\r\n\t
",isbn:"978-1-83969-561-2",printIsbn:"978-1-83969-560-5",pdfIsbn:"978-1-83969-562-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",bookSignature:"Dr. Luis Loures",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",keywords:"Urban Processes, Urban Patterns, Redevelopment Strategies, Landscape, Land Transformation, Urban Models, Urban Evolution, Urban Organisation, Legislation, Sustainable Development, Green Infrastructure, Regional Planning",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 22nd 2021",dateEndThirdStepPublish:"May 21st 2021",dateEndFourthStepPublish:"August 9th 2021",dateEndFifthStepPublish:"October 8th 2021",remainingDaysToSecondStep:"21 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Loures has worked on pioneering research on circular planning applied to post-industrial landscape redevelopment. Since he graduated he has published several peer-reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA) and at the University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures",profilePictureURL:"https://mts.intechopen.com/storage/users/108118/images/system/108118.png",biography:"Luís Loures is a Landscape Architect and Agronomic Engineer, Vice-President of the Polytechnic Institute of Portalegre, who holds a Ph.D. in Planning and a Post-Doc in Agronomy. Since he graduated, he has published several peer reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA), and at University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).\nDuring his academic career he had taught in several courses in different Universities around the world, mainly regarding the fields of landscape architecture, urban and environmental planning and sustainability. Currently, he is a researcher both at VALORIZA - Research Centre for Endogenous Resource Valorization – Polytechnic Institute of Portalegre, and the CinTurs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve where he is a researcher on several financed research projects focusing several different investigation domains such as urban planning, landscape reclamation and urban redevelopment, and the use of urban planning as a tool for achieving sustainable development.",institutionString:"Polytechnic Institute of Portalegre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Polytechnic Institute of Portalegre",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48201",title:"Virtual Surgical Planning in Craniomaxillofacial Reconstruction",doi:"10.5772/59965",slug:"virtual-surgical-planning-in-craniomaxillofacial-reconstruction",body:'Craniomaxillofacial reconstruction poses inherent and unique challenges due to the three-dimensional configuration of the proposed construct and the critical importance to restore speech, swallowing, mastication and symmetrical facial contour. Additionally, reconstruction results are often inconsistent and learning curve dependent.[1-43] Until recently, the overall success in bony reconstruction of the craniomaxillofacial skeleton has relied mainly on the use of surgical trial-and-error and 2D imaging modalities. Virtual surgical planning (VSP) and computer aided design (CAD) / computer aided modeling (CAM) is an exciting new technology that presents advantages in complex craniomaxillofacial reconstruction, with potential to transform the approach and execution of challenging head and neck reconstructions.[30] Among the reported benefits of VSP- CAD/CAM are increased reconstructive accuracy, reduced OR and graft ischemia time, improved patient satisfaction and ease of use.[1, 9, 19] VSP- CAD/CAM is gaining traction in craniomaxillofacial reconstruction applications and offers opportunity for increased accuracy, improved efficiency, enhanced outcomes and ease of use.[34, 43] To illustrate this point, the usage of this technology in different applications is presented in subsequent sections with an emphasis and case study example for an oncologic indication.
VSP- CAD/CAM is a novel technology which has been described for a range of surgical applications ranging from trauma to oncologic reconstruction. Widening utilization in craniomaxillofacial reconstruction is largely due to its unique capability that allows the surgical team to visualize and manipulate patient-derived virtual and stereolithographic models in three dimensions during the virtual pre-operative planning phase. Due to refinements in pre-operative planning, many studies, though limited, have reported improved outcomes through CT evaluation of actual verses planned height and width dimensions, volumes, osseous graft overlap, and aesthetic outcomes.[24] For these reasons, VSP-CAD/CAM has been of benefit for the following applications:
Craniomaxillofacial / Orthognathic procedures–VSP-CAD/CAM is a useful technology to address craniofacial anomalies or maxillofacial deficiencies. Until recently, traditional imaging methods only allowed for 2D images in a single plane to visualize the irregular and uniquely shaped donor-graft and recipient sites.[3] While multiple imaging studies may aid in forming a pre-surgical plan, the outcomes of movements outside the plane of imaging cannot be reliably predicted. Therefore, complex reconstructions requiring correction for craniofacial and maxillofacial applications can induce asymmetry since the traditional radiological studies cannot plan movements in three dimensions; a capability that VSP-CAD/CAM offers.[23] In addition, pre-made guides for harvesting and transplanting autografts as well as customized allograft materials (e.g. pre-bent plates) facilitate achieving a result consistent with the craniofacial reconstructive plan.[23, 43] In maxillofacial procedures, VSP-CAD/CAM eliminates several other sources of error when planning midline correction by allowing the surgeon to account for the natural yaw, pitch, roll of a head position, and assessing heights and widths; virtual manipulations of the patient model to millimeter precision can be performed to achieve accurate maxillofacial balance and appropriate orthognathic relationships. Pre-bent fixation plates further promote accurate translational movements intraoperatively that are pre-planned in the virtual environment. When compared to the ‘classic’ method of building acrylic intermaxillary occlusal splints using plaster models, VSP-CAD/CAM was shown to be superior when evaluating post-operative maxillary position and centrality of the condyles in the temporomandibular joint.[43]
Trauma–VSP-CAD/CAM has been utilized for reconstruction of traumatic facial injuries, including comminuted mandible and panfacial fracture reduction and repair. Three-dimensional modeling of craniomaxillofacial injuries facilitates precise intraoperative reduction of displaced bone fragments, while CAD/CAM produces occlusal splints that allow superior restoration of facial symmetry, appearance, and function to those fitted intraopertively.[35] Avulsed or necrotic areas can be replaced with grafts or covered with custom implants. Additionally, implementation of VSP-CAD/CAM offers use of pre-manufactured cutting guides for improved accuracy and reduced trial-and-error when harvesting and shaping autologous implants, thus helping to ensure optimal bone-to-bone contact and aesthetic outcome. Pre-bent fixation plates decrease intraoperative time and limit the extent of subperiosteal dissection, thus minimizing avascularization of bony fragments.[35] Utilization of VSP-CAD/CAM starting at initial presentation of traumatic facial injury does not result in increased time to reconstruction and has been shown to better preserve facial height and width.[6, 35]
TMJ reconstruction – Traditional temporomandibular joint (TMJ) reconstruction is a two-stage approach beginning with gap arthroplasty followed by postoperative CT to plan implant design and fabrication. A subsequent procedure is then required to inset the pre-designed TMJ implant. VSP-CAD/CAM however, enables single-stage reconstruction of the TMJ as gap arthroplasty simulation and TMJ implant pre-fabrication can be performed on a virtual 3D model.[23] Planning and simulation of TMJ movements and jaw occlusion can also be assessed on stereolithographic models prior to implant in-setting resulting in improved functional outcomes and reduced postoperative complications.[23]
Mandibular Atrophy –In a case series of seven patients, VSP-CAD/CAM was utilized to repair atrophic mandibular alveolar crest defects in patients after all other treatment modalities had failed.[28] A free iliac crest transplant was harvested and anastamosed to the thoracodorsal artery and vein in the axilla. Grafts were harvested three months later, after having developed a whitish tissue layer on the bone, which was used as a mucous membrane following fixation to the mandible. All grafts fit the mandible as predicted in the initial pre-reconstructive planning phase and no implants were lost after 7 years of follow up.[28]
Oncologic resection and reconstruction–Craniomaxillofacial reconstruction using free fibula flaps, as first described by Hidalgo, has traditionally relied on surgical skill, judgment, and intra-operative trial and error to create the neomandible.[2, 3] Reconstruction of the mandible and maxilla has therefore been considered to be learning curve dependent, often with inconsistent results during the skill acquisition phase.[1] Furthermore, preoperative planning and communication between the oncologic and reconstructive teams has been limited by the lack of data regarding the anatomy of the lesion, precise margins of resection, and anatomy of the graft recipient site, which prior to use of VSP-CAD/CAM, are only revealed in the operating room.[6] Thus,for a procedure requiring a high degree of precision for optimal orthognathic and aesthetic outcomes, craniomaxillofacial reconstructive success has historically been hindered by prolonged intraoperative time and suboptimal reconstructions.[12] VSP-CAD/CAM offers significant benefits for use in complex oncologic osseous head and neck reconstruction by providing enhanced cooperation between surgical teams, pre-operative planning, and the ability to customize models to patient’s individual characteristics, which offers potential for considerable intraoperative time saving.[1]
VSP-CAD/CAM allows for a cooperative team approach to plan the resection and reconstruction by synergistically facilitating pre-operative collaboration between the extirpative and reconstructive teams, maximizing chances for tumor-free resection margins.[1, 3, 20] Additionally, as the extirpative surgeon is provided with pre-operative 3D CT visualization of the lesion borders and a comprehensive plan from the reconstructive team, he may be more inclined to plan liberal resection margins initially; thus potentiating decreased local recurrence rates and intraoperative time.[1] Similarly and in reciprocal fashion, reconstructive planning may be better realized for the reconstructive surgeon with advance knowledge of the resection plan. As refinements in the VSP-CAD/CAM interface have become progressively more user-friendly for both the extirpative and reconstructive surgeon, adoption of this technology and coordinated pre-operative planning has continued to increase.[30]
Computer-assisted craniomaxillofacial surgery is based on four specific, well-described phases, which are all necessary in order to achieve predictable outcomes: planning, modeling, surgery, and evaluation.[3, 19] these steps are detailed as follows[24]:
The first phase, planning, begins with a high-resolution computed tomographic (CT) scan of the craniofacial skeleton and the possible donor sites, (e.g. lower extremities) if considered necessary. A 3D reconstruction of the CT images is performed and then forwarded to the desired modeling company. A web-based teleconference is then held between the surgical teams and a biomedical engineer to allow participation from remote locations. During this phase, the resection and reconstruction is virtually planned, with key parameters including resection margins, osteotomies, placement of the vascularized bone graft in oncologic reconstruction, accurate reduction of the fractured bony segments for traumatic injuries, and the staged virtual movement of the jaws in orthognathic procedures.
Overlay of the planned reconstruction with the native diseased mandible after virtual planning of the osteotomies.
Positioning of the designed neomandible adjusted to optimize bony contact and restore the anticipated mandibular defect. Note the osseous segments to be produced via guided cuts of the free fibula graft.
The modeling phase begins Based on the virtual surgical plan. Stereolithographic models are manufactured of the area of the craniomaxillofacial skeleton of interest, along with specific cutting guides for both the resection and the vascularized bone graft that will be used for oncologic bony reconstruction (e.g. fibula), if indicated. In orthognathic procedures, pre-bending of plates allows for accurate translation of the osteotomized segments for advancement/ setback and precise execution of the pre-operative plan (e.g. LeFort I, Bilateral Sagittal Split Osteotomy). In oncologic reconstruction, this also allows for manufacturing of a reconstruction plate or plate-bending template; the specific guides and templates can be tailored to the surgeon’s preference and the stereolithographic models can help to create pre-bent plates prior to reconstruction[17, 19]
Virtual positioning of the pre-manufactured graft osteotomy guides on the fibula (A), extirpative osteotomy guides on the diseased mandible (B), and fibula grafts secured to the pre-bent reconstruction plate aligned to the native mandible.
During the surgery phase plate-bending templates and pre-bending of plates also expedites the fixation step. Osteotomies are made in the mandible or maxilla based on the cutting guides, typically after maxillomandibular fixation is achieved. In the case of oncologic reconstruction, the harvested osseous flap is also cut and osteotomized in-situ based on the cutting guides and typically fixed to the reconstruction plate before the composite unit is secured into the maxillofacial/mandibular defect. With the bony foundation restored, the soft tissue reconstruction can be carried out synergistically.
Intraoperative placement of osteotomy guide to fibula facilitating guided cuts for the neomandible.
Intraoperatively, the fibular grafts are secured to the reconstruction plate.
The evaluation phase begins in the post-operative period, with a repeat high-resolution CT scan performed, based on the same preoperative protocol.[17] While the method of evaluation varies between institutions, a postoperative CT scan allows for a quantitative evaluation of the surgical outcomes and can complement subjective assessments by the surgeon and patient of restored oral and maxillofacial function. 3D models of the post-operative results are overlaid with the pre-operative plan to determine accuracy and success of reconstruction including actual mandibular angle and margins of bony contact in addition to accuracy of the VSP- CAD/CAM plan including: bony segment overlap (repeatability) and mean service deviation, overall positioning, osteotomy site differences, and reconstructive plate overlap.[3, 9, 25, 20] Clinical parameters can then be correlated in the evaluation phase with functional parameters including occlusion, mastication, and speech, in addition to overall aesthetic outcome, and patient satisfaction.
Overlay of the designed neomandible (blue segments) with the actual postoperative mandibular reconstruction (green segments) evaluated by 3D CT.
Oncologic Case – A 61-year-old male patient presented to an oral surgeon for evaluation of the right posterior mandible for potential chronic osteomyelitis. He stated that he had felt a “dull pain” since nine months prior. Teeth #31 and #32 were extracted 16 and 9 months ago, respectively. Since extraction, the patient had completed multiple courses of antibiotics, most recently Augmentin 500mg.
On exam the patient displayed normal facial symmetry with a non-tender movable lymph node <1cm right Level 1b without erythema, discharge or skin changes. The right mandible was slightly tender to palpation with only minimal expansion, with slight "crepitus" appreciated upon opening, concerning for osteolysis. Radiographic appearance on panorex was notable for significant bone distraction appreciated on the right mandible involving the body to the inferior border. Initial workup of the patient included an incisional biopsy and curettage of the area under local anesthesia in order to rule out osteomyelitis. The pathology report described a well-differentiated squamous cell carcinoma of right posterior mandible. The patient was referred to oral-maxillofacial surgery for extirpation of the affected region of the mandible with adequate margins and concomitant right free fibular osteocutaneous flap reconstruction of the mandible by plastic and reconstructive surgery. High-resolution CT scans were performed and sent to an outside company for modeling via CAD/CAM software.
Overlay of the virtual planned multiple fibular graft segments to reconstruct the mandible (blue segments), over the diseased mandible (green).
Positioning of the designed neomandible in the expected right hemimandible defect after virtual planning of the osteotomies with positioning of the planned reconstructive plate.
After rendering the virtual models, the extirpative and reconstructive teams formulated a surgical approach and consulted the modeling company for manufacturing of the desired guides.
Virtual placement of the pre-manufactured extirpative osteotomy guide on the patient’s native mandible and resection /osteotomy guide on the patient’s fibula for creation of the neomandible.
The virtual three-dimensional model of the craniofacial skeleton was first used to plan the resection of the lesion and then the subsequent reconstruction of the defect by the extirpative and reconstructive teams respectively in a joint teleconference facilitated by the biomedical engineer from the modeling company. During the surgical phase, the oral-maxillofacial team first excised the diseased mandible as planned using the prefabricated cutting guides. The fibular osteocutaneous flap was then harvested by the reconstructive team; prefabricated templates and guides were used by both the extirpative and reconstructive teams to ensure the precise location and angle of osteotomies. The harvested, osteotomized flap was fixed to the pre-bent plate in-situ and subsequently inset to the mandibular defect. The free condylar end of the graft was contoured to fit the articular disk of the temporomandibular joint and the graft placed into position. After successful fixation of the plate and graft to native bone, the donor cutaneous flap was tailored for use in reconstruction of the oral mucosa. The flap vasculature was then anastamosed, adequate circulation ensured, and both sites were closed in a layered fashion.
Intraoperative comparison of the virtual surgical planned reconstruction model with the fibular osteomyocutaneous flap segments secured to the pre-bent reconstruction plate (left). Placement of the plate secured fibula graft to the native mandible (right).
After surgical completion, a high-resolution CT scan was obtained and sent to the original modeling company for evaluation of reconstructive success. Comparisons were made between the anatomical dimensions of the pre-operative and post-operative skull and mandible. Reconstructive plate overlap was considered to be acceptable and the patient achieved excellent functional and aesthetic results. The evaluation phase allowed for review of surgical outcomes in a multidisciplinary fashion to further refine the technique.
Post-operative evaluation by 3D CT of the virtually planned neomandible (blue segments) with the actual mandibular reconstruction (green segments)
Heightened aesthetic outcomes and reconstructive accuracy are realized with the multi-stage implementation of virtual surgical planning throughout the four phases of computer-assisted craniomaxillofacial surgery and the use of cutting guides, stereolithographic models and pre-fabricated plates. In particular, the surgical course with VSP-CAD/CAM implementation, specifically in the oncologic reconstruction of the mandible and maxilla, has been favorably altered when compared to intraoperative planning and in-situ plate bending.[2, 23] More pervasive use of the technology throughout the reconstructive process reduces translational error due to human error.[24] The virtual model data allows manufacturing of cutting guides, plate bending templates, prefabricated reconstruction plates, and also stereolithographic models to facilitate an accurate execution of the virtual plan in the operating room.[11, 13] Pre-operative simulation of the maxillo-mandibular relationship facilitates proper alignment of the graft for proper dental occlusion and proper orthognathic relationships.[4, 10] As the majority of the planning of this process has occurred pre-operatively, total operating time is also reduced concordantly.
While achieving reconstructive success was previously reliant on the surgeon’s experience and intra-operative trial-and-error using 2-D imaging, VSP-CAD/CAM offers cited benefits over traditional methods which include increased bone-to-bone contact, better dental alignment, improved aesthetic contour, reduced complication rates and decreased intraoperative time.[10, 13] In our review of surgeon-reported benefits, increased reconstruction accuracy in 92% of cases proved to be a major perceived advantage demonstrated by this technology.[24] Furthermore, a future direction of the VSP-CAD/CAM technology includes planning of osseointegrated implants for mandibular reconstruction at the initial virtual planning session to greater improve functional outcomes.[31, 34]
Quantifiable patient satisfaction surveys, subjective outcome evaluations, and clinical assessment can help to measure functional and aesthetic outcomes.[1, 11, 20, 21, 32, 33, 36] Likely Results from more true-to-plan reconstructions attained by use of this technology, VSP-CAD/CAM has been purported to translate to increased patient satisfaction. In a 2012 study comparing VSP-CAD/CAM with conventional surgery, patients were asked to report satisfaction on a scale of 0-100. Patients who underwent virtually planned surgery reported an average score of 88 compared to an average score of 68 by those patients undergoing traditional reconstruction.[21]
The technical accuracy achieved as a consequence of VSP-CAD/CAM utilization can be enumerated with evaluation of the final reconstruction with the virtual plan via comparison of pre-operative and post-operative three-dimensional CT scans. Performing osteotomy with use of cutting guides has been shown to assist in more accurately designed free flaps, while use of pre-manufactured reconstruction plates versus hand-bent reconstruction plates has been shown to promote true-to-plan reconstructive results.[4],`[9, 2] `Additionally, a noted decreased difference in the overall positioning between the native and reconstructed mandibles was found in VSP-CAD/CAM aided reconstructions when comparing standard technique reconstructions.[9] Thus, improved reconstructive accuracy via the reduction of human error can be achieved with pre-manufacturing of the reconstructive plates and implementation of VSP-CAD/CAM more pervasively throughout the reconstructive process.[24] It follows that application of VSP-CAD/CAM to refine preoperative planning, intraoperative contouring, and postoperative orthodontic relationships in each surgical step can improve functional and aesthetic outcomes.[22] With completion of the VSP process to the final evaluation phase, 3D comparison imaging not only permits assessment of the reliability of the technology, it allows the collaborative discussion between surgical teams to assess technique and identify areas for improved performance.[25]
Overlay of the virtually planned reconstruction (blue segments) with the native mandible demonstrating translational error using a hand-bent plate (top). Post-operative overlay demonstrating improved match between actual and virtual segments using a pre-bent reconstructive plate (bottom).
Pre-operative planning of the resection and reconstructive segmental osteotomies results in enhanced operative time efficiency so that the extent of surgical time required is optimized to precisely execute the previously developed plan.1Intraoperative surgical planning is thereby converted to a preoperative event so that substantial savings in intraoperative time and reductions in the surgical learning curve may be realized.[1] Such savings may be further realized in reduced surgeon fatigue and concomitant reduced surgical error. Decreased operative time and increased accuracy have been noted in multiple reconstructive series, further illustrating the utility of VSP-CAD/CAM in dealing with complex head and neck reconstruction for various surgical indications.[6, 28, 35] in mandibular reconstructions using fibula free flaps, Hanasono reported a significant decreased mean intraoperative time when utilizing VSP- CAM/CAD.[8] While Seruya et. al did not find a significant decrease in operative time; they described a decrease in mean ischemic time in CAD assisted mandibular reconstructions.[29] Reduced ischemia time has been shown to result in decreased flap loss and overall post-operative complications.[27, 29] Enhancing overall intra-operative efficiency is facilitated by the use of pre-manufactured cutting guides and models which enables faster and more accurate osteotomies and graft placement. [7, 31] Use of manufactured pre-bent reconstructive plates can also significantly decrease the total operative time; total reconstructive operative time was reported in one case to be less than 90 minutes.[3, 19, 31]
With regard to the current economic climate in healthcare, potential limitation of widespread incorporation of VSP-CAD/CAM technology is its added cost and the resultant financial burdens that may be placed on the patient and medical system.[8, 17, 28, 34] Given the economic healthcare constraints, the improved patient outcomes seen with VSP-CAD/CAM have to be balanced against the cost of the technology.[24, 39] Potential costs are further increased with the use of the manufactured pre-bent reconstruction plates. Given the qualitative nature of many benefits of VSP-CAD/CAM and the paucity of data currently available, the total value added and cost efficiency of VSP-CAD/CAM utilization has not been formally evaluated and still remains the subject of future studies.[24] As previously discussed, reductions in ischemia and/or overall operative time is a potential source of cost reduction. Additionally, the decreased complications and patient morbidity, and generalized improved outcomes seen signify cost savings that may offset the technological costs.[24] However, the clinical implications and economic benefits have yet to be formally analyzed with the added cost of VSP-CAD/CAM in the context of various expanding clinical applications including trauma, temporomandibular joint reconstruction, cancer, and skull base surgery.[6, 28, 35, 38] In head and neck cancer reconstruction, patient lifespan, risk for tumor recurrence and disease progression, and quality of life are additional factors that add complexity to the cost-benefit evaluation of the technology in an oncologic setting.
VSP-CAD/CAM is a novel technology that holds potential to consistently and predictably advance reconstructive outcomes, both aesthetically and functionally. This technology is suited for use in spatially complex reconstructive cases due to its ability to visualize and virtually manipulate 3D configurations of the craniomaxillofacial skeleton in a collaborative, synergistic fashion. Its applications are expanding for cases of varying levels of complexity that require precise millimeter precision particularly in trauma, orthognathic procedures and oncology to obtain optimized function and aesthetic outcomes. Implementation of VSP-CAD/CAM into each stage of the reconstruction affords the opportunity to reduce human translational error and facilitates intra-operative decision-making with expedition of the surgical phase.[1, 10, 11, 13, 21, 24] VSP- CAD/CAM technology is attaining acceptance across the multiple surgical disciplines as efforts towards validating its use are increasing, thereby holding promise as an mainstay, innovative solution in the management of challenging head and neck reconstruction cases.
Researchers and engineering practitioners are attentive to understanding the behavior of structures under the effects of various loading patterns and conditions, to enhance their lifetime performance. Wind forces can threaten the safety of structures if their effects are underestimated; therefore, it is crucial to properly simulate and assess wind effects on civil engineering structures in order to achieve optimal and resilient designs that can maintain accessibility and functionality after natural disasters. Due to climate change and its consequences, the patterns of extreme winds and hurricane occurrence have been altered [1, 2, 3]. As a result, wind loads are becoming important in the analysis and design of buildings, especially in hurricane active regions. To put it into perspective, in most parts of the United States, especially in the east coast and the southern region, hurricanes and severe windstorms hit and bring widespread damage to buildings and other types of structures. The associated losses are estimated in billion dollars. The normalized hurricane-induced damage in the United States, between 1900 and 2005 (106 years of record), was estimated at about $10 billion (normalized to 2005 USD) [4]. Damage records totaling $265 billion were set by hurricanes Maria, Harvey, and Irma [5].
Due to the population growth, coastal zones are being more and more concentrated with residential buildings. These buildings are mostly light and low-rise, constructed from wooden materials, with different aerodynamic performance compared to high-rise buildings and residential homes. The American Society of Civil Engineers (ASCE) design standard defines a low-rise building to have an average roof height that is less than its lateral dimension; however the building should not exceed 18.3 m [6]. The majority of failures in low-rise buildings are reported because of strong wind effects on their envelope and specifically on roof panels [7]. Figure 1(a) shows a total failure of a low-rise building induced by hurricane Sandy in New York in 2012 [8]. The building envelope experienced significant loads from hurricane winds and lost its load path connections. In other scenarios, once part of a roof is breached during high winds, it facilitates the penetration of rainwater which can be harmful to interior properties and may cause serious problems to the building and loss of contents. Figure 1(b) shows severe roof damage during Hurricane Katrina in Lake Charles, New Orleans, in 2005 [9].
Hurricane-induced damage: (a) complete collapse of a residential home induced by hurricane Sandy, New York, 2012 [8] and (b) severe roof damage by hurricane Rita in Lake Charles, in 2005 [9].
Examination of post-disaster surveys indicates initiation of damage through failure of roof components under extreme wind events. Earlier studies confirm the presence of extreme negative pressures at corners, ridges, and leading edges of roofs. The performance of roofs in low-rise buildings can differ significantly during a windstorm according to the shape of roof and its dimension. For instance, large roofs in industrial buildings may behave differently, compared to those of small roofs in a single-family low-rise building which can lead to different damage patterns to the building envelope [10, 11, 12]. In large roofs, the correlations among pressures acting at different roof locations are usually low [13]. In large roofs of light metal industrial buildings, leading edge failure usually occurs due to poor attachment of metal sheathing in areas that are exposed to uplift wind forces. This weakness eventuates to progressive peeling of the roof membrane causing further damage to the whole integrity of the building envelope.
The components and claddings in small roofs are usually exposed to damage during windstorms, due to local fluctuating negative pressures (uplift effects) due to flow separation, especially at roof edges and corners. Figure 2 represents wind flow around a residential building [13]. The flow separates at sharp edges and re-attaches again in a fluctuating manner within the separation zones at a distance that is called separation bubble length, leading to uplift forces on the roof surface. The stagnation point is also specified in the windward wall, where the along-wind velocity is zero. Figure 3 shows homes damaged by Hurricane Andrew in 1992 as a result of low pressures on the roof; and as a result, the shingles and sheathings were blown off due to high uplift forces. Referring to Figure 2, now it is shown that the separation bubble effects and the flow detachment are the main causes of these damage patterns of roof coverings which are a representation of roof areas under uplift forces. To fully understand windstorm effects on low-rise and residential buildings, it is essential to replicate the physics by experimental and computational methods. There are two important requirements: (1) correct reproduction of the main characteristic in the atmospheric boundary layer (ABL) and (2) aerodynamic testing at proper scales.
Fluctuating flow separation and re-attachment (adapted from Ref. [14]).
Homes damaged by hurricane Andrew in 1992 [15].
The variation of the mean velocity profile with height can be different over different terrain conditions depending on the friction effects from the earth’s surface and the value of roughness length. Figure 4 shows a schematic of different mean wind profiles over various topographical conditions of a dense urban area, suburban terrain, and over sea surfaces. In Figure 4, higher velocity is anticipated in lower altitudes on sea surfaces than the gradient wind in a dense city center.
Mean wind speed profiles over different terrains according to Davenport’s power law profiles (adapted from Ref. [16]).
After recording time series of wind velocity in the lab or in the field, the turbulence spectrum can be obtained accordingly. For the validation of the turbulence spectrum, theoretical spectra are usually used. The Kaimal spectrum is one of the widely used spectra, which is defined as follows [17]:
in which f is nU/z. One can obtain the spectrum, Suu, in the along-wind direction by considering A to be 105 and B to be 33 [14, 18]. For the lateral and vertical spectra, different values for the parameters A and B are suggested [14, 18].
The Engineering Science Data Unit (ESDU) spectrum is proposed based on a new von Karman spectrum, covering the full frequency range, as follows [19]:
For more details regarding the ESDU spectrum and definition of different terms, readers are referred to Ref. [19]. The nondimensional cross-spectrum of u-component is defined in Ref. [20]:
where
Davenport:
Maeda and Makino:
where
The integral length scale of turbulence, Lux, is a measure of the size of the largest eddy in a turbulent flow [18]. Having the time history of along-wind velocity component at any height, Lux can be calculated using the approach described in Ref. [22]:
where ū is the standard deviation of the along-wind velocity component and E(f) is the power spectral density. Studies show that the integral length scale of turbulence may decrease in the flow direction, due to the fact that larger eddies will usually dissipate energy into smaller eddies [23]. According to actual measurements, as the terrain roughness decreases, Lux increases with the height above ground [18]. To quantify these changes, the integral length scale formulation suggested by ESDU is defined as follows [19]:
And Counihan formulation used by Refs. [24, 25]:
Bluff body aerodynamics, and in particular fluctuating pressures on low-rise buildings immersed in turbulent flows, are associated with the complex spatial and temporal nature of winds [26]. This complexity mainly comes from the transient nature of incident turbulent winds, and the fluctuating flow pattern in the separation bubble. The flow in the separated shear layer is associated with fluctuations in the velocity field leading to the evolution of instabilities. The flow physics are dependent on upstream turbulence intensity, integral length scale, as well as Reynolds number. The later makes it difficult to scale up loads based on pressure and force coefficients as the process can be highly nonlinear, which is the case, for example, when full-scale pressure coefficients do not meet those from small-scale aerodynamic testing (Figure 5). Not only free stream turbulence impacts the flow pattern around bluff bodies, but also it can impact the thickness and length of the wake, hence significantly altering aerodynamic pressures.
Minimum pressures at building corner (adapted from Ref. [14]).
In order to propose mitigation alternatives to minimize damages induced by windstorms to low-rise buildings, it is vital to understand how peak loads and spatial correlation of pressures are developed. As a first step to understand this mechanism, a true simulation of flow characteristics in accordance to real full-scale winds is necessary. There are common and valuable resources for the physical investigation of wind effects on structures, including small-scale wind tunnel testing, large-scale testing an open-jet laboratory, and full-scale field measurements.
According to Ref. [27], at relatively large-scale wind tunnel models, it is very difficult to model the full turbulence spectrum, and only the high-frequency end is matched [28]. For instance, as described in Ref. [29], more than 50% discrepancies in wind tunnel aerodynamic measurements are realized from six reputable centers for roof corner pressure coefficients and peak wind-induced bending moment in structural frames of low-rise building models. Therefore, selecting an appropriate testing protocol, including model scale ratio, for physical testing to minimize discrepancies in aerodynamic loads is essential. This can be achieved by considering constraints on laboratory testing that limits producing the large-scale turbulence and the inherent issues with limited integral length scale [30].
The literature raises questions regarding the adequacy of predicting full-scale pressures on low-rise buildings tested in flows that lack the large-scale turbulence. For instance, although a good agreement was observed between a wind tunnel testing on a generic low-rise building and full-scale data, discrepancies were shown in reproducing the largest of peak pressure near roof edges [31]. Figure 5 shows minimum pressure coefficients at a building corner and eave level for the full-scale Texas Tech University (TTU) experimental building, along with wind tunnel measurements [14]. The local peak pressures are weaker in wind tunnel testing than those at full-scale. For instance, at 65° wind direction angle, the wind tunnel reproduced minimum pressure coefficient of −4.3, while the full-scale field measurement is −6.8, and at 250° wind direction angle, wind tunnel shows −2.2, while the full-scale data shows −5.3. Therefore, there would be a major doubt on estimating the correct wind loads for design purposes based on wind tunnel testing. To describe this mismatch, first we need to define the concept of the energy cascade in a flow.
As depicted in Figure 6, the structure of a turbulent wind flow is constituted from a combination of large eddies and small eddies. In physical space, the large eddies are broken into smaller and smaller eddies with different spectral energy contents in various frequency ranges. In conventional wind tunnel testing, it can be challenging to appropriately reproduce low-frequency turbulence, which overwhelmingly contributes to the integral length scale and intensity of fluctuations. This leads to significant disparity among the wind tunnel flows and the target full-scale field flow conditions. As observed in Figure 5, this mismatch affected the local vorticity at edges and corners of a low-rise building model tested in a wind tunnel and resulted in local pressures weaker than those at full-scale. To alleviate these issues and to replicate the ABL flow characteristics for aerodynamics of buildings, advanced research in computational and experimental methods is essential.
Energy cascade in a turbulent flow (adapted from Ref. [32]).
In recent years, computational fluid dynamics (CFD) simulations have witnessed a spread use and applications as a potential tool in aerodynamic investigations of buildings. However, by considering the constraints of experimental testing in wind tunnels that limit producing the low-frequency large-scale turbulence and the inherent issues with limited integral length scale, implementing appropriate turbulence closure in CFD and developing a proper inlet transient velocity may alleviate the issues with experimental measurements in wind engineering. In CFD, the scale is not an immediate issue, as a full-scale model of the structure can be modeled and tested under various extreme wind scenarios. The simulation can be repeated to yield the same results any time. Even large-scale problems, such as simulating an urban area with condensed high-rise buildings for pollutant dispersion studies can be performed in CFD [33]; this can be challenging in laboratory testing due to scale issues.
CFD is gaining popularity within the wind engineering community along with the rise of computational power. Nowadays, CFD is commonly used to address wind engineering problems such as pollutant dispersion, wind comfort for pedestrians, aerodynamic loads on structures, or effects of bridge scour [34, 35, 36, 37]. CFD-based numerical simulations will eventually complement the existing experimental practices for a number of wind engineering applications [38, 39, 40]. In most cases, numerical approaches are less time-consuming than experiments, and detailed information at higher resolution can be retrieved for scaled models from numerical simulations. In few earlier studies, the accuracy of analyzing bluff bodies with CFD has been questioned [41, 42, 43]. The reason behind inaccuracies was detachment of shear layer at sharp edges of bluff bodies. Detachment of shear layer makes the overall flow in the domain more responsive to local behaviors. The local effects are influenced by turbulence intensity and turbulence length scales of the incoming flow [36, 44]. Inaccurate replication of incoming turbulence properties in earlier studies was considered a reason for discrepancies in results. In Ref. [45], careful replication of horizontal turbulence properties at roof height of low-rise buildings was declared important. Few earlier studies focused on comparing surface pressures from numerical simulations with experiments and full-scale measurements. Good agreement was found among different data sources for mean pressure coefficient, while differences were found for fluctuating pressure coefficient [46].
Large eddy simulation (LES) can yield better results than turbulence closures that are based on Reynolds-Averaged Navier-Stokes (RANS), however, for higher cost of computations. The accuracy of solution of any wind engineering problem with CFD depends on the precise simulation of wind flow. A number of studies have indicated better performance of LES turbulence model for predicting mean and instantaneous flow field around bluff bodies [42, 47]. The concept of LES involves resolving the large scales in fluid flow and modeling the small scales. This approach is theoretically suitable for wind engineering applications as normally large scales are responsible for forces of interest [42]. Earlier applications of LES involving treatment of flows at low-Reynolds number yielded satisfactory results. Simply, the use of LES does not guarantee meaningful and accurate results. For flows with higher turbulence, results become more sensitive to the quality of the model [42]. Modeling of small-scale turbulence has gone through stages of improvement over the years. Sub-grid scale modeling remains the commonly used modeling technique. To yield accurate results, maintaining proper inflow boundary condition (IBC) is fundamental. Three methods are identified for generating IBC, and they are [48] (a) precursor database, (b) recycling method, and (c) turbulence synthesizing. The first two methods are computationally demanding; the third method is promising [49].
Maintaining horizontal homogeneity in the computational domain is another challenge in CFD simulations. Horizontally homogeneous boundary layer refers to the absence of artificial acceleration near the ground or stream-wise gradients in vertical profiles of mean velocity and turbulence intensity [50]. One may run steady-state simulation until it reaches convergence and monitors the vertical profiles of velocity and turbulence intensity at different locations in the domain. In case of LES, the mean value should be taken from the velocity time history for monitoring the vertical profiles. Achieving horizontal homogeneity ensures that the inlet, approach and incident flow are the same and eventually provide results with higher accuracy [50]. In several previously conducted studies, maintaining a consistent profile of mean wind speed and turbulent kinetic energy was an issue with different turbulence closure models. Significant near wall flow acceleration was found to cause unwanted change in mean wind speed and turbulent kinetic energy in simulation conducted in [51]. Additionally, issues in maintaining a consistent profile for turbulent kinetic energy were observed in [52, 53]. For accurate CFD results, maintaining consistent vertical profiles throughout the domain is important. Minor change in the profiles can create significant changes in the flow field. For flow around buildings, the importance of retaining the vertical flow profiles was stressed in Refs. [50, 54].
In Section 2, the main characteristics of ABL wind were presented. One of the main parts of any wind engineering study is to appropriately reproduce the wind characteristics in a controlled manner, to examine the response of a structure in the scope of a certain wind event. This means that first the wind flow characteristics should be simulated following an acceptable protocol and following that wind-induced pressures and loads on the surfaces of a building can be obtained by aerodynamic testing, according to the laws of similitude [55]. In order to satisfy these requirements, there are some tools used for ABL processes, including wind tunnels and open-jet facilities [56].
For several decades, wind tunnel modeling has been widely used as a technique to estimate wind-induced pressures and loads on buildings. Figure 7 shows a view of a wind tunnel at the University of Western Ontario and a 1:100 scale low-rise building model. The arrangement and height of passive roughness elements are designed to reproduce wind flow over an open-terrain exposure with z0 = 0.01 m [57]. This test case was selected benchmark for validation and comparison with other computational and experimental measurements. For accurate estimation of aerodynamic forces on buildings, proper replication of wind speed, turbulence intensity profiles, and spectral characteristics is essential [58]. Matching the spectral content of real wind flow over the entire frequency range of interest has been a major challenge in laboratory testing [30]. Duplication of the entire range of spectral content requires equality of Reynolds number. In traditional wind tunnels, small-scale turbulence can be generated. For cases where incident flow contains only small-scale turbulence, the vortices are shed downstream before attaining maturity or before creation of maximum peak pressure. The increase in large-scale turbulence content in incident flow permits vortices to attain maturity, and as a result higher peak pressures on building models are obtained [59]. The low-frequency part on the turbulence spectrum corresponds to large-scale turbulence content of the incoming flow.
A view of a wind tunnel at the University of Western Ontario: (a) 1:100 low-rise building model and the roughness element arrangement for an open-terrain exposure simulating z0 = 0.01 m and (b) a closer view of the test model instrumented with pressure taps [57].
The gap between small and large wavelengths of velocity fluctuations (frequency domain), for real atmospheric flows, is larger than that in wind tunnel flows. It is challenging to duplicate both small and large scales of turbulence in wind tunnels due to the absence of Reynolds number equality [59]. Moreover, the neutral atmospheric boundary layer is scaled down in the order of 1:100 to 1:500 in wind tunnels. If low-rise buildings are scaled down in a similar proportion, additional problems may be encountered. The issues with too small test models are (a) inability to modeling structural details accurately, (b) lack of aerodynamic surface pressures at higher resolution, and (c) interference effects of measuring devices [59, 60]. In practice, larger test models with scales in the order of 1:50 are used to minimize these issues. This leads to mismatch in scaling ratio of the model and the generated boundary layer, which is responsible for difference in turbulence spectra in experiments and full-scale situation. The difference in turbulence spectra is considered to be a primary reason for the large variation in aerodynamic pressures on low-rise buildings for different wind tunnel experiments [60].
Several experiments have been conducted on scaled low-rise building models and heliostats over the past few decades. Large variation in tests has been attributed to difference in Reynolds number, turbulence spectrum, geometric scaling ratio, etc. While studying the influence of turbulence characteristics on peak wind loads on heliostats, wind tunnel tests were performed, the turbulence intensity and size of the largest vortices had a noticeable effect on peak pressures, compared to other parameters Reynolds number [61]. For solar panels, peak pressures in the wind tunnel were underestimated compared to full-scale data [62]. Geometric scaling is found to be a primary source of inconsistent results in wind tunnels with similar mean flow condition [60]. It was recommended to correctly model the high-frequency end of spectrum in order to obtain acceptable mean pressure coefficients. However, for accurate mean and peak pressures, the importance of replicating the entire turbulence spectra in large-scale testing was highlighted [27]. The size of the wind tunnel was held responsible for mismatch in the low-frequency end of the spectrum. High-frequency vortices are responsible for creating the flow pattern around bluff bodies, whereas low-frequency large eddies have higher influence on aerodynamic peak loads [63]. To conclude, in the case of low-rise buildings, it has been always a challenge, in wind tunnel testing, to properly simulate wind effects due to the lack of capability in turbulence modeling [56]. As a result, other concepts and tools such as open-jet testing were devised in recent years.
As part of developing ABL simulation capabilities, a small open-jet facility was built at the Windstorm Impact, Science and Engineering (WISE) research lab, Louisiana State University (LSU) (Figure 8). The concept of open-jet testing is that unlike wind tunnels, the flow has no physical boundaries which has two main advantages: (i) larger eddies can be produced, leading to higher peak pressure coefficients, similar to those at full scale, and (ii) minimum blockage can be achieved. The aim was to physically simulate hurricane wind flows with similar characteristics to those of open and suburban terrain. Small-scale models of low-rise buildings were tested to examine how the turbulence structure of the approaching flow, scale issue, and open-jet exit proximity effect can influence the flow pattern on low-rise buildings and alter the separation bubble length on the roof surface. Specifically, the aim was to understand how these parameters affect the values of peak fluctuating external pressures on the roof surface [58, 64]. With an adjustable turbulence producing mechanism, different wind profiles are physically simulated. In addition, this lab has cobra probes, load cells, laser displacement sensors, and a 256-channel pressure scanning system (Figure 9).
The concept of open-jet testing: (a) test model located at an optimal distance from the blowers’ exit and (b) 15-fan small open jet at LSU.
LSU WISE small open-jet hurricane simulator (with adjustable turbulence and profile production mechanism): (1) general view of testing setup, (2) section model test specimen, (3) cobra probes for measuring 3-component wind velocities, (4) ZOC23b miniature pressure scanner, and (5) lap top computer with software for data collection and processing.
A facility capable of testing low-rise buildings at full-scale would be ideal, if the artificial flow is also at full scale, which is difficult to achieve. A 1:1 scale flow that mimics real hurricane characteristics at full-scale would need giant blowers located at a distance that is significantly far than what a feasible facility can afford. Artificial wind contains significant high-frequency turbulence with limitations on the large-size vortices that make scaling buildings unavoidable, if we were to replicate correct physics. There are some testing capabilities that can engulf full-scale residential homes; however, the flow characteristics raises important questions about their similarity to those at full scale. This said, scaling residential homes is essential to maintain correct physics, and at the same time large-scale testing (not full-scale) will lead to improved Reynolds number. Large-scale wind testing went through several phases before reaching the present stage [63]. A multidisciplinary LSU research team from Civil and Environmental Engineering, Mechanical Engineering, Coast and Environment, Louisiana Sea Grant, Geography and Anthropology, Construction Management, and Sociology collaborated on a project titled “Hurricane Flow Generation at High Reynolds Number for Testing Energy and Coastal Infrastructure” that was awarded by the Louisiana Board of Regents to build Phase 1 of a large wind and rain testing facility (Figure 10). Phase 1 permits generating wind flows at a relatively high Reynolds number over a test section of 4 m × 4 m. These capabilities enable executing wind engineering experiments at relatively large scales. Moreover, the large open-jet facility has a potential for conducting destructive testing on models built from true construction materials. Blockage is minim, as per the concept of open-jet testing [65]. This state-of-the-art facility can generate realistic hurricane wind turbulence by replicating the entire frequency range of the velocity spectrum.
LSU WISE large testing facility (with a test section of 4 m × 4 m).
The large LSU WISE open-jet facility enables researchers to test their research ideas; to expand knowledge leading to innovations and discovery in science, hurricane engineering, and materials and structure disciplines; and to build the more resilient and sustainable infrastructure. The facility will enable scientists and researchers to test potential mitigation and restoration solutions, both natural (e.g., vegetation) and artificial. Potential applications include, but are not limited to, wind turbines, solar panels, residential homes, large roofs, high-rise buildings, transportation infrastructure, power transmission lines, etc. Testing at this facility can provide knowledge useful for homeowners and insurance companies to deal more effectively with windstorms, for example, to fine tune design codes and give coastal residents options for making their dwellings more storm-resistant. The goal is to build new structures and retrofit existing ones in innovative ways to balance resilience with sustainability, to better protect people, to enhance safety, and to reduce the huge cost of rebuilding after windstorms. In addition, the facility offers tremendous education value to k-12, undergraduate, and graduate students at a flagship state university, designated as a land-grant, sea-grant, and space-grant institution. This will broadly impact the wind/structural engineering research and education field and facilitate effective investments in the infrastructure industry that will result in more resilient and sustainable communities and contribute to economic growth and improve the quality of life.
The LSU research team aspires to match the spectral content of real wind using large-scale open-jet testing and CFD simulations in their quest of accurate estimation of peak pressures on building surfaces under wind. The goal is precise estimation of peak pressures on buildings through the generation of large- and small-scale turbulence via open-jet testing as well as advanced CFD simulations. Extreme negative pressures near ridges, corners, and leading edges of roofs are governed dominantly by wind turbulence and Reynolds number, among other factors. Both small- and large-scale turbulence vortices are responsible for peak pressures and can influence separation in the shear layer. This demands for precise replication of wind speed profile, turbulence intensity profiles, and spectral characteristics. Replication of the true physics requires higher Reynolds number which is difficult to achieve in wind tunnels. In traditional wind testing, it is challenging to create large-scale turbulence. An increase in large-scale turbulence content in incident flow allows vortices to attain maturity, and as a result higher peak pressures can be reproduced. A fundamental research objective, however, is to address the challenge of replicating real wind turbulence experimentally and computationally. Resolving the scaling issue by investigating larger test models at higher Reynolds number is another highlight of our research at the LSU WISE lab.
The velocity was measured at different heights in the open-jet facility with cobra probes to obtain the mean velocity and turbulence intensity profiles. Figure 11(i) shows the comparison of experimental mean velocity profiles from LSU open jet and TPU wind tunnel with theoretical wind profiles measured for open terrain condition (
Flow characteristics: (i) mean velocity and (ii) turbulence intensity.
The vertical profile plot for turbulence intensities shows that the LSU open-jet facility has approximately 20% turbulence intensity at reference height. Both mean velocity and turbulence intensity profiles in Figure 11 shows that LSU open-jet facility is capable of replicating open terrain near-ground ABL flow.
A scaled (1:13) cubic building model was tested at the LSU WISE large open-jet facility. The primary objective of this task was to compare surface pressure coefficients those obtained by wind tunnel testing on a smaller scale (1:100) model. Wind tunnel measurements are obtained from the published dataset of Tokyo Polytechnic University (TPU). The building model was instrumented with several pressure taps to capture surface pressures. A total of 64 taps were distributed on roof, same as the TPU wind tunnel model. Pressure taps were connected to Scanivalve pressure scanners through appropriate tubing. Two cobra probes were used to monitor upstream velocity at roof height [58]. The following equation was used to compute the pressure coefficient.
The time history of pressure coefficients, Cp(t), was obtained from the pressure time history, p(t), recorded using pressure scanners. The static pressure ps was considered reference for the pressure transducers. In addition, base line pressures were collected before and after each experiment. Once the time history of pressure coefficients was obtained, statistical analysis was done to obtain mean, minimum, and root mean square (rms) values. Measurements from LSU open-jet and TPU wind tunnel were processed the same way. The maximum and minimum values were obtained using MATLAB functions with a probabilistic approach described in Ref. [67]. This approach was considered, to account for the highly fluctuating wind flow, to yield a more stable estimator of peak values.
Sample of the findings of the experiment and comparison with TPU results is shown in Figure 12. The distribution of pressure coefficients obtained by open jet testing is symmetric like what is observed in the TPU wind tunnel testing. Since the model in open jet was tested at a higher Reynolds number, higher values of peak pressure coefficients are realized. Higher suction was observed near the zone of flow separation on the roof. Stronger suction for open-jet testing was found due to higher Reynolds number in open-jet and the presence of larger-scale turbulence compared to the wind tunnel. This difference in Reynolds number leads to difference in formation of flow separation zone, stagnation point on windward face, and the reattachment length. The difference between full-scale and reduced-scale wind tunnel tests is owed to similar reasons.
Minimum pressure coefficients on roof: (a) LSU open-jet (b) TPU wind tunnel (wind from bottom left corner).
On the computational side, the k- SST turbulence model was employed for improved mean pressure prediction near the flow separated region. An advanced approach is ongoing that employs large eddy simulation (LES) to generate accurate mean and peak pressures. Figure 13 shows a sample of high-quality mesh and CFD simulations in OpenFOAM.
With high-quality mesh and potential turbulence closure, CFD can provide continuous flow information: (a) 3D view of the computational grid, (b) meshing arrangement along the longitudinal section over a cube, and (c) velocity contour, after simulations in OpenFOAM.
In order to alleviate the challenges and shortcomings involved within the experimental tests in boundary-layer wind tunnels, in recent years, CFD was considered as an effective tool for the simulation of wind effects on civil engineering structures. However, it is necessary that the numerical CFD model would be capable of generating turbulence in a flow with certain spectral contents and eventually to reproduce peak pressures on building surfaces. The objective of this research is therefore to provide a basis for the development of recommendations and guidelines on using a CFD LES model that enables appropriate simulation of turbulence spectra of ABL inflow and reproducing the peak wind pressures on the roof of low-rise buildings. Figure 14 represents a schematic of the tools used by Aly and Gol Zaroudi [49] to simulate peak wind loads on a benchmark full-scale building from the Texas Tech University (TTU) in an open-terrain field. The details, advantages, and disadvantages of each tool are discussed in Aly and Gol Zaroudi [49].
The research tools employed to reproduce peak wind pressures on the roof of a benchmark low-rise building from the Texas Tech University (TTU) in an open-terrain field.
Considering the current rapid improvements in developing high-speed processors that can run in parallel on high-performance computing (HPC) clusters and devising new digital storage devices with huge capacities, CFD is becoming a promising tool in wind engineering applications. However, it is still a challenge for proper simulation of turbulence according to ABL wind characteristics and accurately reproducing peak pressures on low-rise buildings, even with supercomputers [40]. Aly and Gol Zaroudi [49], therefore, attempt to address some of the challenges in experimental and numerical simulations for aerodynamic testing of low-rise buildings, to reproduce realistic peak pressures. The study focused on wind flow processes in CFD with an objective to mimic full-scale pressures on low-rise building. The study implemented CFD with LES on a scale of 1:1 building. After a proximity experiment was executed in CFD-LES, a location of the test building from the inflow boundary was recommended, different from existing guidelines (RANS-based, e.g., COST and AIJ). The inflow boundary proximity showed significant influence on pressure correlation and the reproduction of peak pressures. The CFD LES turbulence closure showed its capabilities to reproduce peak loads that can mimic field data owing to the ability of creating inflow with enhanced spectral contents at 1:1 scale [49].
This chapter described the main characteristics of ABL winds, as well as some available tools for aerodynamic testing. Earlier studies confirm the presence of extreme negative pressures near ridges, corners, and leading edges of roofs in wind events. Turbulence (small- and large-scale) is responsible for large peak negative pressures and separation in the shear layer. This demands for precise replication of wind speed profile, turbulence intensity profiles, and spectral characteristics. Replication of true physics requires equality of Reynolds number which is not possible in wind tunnels. In traditional wind tunnels, only small-scale turbulence can be generated. An increase in large-scale turbulence content in incident flow allows vortices to attain maturity, and as a result higher peak pressures are obtained. The challenge of properly simulating wind effects on low-rise buildings is related to the lack of capability in turbulence modeling at a reasonably large scale and its limitation in reproducing the low-frequency part of the ABL turbulence spectrum. As a result, advances in aerodynamic testing employing modern tools such as open-jet testing for large- and full-scale testing were devised in recent years. Resolving the scaling issue by studying larger models at higher Reynolds number is another highlight of recent advances in aerodynamic testing. A large-scale cubic building model was tested in LSU open-jet facility at higher Reynolds number, and pressure coefficients were compared with those from wind tunnel testing. The results reveal the importance of large-scale testing at higher Reynolds numbers to obtain realistic peak pressures. Furthermore, CFD with appropriate turbulence closure was widely implemented recently for full-scale studies of wind effects on civil engineering structures. However, adopting proper inlet transient velocity is very crucial to correctly simulate ABL wind characteristics.
The Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1316",title:"Higher Education",slug:"higher-education",parent:{title:"Education",slug:"social-sciences-education"},numberOfBooks:7,numberOfAuthorsAndEditors:115,numberOfWosCitations:47,numberOfCrossrefCitations:36,numberOfDimensionsCitations:68,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"higher-education",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8283",title:"Innovations in Higher Education",subtitle:"Cases on Transforming and Advancing Practice",isOpenForSubmission:!1,hash:"9c8b8a6fe8578fbf2398932ce8c1b717",slug:"innovations-in-higher-education-cases-on-transforming-and-advancing-practice",bookSignature:"Dominique Parrish and Joanne Joyce-McCoach",coverURL:"https://cdn.intechopen.com/books/images_new/8283.jpg",editedByType:"Edited by",editors:[{id:"197795",title:"Associate Prof.",name:"Dominique",middleName:null,surname:"Parrish",slug:"dominique-parrish",fullName:"Dominique Parrish"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8039",title:"Theorizing STEM Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"0c99d528dbcc6ed5e8a26f96b36c812d",slug:"theorizing-stem-education-in-the-21st-century",bookSignature:"Kehdinga George Fomunyam",coverURL:"https://cdn.intechopen.com/books/images_new/8039.jpg",editedByType:"Edited by",editors:[{id:"267912",title:"Dr.",name:"Kehdinga George",middleName:null,surname:"Fomunyam",slug:"kehdinga-george-fomunyam",fullName:"Kehdinga George Fomunyam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9040",title:"Pedagogy in Basic and Higher Education",subtitle:"Current Developments and Challenges",isOpenForSubmission:!1,hash:"3ef45143bf2a8d798f0e423e098afe6c",slug:"pedagogy-in-basic-and-higher-education-current-developments-and-challenges",bookSignature:"Kirsi Tirri and Auli Toom",coverURL:"https://cdn.intechopen.com/books/images_new/9040.jpg",editedByType:"Edited by",editors:[{id:"234399",title:"Prof.",name:"Kirsi",middleName:null,surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7804",title:"Teacher Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"1722e45e6ebd731426bc0e4ac5c6eee2",slug:"teacher-education-in-the-21st-century",bookSignature:"Reginald Botshabeng Monyai",coverURL:"https://cdn.intechopen.com/books/images_new/7804.jpg",editedByType:"Edited by",editors:[{id:"210249",title:"Dr.",name:"Reginald",middleName:"Botshabeng",surname:"Monyai",slug:"reginald-monyai",fullName:"Reginald Monyai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7576",title:"Reimagining New Approaches in Teacher Professional Development",subtitle:null,isOpenForSubmission:!1,hash:"7ebab0695715a9b2a759da32380ded9a",slug:"reimagining-new-approaches-in-teacher-professional-development",bookSignature:"Vimbi Petrus Mahlangu",coverURL:"https://cdn.intechopen.com/books/images_new/7576.jpg",editedByType:"Edited by",editors:[{id:"196797",title:"Prof.",name:"Vimbi",middleName:"Petrus",surname:"Mahlangu",slug:"vimbi-mahlangu",fullName:"Vimbi Mahlangu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5773",title:"Global Voices in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"98977ad0f9bc0a5224a23d6f67b343ca",slug:"global-voices-in-higher-education",bookSignature:"Susan L. Renes",coverURL:"https://cdn.intechopen.com/books/images_new/5773.jpg",editedByType:"Edited by",editors:[{id:"158868",title:"Dr.",name:"Susan",middleName:null,surname:"Renes",slug:"susan-renes",fullName:"Susan Renes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1990",title:"International Perspectives of Distance Learning in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"e9f445b89a42e6221004f529ac247127",slug:"international-perspectives-of-distance-learning-in-higher-education",bookSignature:"Joi L. Moore and Angela D. Benson",coverURL:"https://cdn.intechopen.com/books/images_new/1990.jpg",editedByType:"Edited by",editors:[{id:"102403",title:"Dr.",name:"Joi L.",middleName:null,surname:"Moore",slug:"joi-l.-moore",fullName:"Joi L. Moore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"32519",doi:"10.5772/33745",title:"Self-Regulated Learning Activities: Supporting Success in Online Courses",slug:"self-regulated-learning-activities-supporting-success-in-online-courses-",totalDownloads:2279,totalCrossrefCites:1,totalDimensionsCites:10,book:{slug:"international-perspectives-of-distance-learning-in-higher-education",title:"International Perspectives of Distance Learning in Higher Education",fullTitle:"International Perspectives of Distance Learning in Higher Education"},signatures:"Maureen Snow Andrade",authors:[{id:"96902",title:"Dr.",name:"Maureen",middleName:null,surname:"Snow Andrade",slug:"maureen-snow-andrade",fullName:"Maureen Snow Andrade"}]},{id:"32516",doi:"10.5772/32879",title:"Open and Distance Learning in Dual Mode Universities: A Treasure Unexploited",slug:"open-and-distance-learning-in-dual-mode-universities-a-treasure-unexploited",totalDownloads:4951,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"international-perspectives-of-distance-learning-in-higher-education",title:"International Perspectives of Distance Learning in Higher Education",fullTitle:"International Perspectives of Distance Learning in Higher Education"},signatures:"Paul Birevu Muyinda",authors:[{id:"93065",title:"Dr.",name:"Paul",middleName:null,surname:"Birevu Muyinda",slug:"paul-birevu-muyinda",fullName:"Paul Birevu Muyinda"}]},{id:"32524",doi:"10.5772/33606",title:"The Role of Self-Efficacy, Control Beliefs and Achievement Goals on Learning Among Distance Learners",slug:"the-role-of-self-efficacy-control-beliefs-and-achievement-goals-on-learning-among-distance-learners-",totalDownloads:2048,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"international-perspectives-of-distance-learning-in-higher-education",title:"International Perspectives of Distance Learning in Higher Education",fullTitle:"International Perspectives of Distance Learning in Higher Education"},signatures:"Clarence Ng",authors:[{id:"96328",title:"Dr.",name:"Clarence",middleName:null,surname:"Ng",slug:"clarence-ng",fullName:"Clarence Ng"}]}],mostDownloadedChaptersLast30Days:[{id:"69139",title:"Formative Assessment in Mathematics Education in the Twenty-First Century",slug:"formative-assessment-in-mathematics-education-in-the-twenty-first-century",totalDownloads:432,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"theorizing-stem-education-in-the-21st-century",title:"Theorizing STEM Education in the 21st Century",fullTitle:"Theorizing STEM Education in the 21st Century"},signatures:"Benard Chigonga",authors:[{id:"298587",title:"Dr.",name:"Benard",middleName:null,surname:"Chigonga",slug:"benard-chigonga",fullName:"Benard Chigonga"}]},{id:"68740",title:"A Theoretical Framework for Implementing STEM Education",slug:"a-theoretical-framework-for-implementing-stem-education",totalDownloads:642,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"theorizing-stem-education-in-the-21st-century",title:"Theorizing STEM Education in the 21st Century",fullTitle:"Theorizing STEM Education in the 21st Century"},signatures:"Vongai Mpofu",authors:[{id:"299343",title:"Dr.",name:"Vongai",middleName:null,surname:"Mpofu",slug:"vongai-mpofu",fullName:"Vongai Mpofu"}]},{id:"65417",title:"Significance of Aristotle’s Teaching Practice for Modern Education",slug:"significance-of-aristotle-s-teaching-practice-for-modern-education",totalDownloads:1419,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"teacher-education-in-the-21st-century",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century"},signatures:"Oleg A. Donskikh",authors:[{id:"283333",title:"Prof.",name:"Oleg",middleName:null,surname:"Donskikh",slug:"oleg-donskikh",fullName:"Oleg Donskikh"}]},{id:"65030",title:"Lack of Qualified Teachers: A Global Challenge for Future Knowledge Development",slug:"lack-of-qualified-teachers-a-global-challenge-for-future-knowledge-development",totalDownloads:1283,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"teacher-education-in-the-21st-century",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century"},signatures:"Mona Holmqvist",authors:[{id:"275455",title:"Prof.",name:"Mona",middleName:null,surname:"Holmqvist",slug:"mona-holmqvist",fullName:"Mona Holmqvist"}]},{id:"66203",title:"Including Students with Disabilities in a Physical Education Teacher Preparation Program: An Institutional Perspective",slug:"including-students-with-disabilities-in-a-physical-education-teacher-preparation-program-an-institut",totalDownloads:1117,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"teacher-education-in-the-21st-century",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century"},signatures:"Ronnie Lidor and Yeshayahu Hutzler",authors:[{id:"293567",title:"Dr.",name:"Rony",middleName:null,surname:"Lidor",slug:"rony-lidor",fullName:"Rony Lidor"},{id:"293600",title:"Prof.",name:"Yeshayahu",middleName:null,surname:"Hutzler",slug:"yeshayahu-hutzler",fullName:"Yeshayahu Hutzler"}]},{id:"69651",title:"Parental Engagement in Children’s Learning: A Holistic Approach to Teacher-Parents’ Partnerships",slug:"parental-engagement-in-children-s-learning-a-holistic-approach-to-teacher-parents-partnerships",totalDownloads:568,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pedagogy-in-basic-and-higher-education-current-developments-and-challenges",title:"Pedagogy in Basic and Higher Education",fullTitle:"Pedagogy in Basic and Higher Education - Current Developments and Challenges"},signatures:"Cristiana Levinthal de Oliveira Lima and Elina Kuusisto",authors:null},{id:"32514",title:"Re-Engineering Open and Distance Learning Institutional Development for Knowledge Society in Africa",slug:"re-engineering-open-and-distance-learning-institutional-development-for-knowledge-society-in-africa",totalDownloads:2124,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"international-perspectives-of-distance-learning-in-higher-education",title:"International Perspectives of Distance Learning in Higher Education",fullTitle:"International Perspectives of Distance Learning in Higher Education"},signatures:"K. O. Ojokheta",authors:[{id:"102865",title:"Dr.",name:"Kester",middleName:"Osegha",surname:"Ojokheta",slug:"kester-ojokheta",fullName:"Kester Ojokheta"}]},{id:"55146",title:"Collaborative Contagion: A Case Study in Curriculum Development, Distribution, and Adoption",slug:"collaborative-contagion-a-case-study-in-curriculum-development-distribution-and-adoption",totalDownloads:763,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"global-voices-in-higher-education",title:"Global Voices in Higher Education",fullTitle:"Global Voices in Higher Education"},signatures:"Ryan M. Yonk, James Harrigan and Neal Mason",authors:[{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk"},{id:"197902",title:"Dr.",name:"James",middleName:null,surname:"Harrigan",slug:"james-harrigan",fullName:"James Harrigan"},{id:"197903",title:"Mr.",name:"Neal",middleName:null,surname:"Mason",slug:"neal-mason",fullName:"Neal Mason"}]},{id:"65927",title:"The Changing Landscape of Leadership in Early Childhood Education in China",slug:"the-changing-landscape-of-leadership-in-early-childhood-education-in-china",totalDownloads:1e3,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"teacher-education-in-the-21st-century",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century"},signatures:"Dora Ho, Mo Wang and Pan He",authors:[{id:"275710",title:"Dr.",name:"Dora",middleName:null,surname:"Ho",slug:"dora-ho",fullName:"Dora Ho"},{id:"291154",title:"Dr.",name:"Wang",middleName:null,surname:"Mo",slug:"wang-mo",fullName:"Wang Mo"},{id:"291156",title:"Ms.",name:"Pan",middleName:null,surname:"He",slug:"pan-he",fullName:"Pan He"}]},{id:"64745",title:"An Integrated Model for Invigorating Innovation and Entrepreneurship in Higher Education",slug:"an-integrated-model-for-invigorating-innovation-and-entrepreneurship-in-higher-education",totalDownloads:573,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"innovations-in-higher-education-cases-on-transforming-and-advancing-practice",title:"Innovations in Higher Education",fullTitle:"Innovations in Higher Education - Cases on Transforming and Advancing Practice"},signatures:"Teboho Pitso",authors:[{id:"259594",title:"Dr.",name:"Teboho",middleName:null,surname:"Pitso",slug:"teboho-pitso",fullName:"Teboho Pitso"}]}],onlineFirstChaptersFilter:{topicSlug:"higher-education",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/172392/maninder-karan-vashisht",hash:"",query:{},params:{id:"172392",slug:"maninder-karan-vashisht"},fullPath:"/profiles/172392/maninder-karan-vashisht",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()