Calculated thermodynamic efficiencies for various fuels under different thermodynamic cycles [26].
\r\n\t- Traditionally accepted topics related to global health security,
\r\n\t- The impact of human activities and climate change on “planetary health”,
\r\n\t- The impact of global demographic changes and the emergence chronic health conditions as international health security threats.
\r\n\t- A theme dedicated to the COVID-19 Pandemic,
\r\n\t- Novel considerations, including the impact of social media and more recent technological developments on international health security.
\r\n\tThe goal of this book cycle is to provide a comprehensive compendium that will be able to stand on its own as an authoritative source of information on international health security.
",isbn:"978-1-78985-940-9",printIsbn:"978-1-78985-939-3",pdfIsbn:"978-1-83962-154-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"edbc267908c2f140f991de15d99276df",bookSignature:"Dr. Stanislaw P. Stawicki, Michael S. S Firstenberg, Dr. Sagar C. Galwankar and Dr. Andrew C. Miller",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10624.jpg",keywords:"Threats, Monitoring, Food Security, Emerging Infections, Transmission, Geopolitics, Climate Change, Cyber Health Security, COVID-19, Novel Coronavirus, Pandemic, Coronavirus",numberOfDownloads:172,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 20th 2020",dateEndSecondStepPublish:"November 5th 2020",dateEndThirdStepPublish:"January 4th 2021",dateEndFourthStepPublish:"March 25th 2021",dateEndFifthStepPublish:"May 24th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"An Associate Professor of Surgery at Temple University School of Medicine and a Chair of the Department of Research and Innovation, St. Luke's University Health Network. A member of multiple editorial boards and co-author of over 550 publications.",coeditorOneBiosketch:"An Associate Professor of Surgery & Integrative Medicine at Northeast Ohio Medical University and Cardiothoracic Surgeon at the Summa Health Care System. A prolific writer and presenter, with multiple books, hundreds of peer-reviewed articles, and innumerable presentations around the world.",coeditorTwoBiosketch:"A CEO of the INDUSEM Health and Medicine Collaborative, Global Executive Director. of the American College of Academic International Medicine (ACAIM) and head of the World Academic Council of Emergency Medicine.",coeditorThreeBiosketch:"A Director of Research in the Department of Emergency Medicine at Nazareth Hospital in Philadelphia, USA, and co-chief editor of the International Journal of Critical Illness and Injury Science. A recipient of numerous local, regional, and national awards.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki",profilePictureURL:"https://mts.intechopen.com/storage/users/181694/images/system/181694.jpeg",biography:"Stanislaw P. Stawicki, MD, MBA, FACS, FAIM, is Chair of the Department of Research of Innovation, St. Luke\\'s University Health Network, Bethlehem, Pennsylvania, and Professor of Surgery at Temple University School of Medicine. Dr. Stawicki has edited numerous books and book series on the topics of clinical research, medical education, medical leadership, patient safety, health security, and various other subjects. He is a member of multiple editorial boards and has co-authored more than 650 publications. He served as the inaugural president of the American College of Academic International Medicine (ACAIM) and directed its Taskforce on International Health Security. He has given a multitude of scientific presentations around the globe and is board certified in general surgery, surgical critical care, and neurocritical care.",institutionString:"St. Luke's University Health Network",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"29",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"St. Luke's University Health Network",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/64343/images/system/64343.jpeg",biography:"Dr. Firstenberg is a cardiothoracic surgeon and current Director of Research and Special Projects for the William Novick Global Cardiac Alliance. Previously, he was Chief of Cardiothoracic at the Medical Center of Aurora. He attended Case Western Reserve University Medical School, trained in General Surgery at university hospitals in Cleveland and with Cardiothoracic Fellowships at The Ohio State University and The Cleveland Clinic. He is active in numerous medical societies and a Founding Fellow and President-elect of the American College of Academic International Medicine. He has lectured extensively worldwide and authored over 200 peer-reviewed manuscripts, abstracts, and book chapters. He has edited numerous textbooks ranging from Medical Leadership, Patient Safety, and Extra-corporeal Membrane Oxygenation.",institutionString:"William Novick Global Cardiac Alliance",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"22",totalChapterViews:"0",totalEditedBooks:"10",institution:null},coeditorTwo:{id:"293168",title:"Dr.",name:"Sagar C.",middleName:null,surname:"Galwankar",slug:"sagar-c.-galwankar",fullName:"Sagar C. Galwankar",profilePictureURL:"https://mts.intechopen.com/storage/users/293168/images/system/293168.jpeg",biography:"Sagar C. Galwankar, MBBS, DNB, MPH, FAAEM, FAIM, graduated from Pune University, India, as a MBBS Allopathic Physician in 1995. He is residency trained and board certified in internal medicine and emergency medicine in India and the United States, respectively. He is a prestigious fellow of the Royal College of Physicians, UK, and completed a MPH with additional training in Business Management in the United States. His academic experience over the last two decades includes consistent achievements and innovative strategies that have led to the creation of organizations, publication of landmark papers, and commendation with prestigious citations and honors for his works that have impacted academic medicine globally. He has played a defining role in founding and building internationally recognized interdisciplinary indexed journals. He is the CEO of the INDUSEM Health and Medicine Collaborative and heads the World Academic Council of Emergency Medicine (WACEM). Additionally, he serves as the Global Executive Director for the American College of Academic International Medicine (ACAIM). He is the Director for Research in Emergency Medicine at Florida State University (FSU) and serves as a core faculty for the FSU Emergency Medicine Residency Program, at Sarasota Memorial Hospital in Florida.",institutionString:"Florida State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}},coeditorThree:{id:"317540",title:"Dr.",name:"Andrew",middleName:"C.",surname:"Miller",slug:"andrew-miller",fullName:"Andrew Miller",profilePictureURL:"https://mts.intechopen.com/storage/users/317540/images/system/317540.jpg",biography:"Andrew C. Miller, MD, FACEP. Dr. Miller is the Director of Research in the Department of Emergency Medicine at Nazareth Hospital in Philadelphia, USA. He is a graduate of St. Louis University (2000) and Southern Illinois University School of Medicine (2005). He completed residencies in Emergency Medicine and Internal Medicine at the State University of New York (SUNY) Downstate Medical Center (2010) where he served as Chief Resident for Research. He completed fellowships in Pulmonary Medicine at the University of Pittsburgh Medical Center (2013) and Critical Care Medicine at the National Institutes of Health (2014). He is active in the American College of Academic International Medicine, and is co-chief editor of the International Journal of Critical Illness and Injury Science. He has a track record of publishing original research in high-impact journals, and has been the recipient of numerous local, regional and national awards from groups including the American Medical Association (AMA), Society for Academic Emergency Medicine (SAEM), American Academy of Emergency Medicine (AAEM), Emergency Medicine Residents Association (EMRA), and the Accreditation Council for Graduate Medical Education (ACGME).",institutionString:"Nazareth Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nazareth Hospital",institutionURL:null,country:{name:"United States of America"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"74452",title:"Resilient Health System and Hospital Disaster Planning",slug:"resilient-health-system-and-hospital-disaster-planning",totalDownloads:31,totalCrossrefCites:0,authors:[null]},{id:"73634",title:"Supply Chain Management and Restart of Economy in Post COVID-19",slug:"supply-chain-management-and-restart-of-economy-in-post-covid-19",totalDownloads:142,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6672",title:"Vignettes in Patient Safety",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"2c8b1831a8cceea8be146cbfbd582b81",slug:"vignettes-in-patient-safety-volume-3",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6672.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7043",title:"Clinical Management of Shock",subtitle:"The Science and Art of Physiological Restoration",isOpenForSubmission:!1,hash:"0f79000187ae93618e2213631e00047c",slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",bookSignature:"Stanislaw P. Stawicki and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7043.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7925",title:"Embolic Disease",subtitle:"Evolving Diagnostic and Management Approaches",isOpenForSubmission:!1,hash:"70a90d1a07cc875f7eda4641fbf32339",slug:"embolic-diseases-evolving-diagnostic-and-management-approaches",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7925.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7447",title:"Vignettes in Patient Safety",subtitle:"Volume 4",isOpenForSubmission:!1,hash:"88d9ec0c55c5e7e973a35eafa413ded2",slug:"vignettes-in-patient-safety-volume-4",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7447.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67617",title:"Generic Computing-Assisted Geometric Search for Human Design and Origins",doi:"10.5772/intechopen.86809",slug:"generic-computing-assisted-geometric-search-for-human-design-and-origins",body:'\nThe quest to understand human origins is a significant factor that propels the conduct of scientific research in space. This quest is been sustained by advances in space exploration technology. Advances in space exploration technology have made it possible to increase human understanding of the origins of the universe with improved ability to understand events such as the Big Bang. The Big Bang is considered to be the epoch that led to the beginning of the universe [1, 2, 3]. The emergence of the Big Bang theory has led to the necessity of conducting a search to find supporting evidence.
\nBesides, the quest to understand the evolution of the universe; there is also an interest in understanding human evolution. The concept of evolution has been considered to play a crucial role in the emergence of modern humans. Humans and the universe share a common trait in their emergence and continued existence. This common trait is seen in the role that light plays in the role of the evolution of the universe and humans. The role of light is less appreciated in the evolution of humans than in the universe. This is because of the significant effort and the duration that has been invested in studying the role of light photons in the universe. The role of photons in a scientific study of the universe can be seen in domains such as optical astronomy [4]. Photons also play an important role in humans as seen in the existence of bio-photons [5, 6, 7]. Therefore, light has played an important role in human evolution too.
\nThe notion created by the concept of the Big Bang as being the first event in the universe is that the universe first emerged and that humans appeared and evolved at a later epoch. The implication of this notion is that the existence of the universe is thought to precede human appearance and continued evolution. This does not consider the perspective that human evolution can have an extra-terrestrial influence. However, the alternative perspective presented in the Panspermia theory considers that human evolution has an extra-terrestrial influence. The incorporation of an extra-terrestrial influence on human evolution implies that evolutionary actions influencing the emergence of the universe and humans could have evolved at the same epoch. Such a perspective is supported by the Panspermia theory.
\nThe Panspermia theory presented is of the opinion that life was seeded in outer space [8, 9, 10, 11]. Though, there is an argument against the Panspermia theory [12], the theory should not be discarded. This is because of the possibility of the extinction of biological life in outer space making these challenging to observe in comparison to the ability to directly observe life-forms on the earth.
\nThe discussion here proposes that the aggregation of life-forms leaves a geometric trace in outer-space. This perspective differs from the theory underlying the Panspermia theory that has motivated astrobiology research. The discussion in this chapter considers that the observation of life forms can be done from two lenses. These lenses are those of geometry traces associated with life-forms and that of biology. The consideration of the geometry traces associated with life-forms provides an opportunity to design a paradigm suitable for investigating the validity of the Panspermia theory from the geometrical perspective. The novel perspective being presented proposes that geometry traces associated with life-forms are present in the extra-terrestrial environment. These traces constitute the evidence of life originating from outer-space as advocated in the Panspermia theory.
\nThe contribution of this chapter is twofold. The first contribution is that the chapter presents the Mars geometrical Panspermia theory as an alternative paradigm for investigating the emergence of humans. The Mars geometrical Panspermia theory advocates that geometrical traces emerging from different aggregation patterns of life forms are present in the meteorites on Mars. The aggregation is considered feasible because Mars can support simple life forms such as Bacteria.
\nThe chapter’s second contribution is the design of low cost network architecture for conducting Mars exploration missions aimed at verifying the Mars geometrical Panspermia theory. The low cost network is intended for use by space organizations in developing nations. These space organizations being considered are those with limited capital and limited space engineering capacities.
\nThe remainder of this chapter is organized as follows. Section 2 discusses the background and existing work. Section 3 presents a mathematical framework describing the Martian geometric Panspermia theory. Section 4 describes the proposed Mars based geometric Panspermia theory. Section 5 focuses on the proposed low cost network architecture. Section 6 concludes the chapter.
\nMars has been considered as a suitable location that can be studied to increase human knowledge on the existence of extra-terrestrial life [13]. This is because Mars shows patterns of planetary evolution and climate change. Mars exploration is also appealing because Mars is accessible to Spacecraft launched from earth. Several research groups have been established aiming to engage in Mars exploration missions. Two research groups in this regard are the Mars Exploration Program Analysis Group (MEPAG) and the outer planet assessment group (OPAG).
\nJohnson et al. [14] discuss MEPAG’s Mars exploration initiative. It is recognised that a successful Mars exploration campaign requires the development of technology across multi-disciplinary domains. The required technical capabilities comprise: (1) Mars surface access at different altitude and elevations, (2) Mars environment characterisation, (3) life detection and (4) age dating. Environment characterisation requires the dynamic evaluation of chemical and isotopic compositions at various locations on Mars. The realization of these tasks in a Mars exploration mission requires the design and launch of instrumentation on Mars rovers.
\nMars exploration missions aim to analyse Mars’s environment and probe its composition. The composition of Mars can be found in two types of records [13]. These are the chemical record and physical record. Each record targets the detection of a different type of bio-signature. The physical record refers to the analysis of the weather and climate in the environment of the planet Mars. The chemical record refers to organic compounds that enable the support of biological mechanisms in terrestrial life. In addition, deployed Mars exploration vehicles search for an evidence of a life supporting climate.
\nThe detection of elements belonging to the bio-signature in either physical or chemical record requires the use of appropriate instrumentation. Suitable instrumentation is also required to obtain information from a Mars exploration mission. The choice of instrumentation technology is determined by the science case.
\nThe discussion in [14] focuses on the components of a Mars exploration campaign. It presents a hierarchy of the objectives enabling the realization of the science goal for a Mars exploration mission. Though the role of advanced instrumentation is recognised; algorithms, theories and perspectives that can motivate the design of advanced instrumentation have not been presented.
\nThe choice of instrumentation is also influenced by the sample return expected from a Mars exploration mission. Mars missions can be classified as Mars return sample missions and non-Mars return sample missions. The Mars return sample mission aims to deploy Mars vehicles that take samples from Mars and brings them to earth for further analysis. The sample(s) is the deliverable in the Mars return sample missions. Non-Mars sample return missions are those in which the deployed Mars vehicle aims to execute analysis on Mars and obtain results. The results are relayed to the earth via an integrated telecommunications system for further analysis.
\nThe discussion in [13, 14] describes the objectives of the MEPAG in 2009. It is important to consider how changes in science case influence the instrumentation and the goals of Mars exploration missions. This is because of changing interests in the outer space exploration and how technology advancement influence Mars exploration missions. A change that has occurred in Mars exploration is an increase in the number of space agencies seeking to participate in Mars exploration missions [15]. Another change arises due to technological advancements leading to the use of small satellites in Mars exploration missions. The emergence of small satellites has led to their use in Mars exploration missions. In this case, small satellite is dependent on the science case definition.
\nThe outcomes of a space exploration for a defined science case can be classified into four categories [16]. These outcomes would be that the location or body in outer space is inhabitable, probably habitable, habitable and inhabited [16]. A motive to categorize any location as being described by any of these four outcomes is dependent on the science case and the instruments aboard the exploration vehicle. This can be seen in the case of the Europa Lander project aimed at surveying the Jovian moon, Europa [16]. The Europa Lander aims to determine the habitability of Europa and investigate its surface properties and dynamics. The instrumentation enabling the acquisition of Europa’s samples aboard the Europa Lander are the sample ingestion port, and the context remote sensing instrument package.
\nThe discussion in [17] extends [13, 14, 15, 16] by raising the question of the utility that can be derived from Martian samples obtained in Mars sample return missions. The use of randomly acquired samples from Mars is insufficient to answer the queries as regards the origin of life on Mars and other locations such as the Jovian moon, Europa. The use of sample heterogeneity is thereby proposed. Sample heterogeneity refers to the acquisition of samples from different locations on Mars or in Europa. The incorporation of sample heterogeneity enables the acquisition of Mars samples from different locations on Mars. These samples are returned to earth for future analysis. The transport of samples from Mars to earth is done in such a manner that the contamination of earth by these Martian samples is prevented. The assurance that Mars samples pose no contamination risk to earth is handled by the space agency coordinating the Mars exploration missions. The National Aeronautics and Space Administration (NASA) is an example of a space agency that can play this role.
\nThe study in [17] aims to study Mars’s environment in the view of the M-2020 mission. The intended study is with the following aims. The first aim is analysing the geological processes (with emphasis on determining the role of water). The second is evaluating the biological history of Mars. The third is determining Mars’s evolutionary timeline. The fourth is determining relations between components in Mars’s geological system. The fifth is to acquire samples enabling the reconstruction of the processes that have influenced the Martian dynamo. The sixth is quantifying human risks associated with Mars exploration.
\nThe discussion in [13, 14, 15, 16] shows that bio-signatures are important for the conduct of outer space missions searching for evidence of extra-terrestrial life. The search and successful detection of bio-signatures are important for Mars exploration missions [13, 14, 15] and the Europa Lander project [16]. The category of bio-signature being sought influences the composition of the deployed instrument payload. The approach in [13, 14, 15, 16, 17, 18, 19] assumes that a planet or outer space location where the evidence of life is being sought must have bio-signature(s). Therefore, the search for extra-terrestrial life in the environment of outer space is hinged on the existence of the bio-signature.
\nHowever, bio-signature existence in outer space locations is threatened because space exploration vehicles can be contaminated with microbes. This contamination can take place on earth prior to launch. The resulting contamination can cause the deployed instrumentation payload to detect earth originating microbes or microorganisms in outer space. This leads to a wrong conclusion as regards the detection of extra-terrestrial life. In addition, such planetary contamination could render a given location or body in outer space infeasible for searching for extra-terrestrial life. Therefore, planets should be protected against microbial contamination. This concern has led to the emergence of planetary protection.
\nBio-signature preservation is important for the success of detecting extra-terrestrial life in Mars exploration missions. The detection of bio-signatures can be used to determine the absence or presence of life on Mars in Mars exploration missions [20]. Hays et al. in [20] note that the presence of bio-signatures and their subsequent detection is important for the success of Mars exploration missions. It is also important to ensure that Mars missions preserve existing bio-signatures that can be found on Mars.
\nThe preservation and improved understanding of bio-signature can be achieved by using Analog terrestrial Mars environments. Hays et al. [20] recognize the usefulness and suitability of Analog terrestrial Mars environments. Analog terrestrial Mars environments enable the conduct of low cost investigation for the presence of life on Mars. The use of analog terrestrial Mars environments enables scientists to understand relations between different bio-signatures. This is important in determining the cues to be searched for in Mars exploration missions such that planetary contamination is prevented.
\nMoreover, the use of analog terrestrial Mars environment enables developing nations to participate in Mars exploration studies. In this role, analog terrestrial Mars environment can be used as low cost alternative prior to actual outer space exploration. This helps developing nations in making better decisions as regards achieving planetary protection. However, this has not been explored in [20].
\nThe potential bio-signatures that can be detected in a Mars exploration mission are dependent on the defined science case. Six classes of bio-signatures have been identified by the Mars 2020 science definition team [20]. These are organic molecules, minerals, macro structures, chemistry and isotopes. The detection of any potential bio-signature in a given class enables the realization of the objectives of an outer space project investigating the occurrence of extra-terrestrial life.
\nThe critical role that bio-signatures play in Mars exploration missions makes it important that bio-signatures are protected from threats to their continued existence. This concern is recognised in [20, 21]. The need to protect bio-signatures has led to the need to design planetary protection strategies to protect Mars from bio-signature contamination. It is recognized that Mars environment provides some native protection to prevent the total erasure of bio-signature, i.e., bio-signature contamination.
\nThe protection capability of planetary protection strategies can be enhanced by enacting policies matched with technological developments. These technological developments ensure bio-signature preservation. Inter-planetary protection is needed in two roles. These are the forward prevention role and the backward prevention role. In the forward protection role, planetary preservation and contamination preservation ensures that microbes are not taken from earth into Mars. The backward preservation role is important for Mars sample return missions. It ensures that samples being brought from Mars are not contaminated on their way to the location where further analysis will be carried out [10].
\nThe forward protection role can be realized by sterilizing Mars exploration vehicles. Sterilization of Mars exploration vehicles ensures that the search for extra-terrestrial life is not compromised by earth originating microbes [22]. Sterilization also ensures that disease causing microbes are not brought to the earth by Mars exploration vehicles in Mars sample return missions.
\nHowever, planetary protection strategies are rarely ideal and a 100% protection is not readily achieved. In addition, planetary protection procedures are expensive and influenced by the science case associated with a Mars exploration campaign [22]. The non-ideal performance implies that the chance of detecting pristine bio-signatures might be slightly diminished. Therefore, the non-ideal performance of planetary protection via sterilization constitutes a source of interference to bio-signature detection. The effect of interference as observed here also affects the conduct of radio astronomy in the form of radio interference. This has received attention [23, 24]. The interference challenge posed by non-ideal sterilization can be addressed by finding another marker that can signify the presence or occurrence of life in Mars. This is important to ensure the realization of Mars exploration mission.
\nThe discussion in this section presents the human evolutionary perspective and origins of the universe as being considered in the proposed Mars geometrical Panspermia theory. The discussion in this section is divided into two parts. The first part presents the underlying concept in the proposed Mars geometrical Panspermia theory. This part considers geometry as being associated with the activities of organics describing the aggregates of cell components. The geometry associated with activities leading to the aggregates of cells is considered as the bio-signature of interest. The second part presents the mathematical framework that describes the model of the proposed Mars geometrical Panspermia theory.
\nThe Mars geometry Panspermia theory is of the perspective that the emergence of life was a multi-stage process. This multi-stage process ends in the aggregation of life forms leading to the emergence of first humans. In addition, the multi-stage process is considered a procedure in both lithopanspermia and radiopanspermia and other forms of life transfer mechanisms considered in the Panspermia perspective.
\nThe current perspective being considered in the concept of Panspermia is to search for microorganisms such as Bacteria in locations in spatial objects such as comets and meteorites [25]. For example, Wickramansinghe et al. [25] point out evidence that bacteria similar to terrestrial bacteria can be found in the stratosphere and low earth orbit at the international space station. The discussion opines that more actions leading to the emergence of life besides that of bacteria take place in space. The set of actions in this context have a cognitive component and provide the first form of intelligence. The implied intelligence influences the multi-stage process during which the aggregation of life forms take place.
\nThe intelligent pre-determination of the aggregation pattern of life-forms. This aggregation does not occur on earth but leaves a trace behind in the universe. These traces are considered by the proposed Mars geometry Panspermia theory to exist on Mars meteorites. The multi-stage process is considered to be intelligent. The invoking of an intelligent process does not contravene the principles of scientific reasoning and logic. In this case, the invoking of intelligence constitutes the hypothesis for the research being presented.
\nGiven that intelligence is present as argued; such intelligence must have influenced the process and pattern of initial life-form aggregation. The initial aggregation pattern presents a base for the principles of evolution to act in the organism or life-form at a later epoch. A notion of such intelligence can be found in [26]. The consideration of the intelligence in this chapter is intended to make a contribution to the domain of general intelligence and space science research. General intelligence in this context includes biologically inspired artificial intelligence. The concept of the presence of intelligent design requires a test procedure to establish its existence. Such a procedure would help to validate the Panspermia theory.
\nThe discussion here presents a mathematical model for describing the model of the universe as presented in the proposed Martian geometric Panspermia theory. The mathematical model considers the universe as comprising multiple locations, life conveying locations, life conveying material or mechanisms (or other life forms), life supporting locations, and life recording locations.
\nLife supporting locations are those locations where the conditions exist to support the presence of extra-terrestrial life. Let \n
Life conveying locations in this context refer to locations on Mars where meteorites to be ejected at a later epoch are located. Life conveying mechanisms describe the dynamics and processes ensuring the movement of ejected meteorites from Mars to earth. This is realizable while maintaining micro-organism composition in ejected meteorites. Life recording locations are those locations where the proof of the existence of extra-terrestrial life can be found.
\nLife can be conveyed from location \n
The locations \n
The notion that bacteria and microorganisms exhibit intelligent behaviour has received considerable interest [27, 28, 29]. The intelligent behaviour exhibited by microorganisms has been thought to evolve in response to surviving in their host environment. Intelligence requires the ability to act on information obtained from the environment. The capability to demonstrate intelligent behaviour implies that microorganisms can respond to environmental conditions from a base of stored information [27]. Therefore, it is feasible to think that microorganisms are capable of storing information.
\nIt is inefficient for microorganisms to store all information relating to the processes in which they are engaged if all of such information is not required to develop survival strategies. An important piece of information that is considered not to be stored by the microorganism is those related to the pre-determination of geometrical forms of cell aggregation patterns. The storage of the information on the pre-determined geometrical forms is considered to increase micro-organism information overhead. Hence, it is not stored so that the microorganism can have high information storage and processing efficiency.
\nA scenario showing the relations between life recording locations, live conveying mechanisms and the earth is presented in Figure 1.
\nRelations between life recording locations, life conveying mechanisms, Mars and earth as proposed in the Mars geometrical Panspermia theory.
The Mars geometry Panspermia theory being proposed opines that geometric form pre-determination precedes the appearance of life-forms on earth. The geometric form pre-determination process is considered to leave behind traces in the planet Mars. The usage of the term pre-determination is intended to depict the execution of action(s) related to geometric form pre-determination at an epoch prior to the appearance of earthly life. The earlier epoch being implied here occurs on the planet Mars. The pre-determination process is considered to leave traces in Mars and specifically in Mars’s meteorites. These traces are in the Mars’s meteorites and can be discovered by the process of scanning Mars.
\nIn the proposed Mars meteorite scanning, Mars’s meteorites are considered to deliver the functionality of life conveying locations and that of the life recording locations. This is because Mars’s meteorites have been found on the earth while other meteorites remain on the planet Mars. Meteorites from Mars have been found to have traces of life from Mars’s environment as seen in [30].
\nWorth et al. in [31] opines that Mars’s meteorites play an important role in lithopanspermia. They point out that some Martian meteorites have been suspected to have organic bio-markers. In [31], rock exchange between planets is theorized and considered to play an important role in inter-planetary life seeding and transfer. However, the discussion focuses on the rock (meteorite) transfer process as being responsible for the propagation of life throughout the universe. It does not consider the underlying process that has motivated the emergence of the different life forms that can be found on Mars’s meteorites. This is because [31] have focused on the transfer mechanisms and details of the rock transfer process such as transfer rates.
\nSteffen et al. [32] share the same perspective with Worth et al. [31] and consider that life conveying biological material may have been exchanged between planets. The planets being considered exist in a multi-habitable system. Steffen et al. [32] recognise that the consideration of a multi-habitable system has implications on the propagation of life within the solar system and also outside the solar system. The focus in [32] is on analysing the ejection mechanics and dynamics associated with exchanging life conveying biological material between planets.
\nThe research focus on the Panspermia theory as seen in [31, 32] considers that life is propagated throughout the universe (within the solar system and outside the solar system). The focus has been on analysing the dynamics and investigating the relations between planets to enable life transfer to the earth. Mars has been widely considered as a planet from which life was seeded to the earth [10, 31, 32, 33, 34, 35]. The discussion in this chapter opines that the microbes and micro-organisms involved in the Panspermia life transfer process engage in different computational tasks. The execution of these computational tasks is considered feasible because earth based microorganisms such bacteria have been observed to engage in computational behaviour. This has led to the emergence of research in bacteria computing [36, 37].
\nIn the discussion here, the Panspermia theory is considered to include the computational activities executed by microorganisms on meteorites sited in Mars. The evidence of such computation occurring on Martian meteorites is observed by Mars rovers and transmitted to the earth via a communication network.
\nMars’s meteorites play an important role in the Panspermia theory. They provide an environment enabling the interaction of microorganisms with astro-materials. Therefore, the meteorites can be considered as life recording locations. The ability of meteorites to move from Mars to earth motivates their consideration as life conveying locations. In the proposed Martian scanning, meteorites that are life recording locations are based on Mars. These meteorites are scanned within the Martian environment. The results from the scanning process are used to verify the proposed Martian geometric Panspermia theory.
\nIn the proposed Mars geometric Panspermia theory, the geometry associated with life-form aggregation is considered to be determined via a native microorganism optimization computation procedure. The optimization procedure aims to determine the geometry of different life-form aggregations. The geometry being implied is described in the two dimensional and three dimensional representations of different life-forms. The dimension of the geometry being considered is in the range of nanometers to millimeters.
\nThe Mars scanning procedure is executed using Mars rovers and Mars based transceivers. The Mars rover hosts data storage payload that hosts multi-spectral, multi-angular and high resolution images of different life-form aggregation.
\nIn addition, the Mars rovers hosts payload that can detect geometry of life forms with pre-defined dimensions. In this case, the dimension lies in the range of nanometers to millimeters. The Mars based transceiver transmits the detected results (from the Mars exploration mission) to earth via a communication network. The communication network receives results from the Mars rovers via the Mars based transceivers and sends it to an earth station. The scanning procedure is executed in a distributed manner. The geometrical forms are obtained in two dimensional and three dimensional representations. The geometrical forms are transmitted to an earth station via a communication network. Each Mars rover is pre-loaded with geometrical forms of different life-form aggregations that can be found in earth based life forms.
\nLet \n
Initial cell aggregation image generation—This stage enables the generation of high resolution images of different aggregates of different life forms. The process takes place on earth and allows the two dimensional and three dimensional representations of cell aggregates to be uploaded on the Mars’s rovers intended for launch. The images obtained are stored and processed prior to being uploaded to the Mars’s rover intended for launch from earth to Mars.
High resolution image distribution—This stage enables the generated two dimensional and three dimensional images to be uploaded on Mars’s rovers intended for launch. The images to be uploaded to each Mars based rover will be influenced by the objectives of the Mars exploration mission. The exploration mission is focused on detecting geometrical patterns of aggregates of different life forms. The stage of high resolution image distribution is executed prior to the launch of rovers to Mars.
Computational stage—The computation requiring the execution of the image comparison takes place aboard the Mars based rover. The image comparison algorithm aims to verify if the condition \n
Computational algorithm update stage—The computational algorithm update stage enables the image processing algorithm on the Mars based rover to be updated. This is necessary to continuously improve the result of the scanning process and prevent technology obsolescence. The update is executed by transmitting algorithms for improved image comparison and comparison results processing. The transmission that enables the execution of the update is received by the data storage payload which is connected to the Mars based transceiver. The Mars based transceiver receives the update information from communication satellites that receive the forwarded data from earth orbiting communication satellites which communicate with the earth station.
The relations between the stages of initial cell aggregation generation, high resolution image distribution, computational stage and computational algorithm update stage is shown in Figure 2. The scenario in Figure 2 shows the process of executing the stages involved in the Mars geometrical search procedure. The cell aggregation generation procedure is executed on earth by acquiring high definition images of life-form aggregates in an earth based database. These high definition images are transferred from the database to the open source ground station entity. The open source ground station transmits the images and the geometrical outline information to the Mars based storage payload (with integrated transceiver). The images are transmitted from the storage payload with integrated transceiver to the Mars based rover via an upload process. The process scanning meteorites on Mars begins after uploading to the Mars based rover.
\nRelations between the earth entities and the Martian entities in the proposed Martian geometrical search.
A bidirectional link exists between the Mars based rover and the storage payload with transceiver. The existence of the bidirectional link also enables the computational results from the Mars based rover to be sent to the storage payload with integrated transceiver. The existence of a bidirectional link between the storage payload with integrated transceiver and the open source earth station also allows the computational results to be accessible to the capital constrained space organization.
\nThe computational algorithm used to execute the operation in \n
The artificial neural network is developed on the earth prior to launching the Mars based rover. It is trained with the high resolution images of different geometric forms for different cell aggregates, i.e., tissues and organs. This encodes the geometry of the high resolution images in the artificial neural network. The developed artificial neural network is installed on the data storage payload before launch. The artificial neural network is trained to receive geometrical forms from Mars meteorites as input. The predicted output of the artificial neural network is the value of the binary comparison indicator.
\nThe successful execution of the computational procedure and transmission of computational result requires the availability of supporting network architecture. The design of network architecture should consider the preferences and resources available to the concerned space organization.
\nIn this chapter, space organizations are considered in two categories. The first kind of space organization is that of a developed and technologically advanced nation. Examples of such space organizations are the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). These space agencies have access to significant amount of resources to conduct interplanetary space missions. The first kind of space organization has resources to undertake Mars exploration missions aimed at verifying the proposed Mars geometrical Panspermia theory.
\nThe second kind of space organization is that of a developing nation. Space organizations in this category do not have access to significant amount of resources required to conduct interplanetary space missions. However, this does not necessarily hold true for space agencies in the second category. The scarcity of resources in developing nations limits their ability to realize Mars communication networks. The network architecture being proposed is intended for use by space agencies in the second category.
\nThe proposed network architecture comprises two entities. These are the ground based entity and the space based entity. In the proposed network, communications is bidirectional. The downlink communications involves the transmission of information from Mars to earth. The uplink communication involves the transmission of information from earth to Mars.
\nThe ground based entity comprises components such as earth stations, data processing and computing sub-entity (DPCE), communication payload re-configuration sub-entity (CPCE). The earth stations relay information to a Mars based data storage payload. The Mars based data storage payload hosts updated information on high definition two dimensional and three dimensional images of life-form aggregates. The high definition images show the geometry of the concerned life-form aggregates. The Mars based data storage payload receives information from a Mars orbiter.
\nThe DPCE is a ground based entity owned by the space organization in a developing country. It aggregates the high resolution images of cell aggregates from different sources. In addition, it hosts the high resolution images of cell-aggregates. The content of the DPCE is dependent on the science mission of Mars exploration. In the case where geometrical forms of humans are being sought, the DPCE’s contents are high resolution images of cell aggregates of humans. The DPCE’s contents are transferred to the Mars based data storage payload via a network of ground stations or communication satellites.
\nThe CPCE enables the configuration of the communication payload that links the DPCE to the Mars based data storage payload. It co-ordinates and monitors the process of data transfer between the Mars based data storage payload, Martian rovers and the DPCE. The DPCE communicates with the Mars based data storage payload via open source ground stations.
\nThe use of open source ground stations is suitable for capital constrained space organizations in developing countries. In the proposed model, space organization seeking to execute Mars exploration missions can make use of open source ground stations with expansive global coverage. This approach is feasible due to the development of open source software [38] and open source hardware [39, 40, 41].
\nHowever, the use of open source hardware and software approach has not been widely considered in developing components for Martian missions in developing nations. The use of open source paradigm is beginning to gain recognition for space exploration and satellite applications. Examples of open source initiatives for developing satellites are Kubos [42], NASA Virtual ADAPT [43, 44], and the open satellite project [45]. The examples in [42, 43, 44, 45] have focused on development of open source satellite software. In this regard, space exploration and technology has adopted the open source software development approach. The open source approach has also been considered for developing satellite hardware. The UPSat initiative is an example of a case where open source approach has been used for satellite hardware development [46, 47]. This initiative is sponsored by the Libre space foundation [48]. The Libre space foundation aims to create open source space technologies for future space applications. The organization is also playing a leading role in the development of open source satellite earth stations in its satellite networked open ground station (SATNOGs) initiative. The SATNOGs initiative intends to make the development of the ground and space segments of a satellite network open to the public. It comprises crowdsourced satellites whose information is held in a database [49].
\nThe space organization with insufficient capital and in a developing country can access the type of database in [48] to determine if it can communicate with a Mars based transceiver. The output of this procedure is a ground station or multiple ground stations that can be used to communicate with the Mars based transceiver. This communication can be used to realize Mars rover data sharing between technologically advanced and non-technologically advanced nations.
\nThe network architecture showing the role of the DPCE, CPCE and Martian based transceivers is shown in Figure 3. The scenario in Figure 3 shows the case where a capital constrained space organization with one DPCE having access to one earth station from the open source ground station network.
\nRelations between earth based and Mars based entities involved in the Martian geometrical search paradigm.
In the network architecture shown in Figure 3, the DPCE communicates with the CPCE (an SDR) via an internet call. The internet call enables the transfer of images and geometrical forms from the DPCE to the CPCE. The CPCE has reconfigurable and temporal data storage capability. The CPCE enables the earth station to transmit the data to the Mars based storage payload with integrated transceiver.
\nThe network architecture can be implemented by a single nation or either multiple nations. The concerned nations are those with capital constrained space organizations. The use of open source ground stations for a given time to transmit data to Mars. The capital constrained space organizations make use of the open source ground station antenna for a given time. The scenario presented in Figure 3 assumes that the capital constrained space organization is able to afford the design, production and launch of the Martian rovers.
\nHowever, the costs of designing and launching a rover to Mars can easily approach tens of billions of dollars thereby overwhelming the economic capability of developing countries. For example, the cost of developing Curiosity approaches USD 2.5 billion. The cost of launching multiple rovers increases beyond the financial capability of developing nations. Nevertheless, capital constrained space organizations need to be able to investigate the Martian geometrical Panspermia theory.
\nThe discussion here proposes the concept of Martian rover data sharing. In Martian rover data sharing, the data obtained by a Martian rover owned by a technologically advanced nation is shared with capital constrained space organization. The sharing is done without disrupting the scientific objective of the technologically advanced nation. The sharing is unaffected by power limitations because the concerned Mars rover is nuclear powered.
\nThe discussion in this chapter presents a new perspective in investigating human origins. The new perspective is called the Mars geometry Panspermia theory. However, the new perspective opines that the emergence of human life was preceded by pre-determining the geometry of different life forms aggregate. The evidence for this intelligent task exists as a geometrical record on Mars’s meteorites. The chapter also proposes a low cost network architecture that aims to verify the Mars geometry Panspermia theory. The proposed architecture searches Mars’s meteorites for geometric patterns of different life-forms aggregations. It also incorporates Mars rover data sharing enabling space organizations in developing nations to access the acquired data and also investigate the Mars geometrical Panspermia theory.
\nDetonative combustion is a potential propulsion method for aerospace systems, offering high efficiency and low mechanical complexity. In comparison, deflagration is generally considered easier to control and has therefore dominated both experimental and real world engine applications. Research into detonation engines has been limited due to the lack of the necessary tools required to design and analyse such systems [1, 2]. As such, practical development of detonation engines, notably the pulsed detonation engine (PDE) and the rotating or rotational detonation engine (RDE), has been limited [3]. Nevertheless, the application of detonation engines for propulsion is very promising, already proving to be compact, whilst providing highly efficient thrust generation [3, 4, 5, 6, 7]. This supersonic thrust could be utilised independently as a rocket engine, or as part of a gas turbine system. Interest in the development of RDE technology has grown and the challenges of utilising a more thermodynamically-efficient cycle have become better understood [8, 9].
\nCombustion can occur at both subsonic and supersonic velocities, known as deflagration and detonation, respectively. Deflagration is typified by a regular flame, which propagates at less than the speed of sound. The heat release may be used to expel the resulting products, generating thrust. Deflagration has been used in a broad range of applications to produce power. However, in theory, deflagration lacks the thermodynamic efficiency of a detonation system, which is a system where combustion is initiated suddenly and “propagates utilising most, if not all, of the heat from combustion in an incredibly rapid shock wave” [10]. The heat generated by the exothermic chemical reaction sustains the shock wave. The concept of using detonation as a propulsion source has been proposed since the 1840s [11], but no substantial work had been completed until the 1950s when the development of models and concepts for a more lightweight and compact engine began [12]. The mechanisms that drive the detonation engine were not well understood at that time, so much of the research over the following decades was centred on the theoretical development of the engine.
\nAs the name implies, the pulse detonation engine (PDE) has been proposed for propulsion using detonations [12, 13]. In a PDE, a detonation chamber is filled with a fuel/oxidiser mixture, which is subsequently detonated. The accelerating detonation propels the exhaust from the chamber, thereby generating thrust. The chamber is then re-primed with fresh reactants, and re-detonated. With sufficiently high cycle speeds, large amounts of thrust may be generated in a small engine [14, 15]. This type of engine has been found to be particularly efficient [3, 16, 17].
\nDevelopment of the concept of a rotating detonation engine (RDE) began as a result of further work into detonative propulsion. This engine type is characterised by one or more detonation waves contained within an open-ended annular chamber. A fuel/oxidiser mixture is fed into one end of the chamber, and the detonation wave consumes these reactants azimuthally, expelling reactants from the open end of the annulus. In some literature, this type of engine may also be referred to as a continuous detonation wave engine (CDWE) or a spin detonation engine [6].
\nEarly research into rotating detonations was conducted in the 1950s [18], with attempts to document the structure of detonation shock waves, including those in spinning detonations, with further developments through the 1960s [1]. Subsequent research has been conducted into the effects of geometry, rotation characteristics, spiralling of the wave, and other variables [6, 19, 20, 21, 22]. Another advancement in general detonation research is improvements in deflagration to detonation transitions (DDTs), leading to a greater understanding of the consumption of fuel in the chamber [23, 24, 25]. Further work has developed prototype RDEs to measure the thrust of small-scale units as a baseline for larger model behaviour, utilising the results from experimental work to verify theoretical results, and to generate new results [26, 27, 28, 29, 30].
\nIn this review, several aspects of RDEs will be examined, starting with a brief comparison of RDEs and PDEs. This will be followed by further exploration into RDE operation, and methods of analysing RDEs, both experimentally and with numerical modelling. Finally, there will be an overview of areas still requiring further work.
\nThe majority of gas turbines that operate with a deflagration follow the Brayton (B) cycle: an isobaric (constant pressure) process, as shown in Figure 1 [31]. In contrast, a detonation is almost isochoric (constant volume) and may be modelled with the Humphrey (H) cycle, or, preferably, with the Fickett-Jacobs (FJ) cycle, which models detonation [3, 31]. The H cycle assumes that combustion occurs in a fixed volume, resulting in a pressure spike as the products expand. Differentiation between the H and FJ cycles in Figure 1 can be seen through the state changes of 2–\n
Thermodynamic cycles: Humphrey, Brayton, and Fickett-Jacobs. Adapted from Wolański [31].
where \n
Fuel | \nBrayton (%) | \nHumphrey (%) | \nFickett-Jacobs (%) | \n
---|---|---|---|
Hydrogen (H2) | \n36.9 | \n54.3 | \n59.3 | \n
Methane (CH4) | \n31.4 | \n50.5 | \n53.2 | \n
Acetylene (C2H2) | \n36.9 | \n54.1 | \n61.4 | \n
Calculated thermodynamic efficiencies for various fuels under different thermodynamic cycles [26].
In a PDE, such as that shown in Figure 2, a detonation chamber is filled with a fuel/oxidiser mixture and then ignited. The deflagration of the reactants accelerates, and through a deflagration-to-detonation transition (DDT), generates a shock wave. The products are accelerated from the end of the chamber, carried by the detonation front, generating thrust [30, 31]. For each cycle, the chamber must be purged and then refilled with fresh fuel/oxidiser mixture and then detonated again, limiting the maximum practical frequency of operation to an order of 100 Hz [32]. This results in poor efficiency when scaled to high thrust levels as the discontinuous thrust cycles may not be fast enough to approximate the continuity required for propulsion purposes [32, 33, 34, 35]. In some designs, it is also necessary to purge the chamber with an inert gas due to some residual combustion products remaining stagnant in the detonation chamber that interfere with the next detonation cycle. This process further restricts the operating frequency to approximately 50 Hz [3, 16].
\nLabelled schematic of a PDE. Adapted from [15].
In order to provide a more compact device, obstacles may be placed in the chamber to accelerate the DDT, but these reduce the specific impulse (\n
An RDE, such as the one shown as a cutaway in Figure 3, consists of an annular combustion chamber, into which fuel and oxidiser, either premixed or non-premixed, are fed through a series of orifices [3, 26, 36]. Each fuel/oxidiser mix requires a slightly different orifice geometry for optimal operation, so some devices have an adjustable injector plate [37, 38].
\nCross-section of a typical rotating detonation engine [38].
A detonation wave is initiated in the chamber, most commonly utilising a high speed flame that undergoes DDT by the time it enters the chamber [39, 40]. As this wave propagates around the chamber, it consumes the fuel, generating a high pressure zone behind it. This zone expands, and due to the geometric constraints, exits the chamber, generating thrust [35, 41]. An example of a CFD representation of the propagating wave can be seen in Figure 4 [42]. Behind the wave, fresh fuel enters the chamber at a constant rate, priming that section of the chamber for the wave to continue on the next revolution, thus making a self-sustaining wave as long as fresh mixture is supplied [35, 43]. The detonation waves generally propagate close to the Chapman-Jouguet velocity (discussed in Section 3.2) for each fuel type (typically 1500–2500 m s−1), so the effective operational frequency of current RDEs is approximately 1–10 kHz. Frequency is dependent on the chamber geometry, fuel, and thermal and frictional losses [31, 44]. The result is quasi-continuous thrust that approximates a continuous thrust through high frequency rotations, suitable for both direct propulsion applications and in the combustor of a gas turbine [31, 32, 45].
\n3D model of the detonation wave propagation in an RDE [42]. The short arrows indicate the flow of fuel/oxidiser into the engine, and the long arrow indicates the direction of detonation propagation.
Important areas of RDE research include determining the wave characteristics, geometric constraints, the effects of pressure on the injection characteristics, determining fuel flow properties, and examining the geometry and structure of the detonation wave [3, 4, 30, 31, 41, 42, 44]. Additionally, there has been research into potential applications of detonation engines in which an RDE may be applied, such as air-breathing vehicles and gas turbines [46]. Despite a growing body of work on RDEs, there are still large gaps in current understanding that restrict practical application. Notably, optimising the system for wave stability, ensuring reliable detonation initiation, and ensuring the RDE does not overheat, are significant challenges facing engine development prior to commercial applications. Further development in this area would allow an engine to operate reliably over extended durations, with well-designed chamber and fuel supply.
\nMost experimental RDEs are geometrically similar in design, consisting of an annulus made up of coaxial cylinders [5, 38, 47]. The chamber width, characterised by \n
There is reasonable consistency across published designs in the methods of initiating detonation waves in the RDE. Detonator tubes, in which a high-speed flame is encouraged to transition from deflagration to detonation, have been regularly and reliably used [26, 31, 32, 39, 49, 51]. It has been shown that the success of the detonation tube makes it an excellent initiator, producing a self-sustaining rotating detonation 95% of the time [26].
\nLike all jet-thrust reaction-based engines, the exhaust from a RDE may be channelled through a nozzle to increase thrust. Outlet and nozzle designs have varied across different RDEs. Many have not attached any nozzle, whilst some have chosen to utilise an aerospike [30, 31, 52]. The use of an aerospike increases performance through higher expansion area ratios, although the increased surface area results in higher heat flux and thus a loss of efficiency from the additional heat transfer [53]. Aerospikes may be directly attached to the end of the reaction chamber [31]. A diverging nozzle was found to increase the specific impulse, although the thrust increase was small, and for angles greater than 10°, the increase with angle was negligible [53]. None have made use of converging or converging-diverging nozzles, because the exhaust is typically flowing at supersonic velocities and thus could be choked through the converging cross-section. This would result in a loss of energy that would decrease the overall efficiency of the system.
\nA typical RDE, 90.2 mm in diameter, has been tested on a thrust sled [54]. It produced a thrust of 680 N using 176 g s−1 of C2H4/O2 propellant at an equivalence ratio of 1.48 [54]. As can be seen from Table 2, this is well below that required for typical supersonic flight applications. The specific impulse (\n
Engine | \nApplication | \nThrust | \nThrust to weight | \n
---|---|---|---|
Rolls-Royce Olympus 593 | \nBAC Concorde | \n38,000 lb (169,000 N) | \n5.4:1 [55] | \n
Teledyne CAE J402 | \nMcDonnell Douglas Harpoon | \n660 lb (2900 N) | \n6.5:1 [56] | \n
Pratt and Whitney F135 | \nLockheed Martin F-35 | \n191,300 N | \n11.47:1 (dry) [57] | \n
General Electric F414-400 | \nBoeing F/A-18E/F | \n98,000 N | \n9:1 [58] | \n
Experimental RDE | \nNone | \n680 N | \n3.47:1* [54] | \n
Thrusts and applications of various engines.
This is the thrust to weight ratio calculated using a pre-weight load cell system.
RDEs have been found to be successfully operable with a range of gaseous fuels including hydrogen, acetylene and butane, as well as various jet fuels [30, 31]. Air, pure oxygen, and oxygen-enriched air have all be used as oxidisers [31]. Each of these has a variety of advantages and disadvantages, in both performance characteristics, and ease of obtaining, transporting, and storing the oxidiser. Particular difficulty is noted in the transport of gases such as H2 and O2 due to the high risk regarding transportation and significant compression of these chemical species [59]. In the case of transporting liquid fuels such as LH2 and LOx cryogenic units are also required, adding to the already challenging process. The performance characteristics for several of these fuel types will be discussed further in Section 4.4.
\nThe detonation wave velocity in operational H2/air RDEs has been found to be on the order of 1000 m s−1 [30, 39]. In these RDEs, the operational frequencies are on the order of 4000 Hz, which produces quasi-continuous thrust [3, 32]. As wave speed is a key factor in the development of thrust, stable waves with high speeds are ideal for propulsion purposes. Stable detonation waves have reached maximum speeds in the range of 1500–2000 m s−1 in most designs using a H2/air or H2/O2 fuel/oxidiser combination (more commonly the former), suggesting that there is open research into whether there is upper limit for detonation wave speed, and subsequently the thrust that may be produced [3, 22, 26, 60]. However, at very high frequencies (19–20 kHz), there may be multiple waves rotating around the annulus [60, 61, 62]. Multiple wave modes of propagation appear to be affected by fuel/oxidant equivalence ratio as well as total mass flow rate through the system. The high frequencies are a result of multiple waves travelling at approximately the same speed as the normal single wave. This phenomenon has the potential to provide more continuous thrust, though the higher frequency may limit \n
There are several methods of recording data from an operating RDE. Thrust generated may be measured with a thrust plate, and the flow rates of fuel and oxidiser may be measured or controlled within the supply lines [30]. The details of the shock may be recorded with pressure sensors attached to the chamber head, and external cameras [30]. Pressure sensors record the increased pressure generated by the shock, and by using multiple sensors, the detonation wave propagation velocity may be determined. A high-speed camera may be set up to capture the operation of the engine, allowing various parameters to be recorded, including the detonation wave propagation velocity, although this method is limited by spatial resolution, as the channel width can be quite small [30, 39]. A camera may also be used to image from the side, if the outer surface of the annulus is made of a transparent material [63]. Additionally, OH* chemiluminescence may be used to detect, record, and analyse the detonation waves in UV-transparent optically-accessible RDEs [64, 65]. These radicals are indicative of the reaction zone, and so, by analysis of their chemiluminescence, the structure of the detonation can be inferred. Often this detection is done through a quartz side window integrated into the RDE [63]. Peak intensity of the OH* chemiluminescence indicates the location of the detonation front, and so the effects of varying factors such as equivalence ratio and chamber geometries can be documented. Images are often phase-averaged and can by “unwrapped” for comparison to equivalent two-dimensional, “linearised”, simulations and designs.
\nThe structure of shock waves in gases was examined in detail by Voitsekhovskii in 1969, including those of shock waves in spinning detonations [66]. These examinations resulted in the first diagram of the structure of a spinning shock wave, and the identification of a number of features, which are identified from the computational model of an RDE shown in Figure 5 [32]. This model used premixed hydrogen/air as the fuel/oxidiser mixture and has been “unwrapped” into two-dimensions (this approach is described in Section 5.1). Feature A is the primary detonation front; Feature B is an oblique shock wave that propagates from the top of the detonation wave; Feature C is a slip line between the freshly detonated products and older products from the previous cycle; Feature D is a secondary shock wave; Feature E is a mixing region between the fresh premixture and the product gases, where deflagration may occur [67]; Feature F is the region where the injector nozzles are blocked; and Feature G is the unreacted premixture.
\nPressure contour indicating the cell structure of a detonation wave in an RDE with a premixed supply, taken from a computational modelling study [32]. (a) Pressure contour indicating the full structure of detonation in an RDE, “unwrapped” into two dimensions. Feature A is the detonation wave, Feature B is the oblique shock wave, Feature C is the slip line between the freshly detonated products and products, Feature D is a secondary shock wave, Feature E is a mixing region between the fresh premixture and the product gases, Feature F is the region with blocked injector nozzles, and Feature G is the unreacted premixture. The arrow denotes the direction of travel of the detonation wave. (b) A close-up image of the detonation front.
In both Figure 5b and Figure 8c (Section 4.3) the detonation cell structure can be seen, with high pressure zones outlining each cell. These lines of high pressure contain triple points, where the transverse and oblique shocks meet the Mach stem of the detonation wave [68, 69]. The concentrated pressure at these triple points is the point of maximum energy release, and the subsequent pressure spike when two triple points collide generates new detonation cells [68, 70]. While this generation is the main reason behind the propagation of detonation waves, the triple points still require further investigation as to the effects they have on the overall characteristics of a detonation wave [70]. The direction of these triple points can be seen as the white lines in Figure 8c with trailing high pressure zones forming the walls of the detonation cells. As the detonation cell width is defined by the geometry of the system and the chemical composition of the detonating fuel, it seems that the triple point velocity and direction must also directly relate to these factors, although limited research has been done to formally connect these points.
\nIn an RDE, the detonation wave remains attached to the base of the annulus, as illustrated in Figure 5b and in Figure 6 [3, 6, 71]. This is due to the continuous fuel/oxidant supply [3, 71], as a premixture or allowed to mix in the chamber ahead of the detonation wave [32, 39]. There is also some evidence that stable, lifted waves may also be possible if there is insufficient mixing between the fuel and oxidant [27, 44]. The propagating detonation wave combusts the reactants [32, 39] which generates a region of extremely high pressure immediately behind the wave. This pressure is on the order of 15–30 times higher than the pressure ahead of the detonation, preventing flow through the injectors [3]. The high pressure zone expands in a Prandtl–Meyer fan, allowing fresh fuel and oxidiser to enter the chamber [35]. This expansion propels the mixed products axially along the engine, generating thrust. In addition to the primary shock, an oblique shock and a secondary attached shock are also generated (Features B and D in Figure 5a).
\nDiagram showing the general structure of the detonation in an unwrapped RDE [3].
At the interface between the premixed reactants and the combustion products, there is a significant difference between the conditions of the unburnt fuel/oxidiser mixture and the products. This causes some deflagration along the slip line, as shown in Figure 6, generating Kelvin-Helmholz instabilities, which vary the detonation propagation velocity [3, 22, 72, 73]. This decrease in the propagation velocity results in an increase in the pressure, disturbing the oncoming shock wave and forcing the sonic flow directly behind the shock wave to undergo supersonic flow acceleration [74]. As shown in Figure 6 there is a section of injector flow blockage that occurs as the wave passes the fuel array. The high pressure front from the shock wave causes stagnation of the injector flow, or even back-flow which, if not handled, could cause catastrophic failure of the system [3, 6, 36]. This back-flow is a strong reason as to why the fuel and oxidants should not be premixed in practical systems or experimental investigations as it can result in flashback.
\nThe Chapman-Jouguet (CJ) condition can be defined as the requirements for the leading shock of a detonation to not be weakened by the rarefactions of the upstream detonation products [75]. This sonic plane then acts to allow the supersonic expansion of the detonated gases to occur without disturbance by rarefactions downstream of the flow [75]. The CJ condition can be used to approximate the detonation velocities in three-dimensional models but is better suited to a one dimensional analysis with an infinitesimally thin detonation front [76]. Despite this, it is used in most instances of numerical modelling as a guide as to whether the wave is performing as expected for the given parameters of the RDE [4, 6, 27, 31, 32, 42, 75, 77]. Chapman and Jouguet’s theory only applies to kinetic energy, disregarding the chemical energy of the reacting species, and hence, the Zel’Dovich-von Neumann-Doring (ZND) model is used as a more complete representation of the shock, taking into account the finite chemical reaction area directly upstream of the leading shock [3, 21, 45, 75, 78, 79, 80].
\nThere are two methods which may be used to initiate the detonative shock in an RDE—directly in the chamber, or indirectly via a high speed flame in a deflagration to detonation transition (DDT) tube [26, 31, 39, 49, 51]. These tubes are very similar in structure to a PDE. Directly initiating the detonation in the chamber via commercial spark plugs has been found to be generally unreliable, with only a 40% success rate for shock initiation when using CH4 in O2 [26]. Particular difficulty is noted in ensuring the detonation travels in the desired direction [26, 32]. In contrast, indirect initiation via a DDT tube has had a 95% success rate for the same fuel/oxidant combination [26, 31]. The indirect method involves using a detonator tube that can be set up in any orientation relative to the chamber, although tangential is favoured for initiating the detonation direction. Initiation is then caused by a small volume of a highly detonative mixture being ignited by spark plugs before DDT occurs, thus initiating the RDE. Perpendicular initiation can also be used, but this often results in the development of two detonation waves that rotate around the chamber in opposite directions [31]. Collision of these opposing waves usually destabilises the system as the waves weaken and reflect back in the direction of origin [31]. Desired direction also appears to be affected by initial total pressure and ignition distribution around the fuel plenum [27, 81]. For a desired single wave direction and propagation, tangential initiation is the most suitable method. Although slightly less compact due to the initiator tube, this may be reduced by placing obstacles in the tube to accelerate the DDT, or by using a more detonative fuel than that used in the primary process [31, 48, 62, 82, 83]. Using an initiator tube, however, may produce small wavelets ahead of the main detonation front, which, if present, reduce the detonation propagation velocity by up to 60% [84]. Once the main detonation is running, the interface between the initiator tube and main chamber must be closed off prior to the shock completing a revolution of the chamber [84]. Additionally, there may be a slight delay, on the order of milliseconds, between the detonation exiting the DDT tube and the commencement of full RDE operation in order to purge the spent reactants from the DDT process [85]. This delay seems to only be transient with no large effects on shock structure or stability, and the excess products are expelled along with the rest of the exhaust [85].
\nThree-dimensional modelling has shown that increasing the width of the channel—whilst maintaining the equivalence ratio, injection pressure, chamber length, and injector configuration—increases the detonation velocity, but the transverse shock wave ceases to be aligned with the radial direction [22, 27, 86]. As can be seen in Figure 7, the point of contact with the inner wall begins to lead the detonation wave as the channel width increases [22]. This phenomenon generates reflected shocks from the outer annulus wall, which may produce instabilities in the primary shock. It has been suggested through qualitative observation, however, that the effect of upstream reflected shocks on the shock structure may only be minimal [39, 87]. Once the channel becomes sufficiently wide, as shown in Figure 7c, the shock wave detaches from the inner wall, briefly forming a horseshoe shape against the outer wall [22]. This allows significant amounts of fuel to pass through the engine without combusting, and produces large instabilities and fragmentation in the detonation wave, which causes the structure to collapse [22]. These lead to a significant loss of performance, and secondary detonations in the exhaust [22]. It has been noted that increasing the channel width also results in increased variance of \n
Schematic of three different RDE designs showing the effect of varying the channel width on detonation structure. Arrows show detonation wave propagation direction. The red line is detonation wave, indicative only. Based on research from [22]. (a) Narrow channel, (b) mid-sized channel, and (c) wide channel.
It has been found that using a fuel-rich mixture produces stable waves with high detonation velocity and efficiency [80, 88]. Higher mass flow rates have also been attributed to increasing the chance of a stable wave being formed [6, 89]. Additionally, it has been shown that the equivalence ratio has a strong influence on the effectiveness of detonation and the stability of the system [80]. Detailed investigation has shown that the stability of the system is improved with increased equivalence ratio, but indicated a maximum equivalence ratio of 1.27, before the detonation wave became short-lived and transient, which is unsuitable for practical purposes [60]. Whether this is a universal limit, or a limit of that particular investigation is unclear, and requires further research. Furthermore, the findings indicated that lower equivalence ratio influences the number of wave fronts produced, with stoichiometric seeming to be a transition point to a stable one wave propagation mode [60, 86, 90]. It is interesting to note that for lean mixtures, the initial channel pressure needs to be higher for a stable detonation to propagate [88].
\nThe wave propagation velocity varies with the fuel/oxidiser combination. A variety of mixtures have been tested in a detonation tube of an RDE, with their wave propagation velocities and wavefront pressures shown in Table 3, which is indicative of their varying performance in an RDE. It should be noted that the pressure, energy and specific impulse in Table 3 are determined with a detonation tube, and provide a numerical comparison between each fuel/oxidiser combination. Hydrogen/oxygen mixes have been ideal for modelling purposes due to the simple chemistry involved, and are often used in experimental work due to the predictable behaviour. Additionally, the high detonation propagation velocity and wavefront pressure of hydrogen makes it a suitable fuel for real applications. Another common fuel choice is methane, due to the satisfactory propagation velocity and specific impulse in testing [31]. As mentioned in Section 2, the theoretical \n
Fuel mixture | \nDetonation speed (m s−1) | \nWavefront pressure (atm) | \n\n\n | \n\n\n | \n
---|---|---|---|---|
Hydrogen/oxygen | \n2836 | \n18.5 | \n8.43 | \n289.39 | \n
Hydrogen/air | \n1964 | \n15.5 | \n3.48 | \n200.41 | \n
Ethylene/oxygen | \n2382 | \n31.9 | \n5.23 | \n243.06 | \n
Ethylene/air | \n1821 | \n18.2 | \n2.85 | \n185.82 | \n
Ethane/oxygen | \n2257 | \n29.0 | \n4.87 | \n230.31 | \n
Ethane/air | \n1710 | \n15.8 | \n2.49 | \n174.49 | \n
Propane/oxygen | \n2354 | \n34.2 | \n5.18 | \n240.20 | \n
Propane/air | \n1797 | \n17.5 | \n2.80 | \n183.37 | \n
Fuels, wave propagation velocities and pressures, heat of combustion (\n
Transportability of fuel, and maintenance of fuel lines, are deciding factors in determining which fuels can be used. These issues are especially important for aerospace applications. Gases such as H2 and O2 are particularly volatile and reactive, hence can be difficult to transport in the large quantities needed for use in an RDE. Therefore, gaseous fuels and non-air oxidisers are challenging and largely unsuitable for real world applications [5]. However, H2 does have a high heat of combustion that is not matched by liquid hydrocarbon fuels. Jet fuel, kerosene, octane and other long-chain hydrocarbons provide a practical alternative to the H2/O2 mixture though. High volumetric energy density as a result of liquid state, as well as greater ease of transportability makes these hydrocarbons a more feasible fuel choice.
\nThere are several issues regarding fuel choice that deserve further discussion. In particular, the use of cryogenic fuels for cooling the engine is a beneficial approach, increasing thermal efficiency, as well as reducing the thermal load on other components such as mounting systems [3]. Another advantage is a higher volumetric energy density that comes from the compression of normally gaseous fuel sources. Testing of liquid oxygen (LOx) and gaseous or liquid hydrogen (GH2/LH2) fuel/oxidant systems for viability has been performed, but implementation in real world scenarios is challenging [92, 93]. Liquid hydrocarbons require further investigation to demonstrate their effectiveness in producing thrust through detonation [30], particularly because of the need for flash vapourisation to avoid multiphase effects in the mixing process [30, 51].
\nAn axial fuel injection process through a circumferential orifice plate was consistent across most simulations and real world models as an injection scheme [5, 6, 22, 26, 30, 32, 36, 38, 39, 41, 42, 42, 52, 61, 62, 82, 86, 88, 92, 94, 95, 96, 97, 98, 99]. Further research is required into fuel blockage effects due to the high pressure of the shock wave, with particular emphasis on the effects of increasing fuel pressure to alleviate blockage and increase overall engine performance [100]. In the majority of numerical and physical models, such as Figure 3, fuel and oxidiser are injected through an orifice place around the annulus, allowing them to continually feed the propagating detonation wave. Typically, the fuel and oxidiser are fed in separately, and allowed to mix in the chamber [26]. This design is also used in most numerical models, although some have used premixed fuel/oxidiser as a simplified boundary condition. Almost all physical designs have been built without a premixed fuel/oxidant injection scheme due to concerns with flashback [99]. In a premixed design, the shock wave may propagate into the injection plenum, carrying with it the reaction front. With sufficient pressure though, typically 2.3–3 times the chamber pressure, this can be avoided [32].
\nInvestigation into flow characteristics of a turbulent inflow have shown that there are specific zones within the chamber which favour different forms of combustion: some zones favour deflagration, and others favour detonation [101]. The larger deflagration zones created reduce the thermodynamic efficiency of the engine, indicating that fuel flowrate influences the reliability of an RDE [101]. It has been suggested that high inlet velocities generate incomplete combustion and hot spots, reducing detonation wave stability and reducing system efficiency, although further research is required [102]. As indicated in Section 3.3, the introduction of instabilities in the flow profile can decrease the efficiency of the engine as well as disrupt the detonation wave itself. Further findings indicate that increasing the fuel injection area, particularly by increasing the number of orifices, results in more efficient pressure gain [86, 97, 99, 103]. This produces a larger expansion wave of the previous combustion reactants, generating higher thrust, without disrupting the flow-field characteristics [98]. However, with lower fuel injection velocities comes an increased risk of flashback. There is, therefore, some optimal fuel injection area for operation which requires further work to verify [98]. Finally, the pressure ratio between the inlets and the engine outlet also has an effect on the \n
Existing RDEs tend to be relatively small, and therefore may need to be scaled up, or arranged in parallel, to produce thrust required for practical applications, such as those listed in Table 2. One method of scaling RDEs is to run multiple identical devices in parallel, in a similar manner to that used to run multiple PDEs [34, 104]. However, this would require more complex plumbing, increasing the weight of the overall system, and thus decreasing the thrust-to-weight ratio. However, this solution has not been explored in any depth and its viability is unknown.
\nIn order to make larger RDEs, in-depth research into the geometry of the combustion chamber is required. A number of relationships between the critical detonation wave height and the various dimensions have been identified [27, 30]. Detonation structure, as described in Section 3.1 is composed of small diamond shaped detonation cells that make up the front. The widths of these cells are dependent on the energy of the detonation (related to the fuel in use) as well as the available geometry for detonation. In this way, the equivalence ratio can be a large determining factor [30, 105, 106]. Critical minimum fill height is the minimum mixture height required for a detonation wave to propagate through a given fuel/oxidiser mixture. It has been found that the critical minimum fill height, \n
and the minimum channel width, \n
Finally, the minimum axial length of an RDE, \n
although lengths under 2–3 times the minimum result in reduced efficiency due to incomplete combustion [27]. However, in simulations, it has been suggested that for low inlet-nozzle pressure ratios the wave the wave height grew with the chamber length, reducing the \n
Geometric parameters of an RDE. The red area is the area filled by the fuel/oxidiser mix in which the detonation propagates. (a) Top view, (b) side view, and (c) detonation cell width adapted from [79].
There is not yet any theoretical data for \n
Modelling a large-scale RDE presents a challenge due to increasing computational requirements with increasing size, so limited work has been done in this area. Nevertheless, a larger scale experimental RDE has been demonstrated [5]. This RDE had an outer chamber diameter of 406 mm, and a channel width of 25 mm, and an air inlet slit that could be varied across the range 2–15 mm [5]. It produced a consistent thrust of 6 kN with a combined fuel/oxidiser flow rate of 7.5 kg s−1, whilst also producing an \n
The design used in most simulations and experimental work is a coaxial cylinder structure [3, 27, 31, 35]. This simple geometry is advantageous for both modelling and manufacturing. Design variations including using nozzles, aerospikes such as that shown in Figure 9, or an entirely hollow cylinder, have been utilised in several RDE designs [5, 52].
\nExample of an aerospike nozzle configuration [52].
Alternative chamber geometries have been largely limited to adjustments in the diameters of the chamber [4, 42], including with different sized engines [15, 31, 39, 54]. Other work has been conducted on a single RDE with interchangeable outer wall sections [22, 30]. As noted in Section 2 and Section 3, both of these factors influence the stability and the performance of RDEs. The effect of varying the length of the chamber on the detonation propagation has been investigated, which led to the previously mentioned requirement that the chamber be at least twice, and preferably four to six times, the fuel fill height [4, 96].
\nHollow RDEs, dubbed “centrebodiless” designs, have been tested with two different designs [50, 61]. One design was identical to a conventional RDE 100 mm across, but the inner cylinder terminated parallel to the fuel/oxidiser injectors [61]. In this design, tested with 169.7 g s−1 of CH4/O2 at an equivalence ratio of 1.154, it was found that the detonation was unstable [61]. The fuel and oxidiser were free to move into the space usually occupied by the centre body, and thus insufficiently mixed to sustain a stable detonation [61]. However, when the same geometry was tested with 253.3 g s−1 of CH4/O2 at an equivalence ratio of 0.665, the mixture became sufficiently mixed to sustain a stable four-wave detonation structure [61]. Another design was completely hollow, allowing oxygen-enriched air to be pumped through the centre of the chamber, and fuel was supplied around the edge [50]. In this design, stable detonations, operating at \n
The attachment of turbines to RDEs has been proposed [8, 9, 31, 32, 45]. It has also been noted that there is a secondary shock propagating from the detonation, which exits the outlet of the chamber [32]. However, turbine blades are sensitive to shocks. As such, the effect of the secondary shocks on the blades of potential turbines must be investigated. It is worth noting that an experimental PDE array has been tested with an attached turbine, in the form of an automotive turbocharger [31]. In that case, a buffer chamber was inserted between the PDE and the turbine [31], and such a technology may be suitable for RDEs.
\nComputational fluid dynamics (CFD) modelling is a powerful tool for the analysis of rotating detonations prior to, or in tandem with, experimental systems. The majority of numerical studies have aimed to provide in-depth understanding and details of the detonation structure [22, 41, 62, 67, 72, 94, 107, 108] or assess the physical and modelling factors influencing performance [32, 67, 73, 109].
\nComputational models of the azimuthal detonations in RDEs may use full three-dimensional geometries [20, 22, 67, 94, 95, 107, 110] or simplified, two-dimensional geometries [6, 32, 41, 43, 62, 72, 73, 108, 109, 111, 112, 113, 114]. The former, higher-fidelity, approach can incorporate complex geometric and flow features, although require \n
Two-dimensional modelling of RDEs assumes that the flowfield along the centre of the channel is representative of shock and deflagration structure across the entire width. Consequently, this inherently assumes slip-wall conditions and that the detonation-front is normal to the two-dimensional geometry. In the unwrapped two-dimensional geometry, all fuel is injected axially from one edge (the bottom edge in Figure 5a [32]) and is exhausted through the opposite edge (the top edge in Figure 5a) [6, 32, 72, 111]. It therefore follows that all exhaust products must leave the domain axially, due to conversation of angular momentum. This was confirmed in early two-dimensional modelling, which found that the density-averaged azimuthal velocity was less than 3% of the axial velocity [41]. Such a criterion could be extended to assessing whether a three-dimensional model, at some fixed radius within the channel, could be treated as an unwrapped planar domain.
\nDetonation wave curvature, imperfect mixing, three-dimensional turbulent structures and transverse shocks are features reported in three-dimensional computational modelling [22, 67, 79, 94, 107] and experimental studies [62]. These features arise from the effects of channel size [22], discrete injectors [79] and interactions between transverse waves and walls [62, 79]. These features are inherently three-dimensional and cannot be captured using planar, periodic models, and require more complex computational geometries.
\nFuel/oxidiser inlets may be modelled as simple points, lines, surfaces or complex, discrete injectors. The latter may be treated as a series of inlets in two-dimensional models, assuming upstream micro-mixing [109, 112]. Differences in the injector configuration can lead to differences in detonation pressure [112], or lifted flame behaviour in the event of poor mixing in a partially premixed system [109]. The study which observed the latter phenomenon, however, was undertaken using the Euler equations, which may affect the fidelity of modelled mixing (discussed later in this section), and a simplified induction parameter model (described in Section 5.4) [109], although this has also been observed experimentally in C2H2-fuelled RDEs [115].
\nInlet boundary conditions in premixed models, are often defined by inlet throat-to-nozzle-exit ratios. These, and the set upstream pressure, control whether the inlets are blocked, subsonic or choked and are chosen to range from 0.1–0.2 [6, 109, 110, 112], although ranges as large as 0.07–0.3 have shown little effect on \n
Rotating detonation engines have often been numerically modelled using the compressible Euler Equations [6, 20, 32, 41, 43, 62, 72, 95, 108, 110, 111, 112]. The Euler equations conserve momentum, mass and energy, but do not account for viscosity, following the assumption that the detonation structure dominates viscous dissipation. Viscous effects may, however, be incorporated into numerical studies of RDEs through the use Reynolds-averaged Navier Stokes (RANS) modelling [107, 113], LES, LES-RANS hybrids such as [improved] delayed detached eddy simulations (IDDES) [67, 94], or DNS [22]. Of these approaches, Euler, IDDES and DNS studies [22, 41, 67] have all been able to capture Kelvin-Helmholtz instabilities in the unreacted/reacted and the post-shock mixing layers (see Figure 5a as an example), using sufficiently small element sizing in both two- and three-dimensional models.
\nThe grid required to resolve large structures in RDE mixing layers is dependent on the size of the geometry. Elements of 200 μm have been shown to predict shear layer instabilities using either Euler equations or IDDES in an RDE with a mid-channel diameter of 90 mm [67] and an \n
Both viscosity and species diffusion have been stated as critical features in non-premixed models of RDEs, promoting the use of IDDES or LES in modelling studies [67]. In contrast, a negligible dependence of detonation velocity or \n
Although the Euler equations cannot account for viscous effects, such as wall shear-stress and heat transfer, these have a small, but non-negligible, effect (\n
Incorporating viscosity and thermal wall-effects into IDDES simulations requires significant computational resources. One such study required a computational mesh of \n
The majority of numerical RDEs works to date targeted H2/air and H2/O2 systems [6, 20, 22, 41, 62, 72, 73, 79, 94, 95, 111, 112, 118, 121, 122], given their relatively simple chemistry in comparison with both small and large hydrocarbons. Nevertheless, limited data are also available for linearised CH4/air and C2H4/air systems [114].
\nThe simplest approach to describe the chemistry is that of a one-step irreversible reaction [6, 43, 62, 95, 108, 109]. This assumption has been widely used to numerically investigate various aspects of fully premixed canonical RDE cases and useful insights have been gained [6, 32, 95]. However, it is well known that such a simplification is not able to accurately quantify many detonation responses of interest (e.g. upstream deflagration phenomena [109], triple shocks structure [79, 116]), mainly due to the sensitive Arrhenius nature of the reaction rate to temperature variations. Also, the use of ad hoc correlations of the experimental data with adjustable kinetic parameters (e.g. reaction order, activation energy) are only valid for a limited range of the system and thermodynamic parameters [116].
\nSimplified approaches to chemical kinetics may employ a one-step reversible reaction [20, 62] or a two-step mechanism [22, 41] to describe the chemistry within a system. In particular, for the one-step case, the forward reaction rate is calculated using the classical Arrhenius equation with the reaction rate constants tuned from a reference case while the backward reaction rate is calculated from the assumption of local chemical equilibrium [20, 62]. This approach has been validated against detailed chemistry for a 1D model [20]. For canonical 2D premixed RDEs, a one-step reversible reaction is not able to accurately capture the post-detonation temperature while it is able to predict both the experimental pressure and velocity fields [20]. In addition, it was also found that this approach can be successfully implemented to describe stratification effects in three-dimensional non-premixed RDE systems [62].
\nFor the one-step case, a number of two- and three-dimensional premixed RDE simulations employ an induction-time parameter model (IPM) to compute the chemical source terms [6, 32, 43, 109]. The IPM has shown reasonable accuracy for the prediction of detonation wave propagation in premixed systems [108], as the induction time is derived from the same configuration as the CJ wave-speed [116]. In addition, it is computationally inexpensive as a global induction parameter allows for release of energy over a finite period of time. Nevertheless, the IPM lacks the flexibility to accurately describe the physics occurring in more realistic non-premixed systems [94]. The thermodynamic properties of the single product species employed in this model are dependent upon the equivalence ratio of the fuel/air mixture. Therefore, this approach cannot easily handle the spatially varying local equivalence ratio occurring in a non-premixed system [116]. This model also lacks the capability to capture the low-pressure heat release and the change in equilibrium chemistry of post-detonation products. Finally, this method requires a priori calculation of the CJ induction time, but the computed detonation velocities in detailed simulations can be significantly higher than that of CJ velocity [94]. If this approach is extended to a two-step reaction model (consisting of an induction reaction followed by an exothermic recombination reaction), two progress variables are obtained and need to be solved in lieu of individual species concentrations. This approach is termed two-parameter progress variable, and it has been successfully applied for premixed systems [22, 41]. Nevertheless, the variation of the two source terms is extremely sensitive to the choice of the constants adopted [22]. Global chemistry has also been implemented through the well-known PDF method [107], although this approach is generally used for detailed chemistry in combustion processes [123].
\nFinite-rate kinetics and the associated kinetic mechanisms are needed to capture complex phenomena such as near-limit propagation leading to quenching of the detonation wave [116]. This is mainly because the use of a one-step reaction precludes the influence of chain-branching-termination mechanisms that are invariably multi-step in nature. In this regard, an advanced approach is the induction-length model, which concerns determining the induction length for adiabatic propagation and using it to estimate global detonation parameters such as the cell size of steady propagation and the wave curvature at quenching [116]. This study showed that at least a four-step mechanism is required to achieve acceptable predictions in CJ detonation.
\nModels of RDEs using H2/air, H2/O2, CH4/air and C2H4/air mixtures have employed detailed chemistry and simplified configurations [68, 72, 73, 79, 111, 112, 114, 118, 122], although only limited studies are available in comparison with simplified (one- or two-step) chemistry, given the relatively large computational expense required and the current computational resources. A set of 8–9 chemical species and 18–21 elementary reactions are generally employed for H2 systems [72, 112], while 21–22 species and 34–38 reactions are used for simple hydrocarbons systems [114]. These studies highlighted that the use of detailed chemistry is needed to accurately predict the energy-release pattern in RDEs and complex characteristics, including re-ignition, number of triple points and transverse waves [68].
\nA linearised model may be constructed to simulate the operation of an RDE [79, 124]. These models, shown in Figure 10, are known as linearised model detonation engines (LMDEs). In this model, fuel is fed into the chamber, and a transverse shock wave propagates through it. This occurs in much the same manner as in an RDE. However, the chamber is rectangular, and so the detonation only makes a single pass through the chamber [79, 124]. Both computer models and practical experiments have been run in three different modes, all using fresh supplies [79, 125]:
The chamber is pre-filled with premixed fuel/oxidiser, and then the detonation is initiated.
The chamber is pre-filled with an inert gas, then premixed fuel/oxidiser is injected and the detonation is initiated simultaneously.
The chamber is pre-filled with oxidiser, then fuel is injected and the detonation is initiated simultaneously.
An example linearised model detonation engine [79].
LMDEs have been used to characterise the detonation process, by allowing both sides of the chamber to be imaged through quartz walls, or the density field imaged through the use of the Schlieren technique [79, 126]. It has been found that the critical fill height of an LMDE is about \n
Computer modelling of an LMDE indicated that the propagation of a detonation wave was not affected by the turbulence caused by in-chamber mixing of fuel and oxidiser [118]. However, the presence of this turbulence did cause the reaction zone to trail the detonation wave [118]. A model of an LMDE was also used to test the result of applying different back pressures, such as might occur if a nozzle or a turbine was attached to an RDE [114]. This indicated that increased back pressure also increased the detonability of the fuel mixture, but also restricted the acceleration of the products, which, in some cases, led to the production of tertiary shock waves to sufficiently compress the flow to match the exit plane conditions [114]. However, as noted previously in Section 2, nozzles have very limited benefit [53], and, as noted in Section 4 the effect of secondary and tertiary shocks on a turbine may be problem.
\nRotating detonation engines have the potential to provide a significantly more efficient combustion cycle than deflagration-based engines. The application of this technology to turbines promises to increase the thermodynamic efficiency of these engines to previously unattainable levels. Additionally, RDEs as a standalone engine hold significant promise for both air-breathing and air-independent rocket propulsion. However, there exists a large body of research and development work still-to-be undertaken, including:
Nozzles have been shown to have limited benefit to the thrust generated by RDEs. However, varying the angles of the walls of an RDE, either independently or together, may simulate the effect of a nozzle to provide a slight benefit to performance. It remains unknown what effect such modifications to the conventional cylinder might have.
Comparisons of thrust to weight ratios between experimental RDEs and conventional rocket engines show similar values, indicating that an RDE could represent a method of propulsion in space. This has not been widely explored as an option, and would benefit from experimental work in vacuum conditions or microgravity conditions.
It has been suggested that there may be a maximum equivalence ratio at which an RDE will operate, but further investigation is required to determine if this is a universal limit, and identify ways to lower the limit.
Triple points appear to have significant effect on the propagation of the detonation wave but little work has been done on determining the constraints, besides chemical composition, on the formation of stable and consistent triple points as well as the effect of those parameters on other characteristics of the triple points such as peak pressure and propagation direction. Findings would be beneficial in terms of properly defining the parameters that affect \n
Very few studies have provided a mathematical relationship between the detonation cell width and the geometry requirements of the chamber. More supporting work to help refine and verify or dispute the relationships that have been established needs to be done, so that in the future, specialised design needs can be catered for through knowing the geometry and cell width of fuel types.
Varying the channel width has been noted to affect the stability of the detonation wave in an RDE. As such, this is likely to affect the performance of such devices. Further research is required to determine what the optimal width would be for different design requirements.
It is established that RDE chambers need to be at least twice as long as the fuel fill height, and increasing the length four to six times the fill height improves the efficiency. However, depending on the ratio of inlet pressure to nozzle pressure, such a length increase may also result in reduced \n
So-called “centrebodiless” designs have been explored, and proposed for use in afterburners. However, they have not been modelled or tested with heated high velocity air, as would be typically found at the outlet of a conventional jet engine, so their potential performance remains unknown.
It has been demonstrated that the thrust produced by RDEs scales non-linearly with engine size, but they are not yet approaching the size required to replace most existing gas turbines. It remains unknown if an RDE can be scaled up sufficiently to provide the thrust levels offered by contemporary gas turbine engines.
It has been suggested that a turbine could be attached to an RDE. However, the effects of the various shocks on a turbine have not been explored. In particular, the oblique shock (Feature B in Figure 5a) has been shown to propagate out of the chamber, and is likely to have significant effect on the viability of using a turbine.
The invsicid Euler equations have been demonstrated to over-predict deflagration in three-dimensional computational models of premixed RDEs, even with the use of detailed chemistry. Their validity in non-premixed RDE configurations, with deflagration upstream of the detonation and the potential to produce lifted detonation waves, still requires rigorous assessment.
Viscous and thermal wall-effects in RDEs have significant effect on RDE performance characteristics, and may be essential in accurately reproducing experimentally measured values. Understanding of the appropriate numerical modelling approaches of these effects, however, is still immature, owing to the computational resources required for sufficiently fine resolution of near-wall grids.
The computationally predicted wave-speeds and plenum pressures in RDEs are significantly different to those measured experimentally. It has been proposed that this could be partially due to baroclinic vorticity, resulting from interactions between detonation waves, fresh reactants, deflagration reaction-zones and post-combustion products, although this is yet to be analysed in detail in either full RDEs or linearised models.
Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"160349",title:null,name:null,middleName:null,surname:null,slug:"",fullName:null,position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"25887",title:"Dr.",name:null,middleName:null,surname:"Abbasi",slug:"abbasi",fullName:"Abbasi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"161332",title:"Dr",name:null,middleName:null,surname:"Abu-El Hassan",slug:"abu-el-hassan",fullName:"Abu-El Hassan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"212347",title:"Dr.",name:null,middleName:null,surname:"Abubakar",slug:"abubakar",fullName:"Abubakar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"93806",title:"Dr",name:null,middleName:null,surname:"Adani",slug:"adani",fullName:"Adani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158756",title:"Dr",name:null,middleName:null,surname:"Adler",slug:"adler",fullName:"Adler",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"63002",title:"Dr.",name:null,middleName:null,surname:"Agius",slug:"agius",fullName:"Agius",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"34637",title:"Dr.",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"118228",title:"Dr",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89784",title:"Dr",name:null,middleName:null,surname:"Ai",slug:"ai",fullName:"Ai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158339",title:"Dr",name:null,middleName:null,surname:"Akahoshi",slug:"akahoshi",fullName:"Akahoshi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158540",title:"Dr",name:null,middleName:null,surname:"Al-Jumaily",slug:"al-jumaily",fullName:"Al-Jumaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5682},{group:"region",caption:"Middle and South America",value:2,count:5165},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10206},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117097},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"8,25"},books:[{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"c935253773c8ed0220e7b8a6fd90c4c6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10702",title:"Polyimide",subtitle:null,isOpenForSubmission:!0,hash:"325bb1a83145389746e590eb13131902",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10702.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ab2446daed0caa4d243805387a2547ee",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:null,isOpenForSubmission:!0,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:null,bookSignature:"Dr. Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:null,editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10572",title:"Advancements in Chromophore and Bio-Chromophore Research",subtitle:null,isOpenForSubmission:!0,hash:"4aca0af0356d8d31fa8621859a68db8f",slug:null,bookSignature:"Dr. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/10572.jpg",editedByType:null,editors:[{id:"338234",title:"Dr.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5128},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1221",title:"Biomechanics",slug:"optics-and-lasers-biomechanics",parent:{title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:0,numberOfAuthorsAndEditors:0,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optics-and-lasers-biomechanics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[],booksByTopicTotal:0,mostCitedChapters:[],mostDownloadedChaptersLast30Days:[],onlineFirstChaptersFilter:{topicSlug:"optics-and-lasers-biomechanics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/172219/alireza-tootoonchian",hash:"",query:{},params:{id:"172219",slug:"alireza-tootoonchian"},fullPath:"/profiles/172219/alireza-tootoonchian",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()