2190°F) in air, and at 610°C (1130°F) in pure oxygen, forming titanium dioxide. At ambient temperature, titanium slowly reacts with water and air to form a passive oxide coating that protects the bulk metal from further oxidation, hence, it has excellent resistance to corrosion and attack by dilute sulfuric and hydrochloric acids, chloride solutions, and most organic acids. However, titanium reacts with pure nitrogen gas at 800°C (1470°F) to form titanium nitride [1, 2].
\nSome of the major areas where titanium is used include the aerospace industry, orthopedics, dental implants, medical equipment, power generation, nuclear waste storage, automotive components, and food and pharmaceutical manufacturing.
\nTitanium is the ninth-most abundant element in Earth‘s crust (0.63% by mass) and the seventh-most abundant metal. The fact that titanium has most useful properties makes it be preferred material of future engineering application. Moreover, the application of titanium can be extended when alloyed with other elements as described below.
\nAn alloy is a substance composed of two or more elements (metals or nonmetals) that are intimately mixed by fusion or electro-deposition. On this basis, titanium alloys are made by adding elements such as aluminum, vanadium, molybdenum, niobium, zirconium and many others to produce alloys such as Ti-6Al-4V and Ti-24Nb-4Zr-8Sn and several others [2]. These alloys have exceptional properties as illustrated below. Depending on their influence on the heat treating temperature and the alloying elements, the alloys of titanium can be classified into the following three types:
\nThese alloys contain a large amount of α-stabilizing alloying elements such as aluminum, oxygen, nitrogen or carbon. Aluminum is widely used as the alpha stabilizer for most commercial titanium alloys because it is capable strengthening the alloy at ambient and elevated temperatures up to about 550°C. This capability coupled with its low density makes aluminum to have additional advantage over other alloying elements such as copper and molybdenum. However, the amount of aluminum that can be added is limited because of the formation of a brittle titanium-aluminum compound when 8% or more by weight aluminum is added. Occasionally, oxygen is added to pure titanium to produce a range of grades having increasing strength as the oxygen level is raised. The limitation of the α alloys of titanium is non-heat treatable but these are generally very weldable. In addition, these alloys have low to medium strength, good notch toughness, reasonably good ductility and have excellent properties at cryogenic temperatures. These alloys can be strengthened further by the addition of tin or zirconium. These metals have appreciable solubility in both alpha and beta phases and as their addition does not markedly influence the transformation temperature they are normally classified as neutral additions. Just like aluminum, the benefit of hardening at ambient temperature is retained even at elevated temperatures when tin and zirconium are used as alloying elements.
\nThese alloys contain 4–6% of β-phase stabilizer elements such as molybdenum, vanadium, tungsten, tantalum, and silicon. The amount of these elements increases the amount of β-phase is the metal matrix. Consequently, these alloys are heat treatable, and are significantly strengthened by precipitation hardening. Solution treatment of these alloys causes increase of β-phase content mechanical strength while ductility decreases. The most popular example of the α-β titanium alloy is the Ti-6Al-4V with 6 and 4% by weight aluminum and vanadium, respectively. This alloy of titanium is about half of all titanium alloys produced. In these alloys, the aluminum is added as α-phase stabilizer and hardener due to its solution strength-ening effect. The vanadium stabilizes the ductile β-phase, providing hot workability of the alloy.
\nThe α-β titanium alloys have high tensile strength, high fatigue strength, high corrosion resistance, good hot formability and high creep resistance [3].
\nTherefore, these alloys are used for manufacturing steam turbine blades, gas and chemical pumps, airframes and jet engine parts, pressure vessels, blades and discs of aircraft turbines, aircraft hydraulic tubing, rocket motor cases, cryogenic parts, and marine components [4].
\nThese alloys exhibit the body centered cubic crystalline form shown in Figure 1 (a). The β stabilizing elements used in these alloy are one or more of the following: molybdenum, vanadium, niobium, tantalum, zirconium, manganese, iron, chromium, cobalt, nickel, and copper. Besides strengthening the beta phase, these β stabilizers lower the resistance to deformation which tends to improve alloy fabricability during both hot and cold working operations. In addition, this β stabilizer to titanium compositions also confers a heat treatment capability which permits significant strengthening during the heat treatment process [4].
\n\nAs a result, the β titanium alloys have large strength to modulus of elasticity ratios that is almost twice those of 18–8 austenitic stainless steel. In addition, these β titanium alloys contain completely biocompatible elements that impart exceptional biochemical properties such as superior properties such as exceptionally high strength-to-weight ratio, low elastic modulus, super-elasticity low elastic modulus, larger elastic deflections, and low toxicity [1, 3].
\nThe above properties make them to be bio-compatible and are excellent prospective materials for manufacturing of bio-implants. Therefore, nowadays these alloys are largely utilized in the orthodontic field since the 1980s, replacing the stainless steel for certain uses, as stainless steel had dominated orthodontics since the 1960s [2].
\nBecause of alloying the titanium achieve improved properties that make it to be preferred material of choice for application in aerospace, medical, marine and instrumentation. The extent of improvement to the properties of titanium alloys and ultimately the choice of area of application is influenced by the methods of production and processing as discussed in the subsequent sections.
\nThe base metal required for production of titanium alloys is pure titanium. Pure titanium is produced using several methods including the Kroll process. This process produces the majority of titanium primary metals used globally by industry today. In this process, the titanium is extracted from its ore rutile—TiO2 or titanium concentrates. These materials are put in a fluidized-bed reactor along with chlorine gas and carbon and heated to 900°C and the subsequent chemical reaction results in the creation of impure titanium tetrachloride (TiCl4) and carbon monoxide. The resultant titanium tetrachloride is fed into vertical distillation tanks where it is heated to remove the impurities by separation using processes such as fractional distillation and precipitation. These processes remove metal chlorides including those of iron, silicon, zirconium, vanadium and magnesium. Thereafter, the purified liquid titanium tetrachloride is transferred to a reactor vessel in which magnesium is added and the container is heated to slightly above 1000°C. At this stage, the argon is pumped into the container to remove the air and prevent the contamination of the titanium with oxygen or nitrogen. During this process, the magnesium reacts with the chlorine to produce liquid magnesium chloride thereby leaving the pure titanium solid. This process is schematically presented in Figure 2.
\nKroll process for production of titanium: (a) chlorination, (b) fractional distillation [5].
The resultant titanium solid is removed from the reactor by boring and then treated with water and hydrochloric acid to remove excess magnesium and magnesium chloride leaving porous titanium sponge, which is jackhammered, crushed, and pressed, followed by melting in a vacuum electric arc furnace using expendable carbon electrode. The melted ingot is allowed to solidify in a vacuum atmosphere. This solid is often remelted to remove inclusions and to homogenize its constituents. These melting steps add to the cost of producing titanium, and this cost is usually about six times that of stainless steel. Usually the titanium solid undergo further treatment to produce titanium powder required in alloying process. The basic methods used to produce titanium powder are summarized below.
\nThe first method is called the Armstrong process, shown in Figure 3, in which the powder is made as the product of extractive processes that produce primary metal powder. This process is capable of producing commercially pure titanium (Ti) powder by the reduction of titanium tetrachloride (TiCl4) and other metal halides using sodium (Na). This process produces powder particles with a unique properties and low bulk density. To improve powder properties such as the particle size distribution and the tap density, additional post processing activities such as dry and wet ball milling are applied. The narrowed particle size distributions are necessary for typical powder metallurgical processes. In addition, the resultant powder’s morphology produced by the Armstrong process provide for excellent compressibility and compaction properties that result in dense compacts with increased green strength than those produced by the irregular powders. For this reason, the powders can even be consolidated by traditional powder metallurgy techniques such as uniaxial compaction and cold isostatic pressing. Figure 4 illustration the scanning electron microscope images of the titanium powders of the Armstrong process. As seen in the figure, the powder has an irregular morphology made of granular agglomerates of smaller particles.
\nIllustration of the Armstrong process [5].
SEM micrographs of CP-Ti produced by Armstrong process [5].
The hydride-dehydride (HDH) process, illustrated in Figure 5, is used to produce titanium powder using titanium sponge, titanium, mill products, or titanium scrap as the raw material. The hydrogenation process is achieved using a batch furnace that is usually operated in vacuum and/or hydrogen atmospheric conditions. The conditions necessary for hydrogenation of titanium are pressure of one atmospheric and temperatures of utmost 800°C. This process results in forming of titanium hydride and alloy hydrides that are usually brittle in nature. These metal hydrides are milled and screened to produce fine powders. The powder is resized using a variety of powder-crushing and milling techniques may be used including: a jaw crusher, ball milling, or jet milling. After the titanium hydride powders are crushed and classified, they are placed back in the batch furnace to dehydrogenate and remove the interstitial hydrogen under vacuum or argon atmosphere and produce metal powder. These powders are irregular and angular in morphology and can also be magnetically screened and acid washed to remove any ferromagnetic contamination. Finer particle sizes can be obtained, but rarely used because oxygen content increases rapidly when the powder is finer than −325 mesh. Powder finer than −325 mesh also possess more safety challenges [5]. The powder can be passivated upon completion of both the hydrogenating and dehydrogenating cycles to minimize exothermic heat generated when exposed to air.
\nHydride-dehydride process for obtaining of titanium powders [6].
The hydride-dehydride process is relatively inexpensive because the hydrogenation and dehydrogenation processes contribute small amount of cost to that of input material. The additional benefit of this process is the fact that the purity of the powder can be very high, as long as the raw material’s impurities are reduced. The oxygen content of final powder has a strong dependence on the input material, the handling processes and the specific surface area of the powder. Therefore, the main disadvantages of hydride-dehydride powder include: the powder morphology is irregular, and the process is not suitable for making virgin alloyed powders or modification of alloy compositions if the raw material is from scrap alloys (Figure 6) [5].
\nSEM micrographs of CP-Ti produced by HDH [5].
Conventional sintering, shown in Figure 7, is one of the widely applied powder metallurgy (PM) based method for manufacturing titanium alloys. In this method, the feedstock titanium powder is mixed thoroughly with alloying elements mentioned in Section 2 using a suitable powder blender, followed by compaction of the mixture under high pressure, and finally sintered. The sintering operation is carried out at high temperature and pressure treatment process that causes the powder particles to bond to each other with minor change to the particle shape, which also allows porosity formation in the product when the temperature is well regulated. This method can produce high performance and low cost titanium alloy parts. The titanium alloy parts produced by powder metallurgy have several advantages such as comparable mechanical properties, near-net-shape, low cost, full dense material, minimal inner defect, nearly homogenous microstructure, good particle-to-particle bonding, and low internal stress compared with those titanium parts produced by other conventional processes [7].
\nPowder metallurgy process [7].
Self-propagating high temperature synthesis (SHS), shown in Figure 8, is another PM based process used to produce titanium alloys. The steps in this process include: mixing of reagents, cold compaction, and finally ignition to initiate a spontaneous self-sustaining exothermic reaction to create the titanium alloy [7].
\nSHS process [7].
Although the above PM processes are mature technologies for fabrication of bone implants they have difficulties of fabricating porous coatings on surfaces that are delicate or with complex geometries. In addition, these processes tend to produce brittle products because of cracks and oxides formed inside the materials. Further, the high costs and poor workability associated with these PM processes restrict their application in commercial production of bone implants. Consequently, new methods, based on additive manufacturing principles were developed [7].
\nThe definitions of advanced methods of production is the use of technological method to improve the quality of the products and/or processes, with the relevant technology being described as “advanced,” “innovative,“ or “cutting edge.” These technologies evolved from conventional processes some of which have been developed to achieve various components of titanium base alloys and aluminides. Atomisation processes are among the most widely used cutting edge methods for production of titanium alloys [5].
\nAtomisation processes are used to make alloyed titanium powders. In these processes, the feedstock material is generally titanium, and the alloy powders produced are further processed typically to manufacture components using processes such as hot isostatic pressing (hip). As mentioned previously, it is generally believed that alloyed powders are not suitable for cold compaction using conventional uniaxial die pressing methods. Moreover, the inherent strength of the alloyed powders is too high, making it difficult to deform the particles in order to achieve desired green density. The atomisation processes produce relatively spherically shaped titanium alloy powders that are most suitable for additive manufacturing using techniques such as selective laser melting or electron beam melting. These spherical powders are also required for manufacturing titanium components using metal injection molding techniques. Typically, additive manufacturing and metal injection molding processes require particle sizes of powders to be in the range of 100 μm to ensure good flowability of the powder during operations. However, the challenge of the atomisation processes usually is that powders produced tend to have a wide particle size distribution, from a few to hundreds of micrometers. Examples of atomisation processes are gas atomisation and plasma atomisation processes described below [5].
\nIn the gas atomisation process, shown in Figure 9, the metal is usually melted using gas and the molten metal is atomised using an inert gas jets. The resultant fine metal droplets are then cooled down during their fall in the atomisation tower. The metal powders obtained by gas-atomization offer a perfectly spherical shape combined with a high cleanliness level. However, even though gas atomisation is, generally, a mature technology, its application need to be widened after addressing a few issues worth noting such as considerable interactions between droplets while they cool during flight in the cooling chamber, causing the formation of satellite particles. Also, due to the erosion of atomising nozzle by the liquid metal, the possibility for contamination by ceramic particles is high. Usually, there may also be argon gas entrapment in the powder that creates unwanted voids [5].
\nSchematic diagrams of gas atomisation process [5].
Plasma atomisation, shown in Figure 10, uses a titanium wire alloy as the feed material which is a significant cost contributing factor. The titanium alloy wire, fed via a spool, is melted in a plasma torch, and a high velocity plasma flow breaks up the liquid into droplets which cool rapidly, with a typical cooling rate in the range of 100–1000°C/s. Plasma atomisation produces powders with particle sizes ranging from 25 to 250 μm. In general, the yield of particles under 45 μm using the plasma wire atomisation technique is significantly higher than that of conventional gas atomisation processes [5].
\nSchematic diagrams of plasma atomisation process [5].
The future methods for production of titanium alloys depend on the demand of these products and to what extend nature will be able to provide them. The demand for titanium alloys shall also influence the number and type of technological breakthroughs, the extent of automation, robotics’ application, the number of discoveries for new titanium alloys, their methods of manufacturing, and new areas of application. Automation is an important aspect of the industry’s future and already a large percentage of the manufacturing processes are fully automated. In addition, automation enables a high level of accuracy and productivity beyond human ability—even in hazardous environments. And while automation eliminates some of the most tedious manufacturing jobs, it is also creating new jobs for a re-trained workforce. The new generation of robotics is not only much easier to program, but also easier to use due to extra capabilities such as voice and image recognition during operations, they are capable of doing precisely what you ask them to do. The discovery of new titanium alloys, or innovative uses of existing ones, is essential for making progress in many of the technological challenges we face. This discovery can result in new synthesis methods of new alloy compounds and design of super alloys, theoretical modeling and even the computational prediction of titanium alloys. This discovery requires that new methods of manufacturing are developed. In light of this, “additive manufacturing” is being developed and this is viewed as a groundbreaking development in manufacturing advancement that offers manufacturers powerful solutions for making any number of products cost-effectively and with little waste. Examples of additive manufacturing technologies are cold spray, 3-D printing, electron beam melting, and selective laser melting. To fabricate alloy surfaces using these technologies, alloying elements are mixed thoroughly in the feedstock powder and the fabrication processes proceed as described in the following paragraphs [7, 8].
\nCold spray (CS) process, schematically shown in Figures 11 and 12 can deposit metals or metal alloys or composite powders on a metallic or dielectric substrate using a high velocity (300–1200 m/s) jet of small (5–50 μm) particles injected in a stream of preheated and compressed gas passing through a specially designed nozzle. The main components of a generic CS system include the source of compressed gas, gas heater, powder feeder, spray nozzle assembly, and sensors for gas pressure and temperature. The source of compressed gas acquires the gas from an external reservoir, compresses it to desired pressure and delivers it into the gas heater. Then, the gas heater preheats the compressed gas in order to increase its enthalpy energy. The preheated gas is delivered into the spray nozzle assembly whose convergent/divergent geometry not only converts the enthalpy energy of the gas into kinetic energy but also mixes the metal powders with the gas proportionately. The powder feeder meters and injects the powder in the spray nozzle assembly. The sensors for the gas pressure and temperature are responsible for regulating the preset pressure and temperature of the gas stream. The powder injection point in the spray nozzle assembly, the gas pressure, and gas temperature distinguish the low pressure-CS system (LP-CS) from the high pressure CS (HP-CS). In the LP-CS system, the feedstock powder is injected in the downstream side of the convergent section of the nozzle assembly, while in the HP-CS system; the powder is injected in the upstream side of the convergent/diverging section of the nozzle assembly as illustrated in Figures 11 and 12. Several other parameters which contribute towards the distinguishing of the CS systems are summarized in Table 1 [8].
\nLow pressure CS process configuration [8].
High pressure CS process configuration [8].
Operation parameters for CS systems [8].
3-D printing is an additive manufacturing method that applies the principle of adding material to create structures using computer aided design (CAD), part modeling, and layer-by-layer deposition of feedstock material. This cutting-edge technology is also called stereolithography, and is illustrated in Figure 13 [8].
\n3D-printing process [8].
In this technology, the pattern is transferred from a digital 3D model, stored in the CAD file, to the object using a laser beam scanned through a reactive liquid polymer which hardened to create a thin layer of the solid. In this manner, the structure is fabricated on the desired surface. This method was proved in the laboratory setup is still being integrated in commercial set-up because 3-D printing is the most widely recognized version of additive manufacturing. For this reason, the inventors and engineers for this process have for years used machines costing anywhere from a few thousand dollars to hundreds of thousands for rapid prototyping of new products. It can be noted that all of the additive-manufacturing processes follow this same basic layer-by-layer deposition principle but with slightly different ways such as using powdered or liquid polymers, metals, metal-alloys or other materials to produce a desired product [8].
\nElectron beam melting (EBM), shown in Figure 14, is one of the additive manufacturing processes which fabricated titanium coatings by melting and deposition of metal powders, layer-by-layer, using a magnetically directed electron beam. Though this method was proved to be successful, it has high set-up costs due to the requirement of high vacuum atmosphere [7].
\nElectron beam melting method [1].
Selective laser melting (SLM), shown in Figure 15 is the second additive manufacturing method for titanium alloy coatings which completely melt the powder using a high-power laser beam. Similarly, this method is costly because it requires advanced high rate cooling systems. Moreover, the fluctuations of temperatures during processing negatively affect the quality of the products [1].
\nSelective laser melting method [1].
This chapter described the titanium as a metal that exists naturally with two crystalline forms. The chapter highlighted the properties of titanium metal that influence its application. The fact that titanium has advantageously unique properties that can be improved by alloying with other elements makes it to be preferred engineering material for future application in such areas as biomedical implants, aerospace, marine structures, and many others. The chapter discussed the traditional, current and future methods necessary to produce structures using titanium and titanium alloys. Further, the chapter suggested “additive manufacturing methods” as advanced methods for future manufacturing because they offer powerful solutions for making any type and number of products cost-effectively and with little waste. The examples of these methods are cold spray, 3-D printing, electron beam melting, and selective laser melting. Finally, the various processes used during fabrication of alloys using these methods were also presented.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:63,numberOfAuthorsAndEditors:1947,numberOfWosCitations:3297,numberOfCrossrefCitations:1685,numberOfDimensionsCitations:4225,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9575",title:"Recent Advances in Biomechanics",subtitle:null,isOpenForSubmission:!1,hash:"97edc53b612c683e4c79a995a9f379c0",slug:"recent-advances-in-biomechanics",bookSignature:"Redha Taiar",coverURL:"https://cdn.intechopen.com/books/images_new/9575.jpg",editedByType:"Edited by",editors:[{id:"81693",title:"Prof.",name:"Redha",middleName:null,surname:"Taiar",slug:"redha-taiar",fullName:"Redha Taiar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",middleName:null,surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8569",title:"Intraocular Lens",subtitle:null,isOpenForSubmission:!1,hash:"2c184a80e647c0e74df5bc34318a2d8b",slug:"intraocular-lens",bookSignature:"Xiaogang Wang and Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/8569.jpg",editedByType:"Edited by",editors:[{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7945",title:"Cryopreservation",subtitle:"Current Advances and Evaluations",isOpenForSubmission:!1,hash:"0fe037813f921f4136cd393b7ff8dfe1",slug:"cryopreservation-current-advances-and-evaluations",bookSignature:"Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/7945.jpg",editedByType:"Edited by",editors:[{id:"72151",title:"Dr.",name:"Marian",middleName:"Dorcas",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7439",title:"Photoacoustic Imaging",subtitle:"Principles, Advances and Applications",isOpenForSubmission:!1,hash:"05982e7eb4c7f3f165306f9b136a8ae4",slug:"photoacoustic-imaging-principles-advances-and-applications",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/7439.jpg",editedByType:"Edited by",editors:[{id:"225387",title:"Prof.",name:"Reda",middleName:null,surname:"Gharieb",slug:"reda-gharieb",fullName:"Reda Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7869",title:"Advanced Endoscopy",subtitle:null,isOpenForSubmission:!1,hash:"92f6ce51b737e9086a6059ab7470eee9",slug:"advanced-endoscopy",bookSignature:"Qiang Yan and Xu Sun",coverURL:"https://cdn.intechopen.com/books/images_new/7869.jpg",editedByType:"Edited by",editors:[{id:"247970",title:"Prof.",name:"Qiang",middleName:null,surname:"Yan",slug:"qiang-yan",fullName:"Qiang Yan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8691",title:"Ultrasound Elastography",subtitle:null,isOpenForSubmission:!1,hash:"fdbf5197352ca0294bfc963ef83d1e00",slug:"ultrasound-elastography",bookSignature:"Monica Lupsor-Platon",coverURL:"https://cdn.intechopen.com/books/images_new/8691.jpg",editedByType:"Edited by",editors:[{id:"208594",title:"Associate Prof.",name:"Monica",middleName:null,surname:"Lupsor-Platon",slug:"monica-lupsor-platon",fullName:"Monica Lupsor-Platon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7728",title:"Synthetic Biology",subtitle:"New Interdisciplinary Science",isOpenForSubmission:!1,hash:"cc50b31cb749d94a5aa38999a712ae2f",slug:"synthetic-biology-new-interdisciplinary-science",bookSignature:"Madan L. Nagpal, Oana-Maria Boldura, Cornel Baltă and Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/7728.jpg",editedByType:"Edited by",editors:[{id:"182681",title:"Dr.",name:"Madan L.",middleName:null,surname:"Nagpal",slug:"madan-l.-nagpal",fullName:"Madan L. Nagpal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8125",title:"Medical Imaging",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e0fa3875d6f66d5ccd8cd3f1444c3fb9",slug:"medical-imaging-principles-and-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8125.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6875",title:"Bio-Inspired Technology",subtitle:null,isOpenForSubmission:!1,hash:"074fba986c7ba872f1af99c4fb65337e",slug:"bio-inspired-technology",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6875.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:63,mostCitedChapters:[{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64259,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"26368",doi:"10.5772/23927",title:"Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications",slug:"poly-lactic-acid-based-biomaterials-synthesis-modification-and-applications",totalDownloads:35069,totalCrossrefCites:54,totalDimensionsCites:128,book:{slug:"biomedical-science-engineering-and-technology",title:"Biomedical Science, Engineering and Technology",fullTitle:"Biomedical Science, Engineering and Technology"},signatures:"Lin Xiao, Bo Wang, Guang Yang and Mario Gauthier",authors:[{id:"52500",title:"Prof.",name:"Guang",middleName:null,surname:"Yang",slug:"guang-yang",fullName:"Guang Yang"}]},{id:"18658",doi:"10.5772/19033",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47348,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]}],mostDownloadedChaptersLast30Days:[{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:5746,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"10042",title:"Superhydrophobicity, Learn from the Lotus Leaf",slug:"superhydrophobicity-learn-from-the-lotus-leaf",totalDownloads:16768,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Mengnan Qu, Jinmei He and Junyan Zhang",authors:null},{id:"67331",title:"Research in Medical Imaging Using Image Processing Techniques",slug:"research-in-medical-imaging-using-image-processing-techniques",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"medical-imaging-principles-and-applications",title:"Medical Imaging",fullTitle:"Medical Imaging - Principles and Applications"},signatures:"Yousif Mohamed Y. Abdallah and Tariq Alqahtani",authors:[{id:"274452",title:"Dr.",name:"Yousif Mohamed Y.",middleName:"Mohamed Yousif",surname:"Abdallah",slug:"yousif-mohamed-y.-abdallah",fullName:"Yousif Mohamed Y. Abdallah"},{id:"294009",title:"Dr.",name:"Tariq",middleName:null,surname:"Alqahtani",slug:"tariq-alqahtani",fullName:"Tariq Alqahtani"}]},{id:"48226",title:"Biomedical Sensor, Device and Measurement Systems",slug:"biomedical-sensor-device-and-measurement-systems",totalDownloads:5399,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances-in-bioengineering",title:"Advances in Bioengineering",fullTitle:"Advances in Bioengineering"},signatures:"Gaofeng Zhou, Yannian Wang and Lujun Cui",authors:[{id:"37425",title:"Dr.",name:"Gaofeng",middleName:null,surname:"Zhou",slug:"gaofeng-zhou",fullName:"Gaofeng Zhou"}]},{id:"17237",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64249,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"59741",title:"Active Contour Based Segmentation Techniques for Medical Image Analysis",slug:"active-contour-based-segmentation-techniques-for-medical-image-analysis",totalDownloads:2480,totalCrossrefCites:10,totalDimensionsCites:18,book:{slug:"medical-and-biological-image-analysis",title:"Medical and Biological Image Analysis",fullTitle:"Medical and Biological Image Analysis"},signatures:"R.J. Hemalatha, T.R. Thamizhvani, A. Josephin Arockia Dhivya,\nJosline Elsa Joseph, Bincy Babu and R. Chandrasekaran",authors:[{id:"238868",title:"Prof.",name:"Hemalatha",middleName:null,surname:"R.J",slug:"hemalatha-r.j",fullName:"Hemalatha R.J"},{id:"242385",title:"Dr.",name:"Chandrasekaran",middleName:null,surname:"R",slug:"chandrasekaran-r",fullName:"Chandrasekaran R"},{id:"242386",title:"Ms.",name:"Thamizhvani",middleName:null,surname:"T.R",slug:"thamizhvani-t.r",fullName:"Thamizhvani T.R"},{id:"242388",title:"Dr.",name:"Josephin Arockia Dhivya",middleName:null,surname:"A",slug:"josephin-arockia-dhivya-a",fullName:"Josephin Arockia Dhivya A"},{id:"242389",title:"Ms.",name:"Josline Elsa",middleName:null,surname:"Joseph",slug:"josline-elsa-joseph",fullName:"Josline Elsa Joseph"},{id:"242390",title:"Ms.",name:"Bincy",middleName:null,surname:"Babu",slug:"bincy-babu",fullName:"Bincy Babu"}]},{id:"18658",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47343,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1165,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"artificial-intelligence-applications-in-medicine-and-biology",title:"Artificial Intelligence",fullTitle:"Artificial Intelligence - Applications in Medicine and Biology"},signatures:"Farhan Mohamed and Chan Vei Siang",authors:null},{id:"9927",title:"Digitizing Literacy: Reflections on the Haptics of Writing",slug:"digitizing-literacy-reflections-on-the-haptics-of-writing",totalDownloads:10143,totalCrossrefCites:39,totalDimensionsCites:91,book:{slug:"advances-in-haptics",title:"Advances in Haptics",fullTitle:"Advances in Haptics"},signatures:"Anne Mangen and Jean-Luc Velay",authors:null},{id:"43462",title:"Current Applications of Optical Coherence Tomography in Ophthalmology",slug:"current-applications-of-optical-coherence-tomography-in-ophthalmology",totalDownloads:3266,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Nadia Al Kharousi, Upender K. Wali and Sitara Azeem",authors:[{id:"130480",title:"Dr.",name:"Nadiya",middleName:null,surname:"Al Kharousi",slug:"nadiya-al-kharousi",fullName:"Nadiya Al Kharousi"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/175064/wujie-zhang",hash:"",query:{},params:{id:"175064",slug:"wujie-zhang"},fullPath:"/profiles/175064/wujie-zhang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()