Cellulose nanocrystals (CNCs) are high aspect ratio nanomaterials readily obtained from cellulose microfibrils via strong acid hydrolysis. They feature unique properties stemming from their surface chemistry, their crystallinity, and their three-dimensional structure. CNCs have been exploited in a number of applications such as optically active coatings, nanocomposite materials, or aerogels. CNC size and shape determination is an important challenge and transmission electron microscopy (TEM) is one of the most powerful tools to achieve this goal. Because of the specifics of TEM imaging, CNCs require special attention. They have a low density, are highly susceptible to electron beam damage, and easily aggregate. Specific techniques for both imaging and sampling have been developed over the past decades. In this review, we describe the CNCs, their properties, their applications, and the need for a precise characterization of their morphology and size distribution. We also describe in detail the techniques used to record quality images of CNCs. Finally, we survey the literature to provide readers with specific examples of TEM images of CNCs.
Part of the book: The Transmission Electron Microscope