Comparison of both PET and CT raw and reconstructed file sizes
\r\n\tKey Features:
\r\n\t*Reviews the basics of plating technology including electroless and immersion technologies
\r\n\t*Covers microjoining and nanojoining processes in various device applications
\r\n\t*Examines applications of microjoining such as the wafer level packaging, biomedical research, medical implants etc.
Combined and optimized Positron Emission Tomography and Computed Tomography (PET-CT) exams are among the more complex of the radiographic modalities utilized in both body oncology and neurology settings. A distinct and targeted workflow is essential to successful data acquisition, processing, and related image management and reporting [1, 2]. This chapter will review the primary considerations involved in acquisition, processing, and archiving of PET-CT raw data and image data in a clinical PET-CT environment primarily centered on oncology and neurology.
The method utilized for the creation of PET images is steeped in proprietary acquisition techniques available from a very limited number of PET-CT scanner manufacturers. Regardless of the manufacturer, successful PET-CT acquisition depends on a consistent quality assurance and quality control program as well as an attentive technologist staff and supportive physicist. Routine and careful quality control at daily intervals is at the center of any high performing PET-CT department. The pinnacle of PET quality control is the acquisition and evaluation of PET sinograms that comprise the raw data. PET-CT raw data consists of gigabyte sinogram data sets that are used to generate image sets consisting of transverse slices. Each transverse slice maps to a sine wave frequency. These frequencies on the sinogram can be practically visualized as displacements or rows on the x axis and an angle on the y-axis which represent a projection through the object being imaged. At the smallest level, each pixel in the sinogram corresponds to specific line-of-response (LOR) based on the byproducts of a positron annihilation event detected in the scanner PET crystals. The resulting pixel rendering is considered image data. Additional or revised reconstructions of different slice thickness or overlap can only be rendered from raw data. Image data slice thickness cannot be changed once rendered. Figure 1 illustrates a sinogram rendered from daily quality control procedures.
Normal PET sinogram
The PET sinogram will reveal excessive and non-uniform fluctuations occurring in the gantry crystal detector architecture. Any significant change in the detector crystals will be manifest as a “stripe” of non-uniformity. In most cases, this stripe indicates a detector block failure. The presence of a failed detector block will require a repeat of the quality control to attempt to verify scanner malfunction. Block failure is a serious malfunction that in most cases requires the intervention of a PET service engineer. The block will either need to have the corresponding electronics tuned or the block will require replacement in order to continue with scanning. Figure 2 depicts a PET sinogram with a failed block artifact.
PET sinogram with failed block (“stripes” with no activity)
PET scintillation crystals are especially susceptible to failure due to environmental conditions such as dramatic alterations in ambient temperature, humidity, or cooling infrastructure. As a result, the technologist should intermittently but frequently review a gantry interface that provides a continuous report of gantry status and conditions. In particular, the technologist should be mindful of alterations in gantry temperature or dew point as well as substantial changes in the voltage of the detector electronics. Maintaining vigilance in monitoring gantry conditions can be an important part of early troubleshooting to minimize delays and eventual downtime. Figure 3 demonstrates a typical positron emission tomography acquisition interface.
PET acquisition interface. In addition to critical benchmarks such as gantry temperature and dew point, the technologist may also view PET prompt information such as random, true, and single events.
Once an appropriate sinogram data set has been acquired and confirmed as meeting the manufacturer and site-specific quality control requirements, reconstruction of slices from the data can be commenced. Common and clinically useful reconstructions include filtered back projection corrected and uncorrected images as well as iterative reconstructions. With iterative reconstructions, manufacturers are also bringing to bear time of flight capabilities made possible as a result of the very latest and most progressive reconstruction algorithms. Regardless of the vendor or reconstruction methodology employed, any actions necessary to correct for random events, scatter, decay, normalization, and dead time will be applied.
Two dimensional (2D) versus three dimensional (3D)acquisitions continue to play a role in image reconstruction management with 3D gaining primacy and near routine usage for all PET reconstructions [3]. In the earlier days of PET, 2D imaging was the most desirable and feasible means of imaging. This was true because, too many events would be detected within the PET crystal array with excessive dead time and image degradation in adjacent PET detector rings. This was overcome by placing septa comprised of tungsten or lead in between the detector rings. Along with these septa, the scanner electronics were configured to only detect coincidence events from within a limited plane to exclude non-collinear events. This also reduced the sensitivity of coincidence detection and corresponding image resolution. With improvements in crystal technology and detector electronics, it became possible to remove the septa that separated PET rings and detect collinear events in the adjacent PET rings. This could occur without concomitant dead time affects and allowed for a nearly quadruple increase in sensitivity. Figure 4 depicts 2D mode imaging (left) and 3D mode (right):
PET detection modes
Attenuation corrections methods must also be implemented routinely or the PET axial images will have a muted or dim appearance for those structures that are more towards the center and deeper aspects of the patient’s anatomy. The most simple attenuation correction method is that of filtered back projection whereby the body is assumed to be an ellipse of relatively uniform density. This “Chang technique” works well in uniformly dense anatomic structures but is woefully slow and inadequate in portions of the anatomy that contains variable density structures. Therefore, for both speed and accuracy, measured attenuation is preferable via the use a of a CT source. The historical arc of PET-CT attenuation projection has progressed from usage of an external transmission rod source to “modern” CT scanners that are now commercially available and integrated with PET-CT. CT detector architecture utilizing upwards of 128 rows can now be found on commercially available PET-CT scanners [4]. In the earlier days of PET, Ge-68 or Cs-137 rod sources were used to generate a transmission scan through each slice of the patient’s body resulting in a measurement of attenuation correction for each pixel. Typically, the rod source was maintained within a shielded portion of the gantry. Upon the issuing of a transmission command from the scanner operating software, the shielded rod would be extended and rotated about the patient for a predefined time per bed position, usually 3-4 minutes per bed. This was a lengthy process that commonly took upwards of 30 minutes to complete. Modern PET scanners no longer utilize transmission rod sources and PET scanners containing CT infrastructure are the norm due to the dramatically increased speed of acquisition and resulting attenuation correction map [5]. Figure 5 depicts transmission scan created with a rotating radioactive rod source assembly.
PET rod transmission source scan: Contemporary PET scanners no longer make use of rod-based transmission because CT has become the sole source of transmission-based attenuation correction.
The advantage of the traditional transmission rod source was that the patient received much less radiation dose with a transmission rod source compared to modern CT transmission methods [6]. Additionally, the transmission data were acquired in the native 511 keV energy obviating the need for segmentation that is required for CT. Segmentation involves smoothing the transaxial CT images to approximate the spatial resolution of the PET scanner. This segmentation is necessary because the energy settings of 80-140 keV inherent to CT are much lower than the 511 keV energies common to PET. The pixel values of these regions are altered and replaced with the known linear attenuation coefficient for the imaged tissue or other internal materials such as a prosthetic (joint replacement, pacemaker etc.). The process of replacing the pixel values eliminates a considerable amount of noise inherent in the “raw” image. The segmented CT attenuation map is scaled to the 511 keV and applied as attenuation correction to the PET images.
As mentioned previously, the PET-CT scanning acquisition results in the creation of raw projection data. This raw projection data is processed and rendered into reconstructed image sets. It is common practice at most clinical imaging institutions to retain the CT raw projection data for a limited number of days. This permits sufficient time to elapse such that the corresponding reconstructed images can be reviewed by the interpreting physician. It is particularly important to retain the raw data for those limited but important circumstances that the interpreting physician requests an additional reconstruction for better elucidation of a particular abnormality prior to generating the final scan interpretation. Reconstructed axial images may also be utilized to create additional projections including coronal and sagittal image sets. If the images are to be used outside of the oncology realm that PET-CT has principally been concerned with, the image data will be rendered into vertical and horizontal long axis images to accompany the usual transverse/transaxial image sets. However, certain institutions due to internal protocols or to adhere to specific research protocols must retain the raw data indefinitely. In this case, a reliable and timely means of archiving of all of the raw data generated by a scan will be necessary. There are myriad options available for archiving of said data. Reliable and timely archiving and retrievabililty will figure prominently in deciding which type of archiving solution is appropriate. Despite the increasing availability of robust and inexpensive computer memory, these data sets quickly deplete available hard drive space and create a pressing need for removal. This is because the CT raw data sets are much larger when compared to a corresponding PET acquisition of the same axial coverage. Archival and retrieval methods and strategies will be covered later in this chapter.
The amount of raw image data space required for each PET-CT examination depends on both the particular scanner configuration as well as the scan protocols in general usage by a facility. Each PET bed will require fewer than 10 megabytes (MB) of storage for lower matrix acquisitions. Lower matrices are usually those that are lower than 256. A lower matrix would be commonly used for axial coverage necessary for torso-based oncology such as breast, colorectal, and lymphoma staging and restaging. Higher matrices, such as those used for head & neck oncology or neurology imaging on the very latest and modern PET-CT scanners, are as high as 512. These high, fine matrices will require in excess of 70 MB for a single PET bed position. Figure 6 shows lower and higher matrix image examples.
PET low (128 matrix) PET high (400 matrix)
CT raw data requires substantially more space, with modern 64-row scanner used in PET-CT generating upwards of 70 MB of projection data per second. As a result, the typical whole torso PET-CT examination can readily require in excess of 2 gigabytes (GB) of hard drive storage space for the raw data alone when there is a single CT acquisition created for the entire torso axial coverage (Table 1). With the addition of other CT acquisitions which may include lung breath hold, multiple contrast phases or longer axial coverage, the raw data space consumed increases accordingly to 4 GB and greater. The reconstructed images consume considerably less hard drive space; an entire image set, including different PET and CT image reconstructions occupy less than 500 MB. Common PET image reconstructions include attenuation corrected iterative and non-attenuation corrected filtered back projection. Figure 7 depicts the transaxial PET reconstructions commonly used in body oncology imaging.
Typical transaxial PET-CT image reconstructions. Note CT was acquired with both arterial and equilibrium contrast phases and rendered in multiple kernels and windows
In a very active practice in which 10 or more patients are imaged per scanner, several GB of hard drive space can be easily filled in the course of a day [1]. If the PET-CT technologist does not routinely transfer raw data sets and reconstructed image sets to other storage sites or delete them from the hard drive space on a routine basis, system functionality can be severely hampered. In some cases, intensive hard drive utilization may cause database corruption resulting in significant interruptions and possibly downtime. Table 1 depicts a comparison of both PET and CT raw and reconstructed file sizes.
# of PET beds | \n\t\t\tCT scanning time in seconds | \n\t\t\tPET raw data set size in MB | \n\t\t\tCT raw data set size in MB | \n\t\t\tTotal PET-CT file size in MB | \n\t\t
1 | \n\t\t\t3 | \n\t\t\t70 | \n\t\t\t210 | \n\t\t\t280 | \n\t\t
2 | \n\t\t\t6 | \n\t\t\t140 | \n\t\t\t420 | \n\t\t\t560 | \n\t\t
3 | \n\t\t\t9 | \n\t\t\t210 | \n\t\t\t630 | \n\t\t\t840 | \n\t\t
4 | \n\t\t\t12 | \n\t\t\t280 | \n\t\t\t840 | \n\t\t\t1120 | \n\t\t
5 | \n\t\t\t15 | \n\t\t\t350 | \n\t\t\t1050 | \n\t\t\t1400 | \n\t\t
\n\t\t\t\t*6\n\t\t\t | \n\t\t\t\n\t\t\t\t18\n\t\t\t | \n\t\t\t\n\t\t\t\t420\n\t\t\t | \n\t\t\t\n\t\t\t\t1260\n\t\t\t | \n\t\t\t\n\t\t\t\t1680\n\t\t\t | \n\t\t
7 | \n\t\t\t21 | \n\t\t\t490 | \n\t\t\t1470 | \n\t\t\t1960 | \n\t\t
8 | \n\t\t\t24 | \n\t\t\t560 | \n\t\t\t1680 | \n\t\t\t2240 | \n\t\t
9 | \n\t\t\t27 | \n\t\t\t630 | \n\t\t\t1890 | \n\t\t\t2520 | \n\t\t
10 | \n\t\t\t30 | \n\t\t\t700 | \n\t\t\t2100 | \n\t\t\t2800 | \n\t\t
11 | \n\t\t\t33 | \n\t\t\t770 | \n\t\t\t2310 | \n\t\t\t3080 | \n\t\t
12 | \n\t\t\t36 | \n\t\t\t840 | \n\t\t\t2520 | \n\t\t\t3360 | \n\t\t
13 | \n\t\t\t39 | \n\t\t\t910 | \n\t\t\t2730 | \n\t\t\t3640 | \n\t\t
14 | \n\t\t\t42 | \n\t\t\t980 | \n\t\t\t2940 | \n\t\t\t3920 | \n\t\t
15 | \n\t\t\t45 | \n\t\t\t1050 | \n\t\t\t3150 | \n\t\t\t4200 | \n\t\t
File size assumptions: A PET bed occupying approximately 10 cm of axial coverage requires 70 MB. A CT of the corresponding PET axial coverage is 3 times as large or ~ 210 MB. *The typical PET-CT would be of the torso ("skull base to thighs") and would be approximately 5-6 bed positions. Depending on the axial field of view, wholebody (skull vertex to toes) imaging may require as many as 15 or more bed positions to provide sufficient axial coverage. | \n\t\t
Comparison of both PET and CT raw and reconstructed file sizes
Common and scalable raw and image data archiving strategies and solutions will be discussed later in this chapter.
The PET scanner crystals remain the primary limiting factor in both image resolution and speed of acquisition capabilities [7]. The development and implementation of Time-of-Flight (ToF) technology has been the primary strategy targeted at improving image resolution and acquisition speed [8, 9]. The concept of time of flight dates back many years and was utilized for limited applications employing very fast and expensive crystal arrays [8, 9]. The economics of crystal manufacture combined with more affordable and rapid computer processors and memory have made ToF feasible to deploy among virtually all of the mainstream PET-CT manufacturers. The crystal standard for many years in PET technology was the bismuth germinate crystal. It had the advantage of having good 511 keV stopping power, universal availability and was well-tested within PET gantry design. However, it lacked the fast scintillation capabilities that are essential to ToF PET. Lutetium oxyorthosilicate (LSO) or cerium-doped lutetium yttrium orthosilicate (LYSO) have emerged as the industry standard capable of the rapid scintillation times necessary to support ToF [10].
The principle advantage of ToF is the ability to dramatically improve the positioning of annihilation events that occur outside of the line of response (LOR). This is accomplished by locating the annihilation photon energy deposition on the opposing sides of the ring of crystals in the PET gantry and determining the difference in arrival times of those events.
It is important to understand that ToF allows for better lesion detectability not because of improvement in resolution but as a result of improved signal-to-noise definition inherent in improved timing resolution. For this to occur in contemporary PET scanners, the coincidence timing window must be configured to be very short (4-6 nanoseconds) to improve the fraction of randoms detected and resultant improvement in image contrast.
Provided accurate attenuation correction is performed, PET scanners provide the opportunity to generate semi-quantitative measurements of tumor metabolism. These measurements, known as standardized uptake values (SUVs) continue to be the primary and most universally accepted method for generating semi-quantitative measurements that depict tumor metabolism [11]. The default unit of measurement in all PET scanners is kilobecuerels per milliliter. This unit of measurement together with the quantity of injected radioactivity, patient weight, and decay time is used to compute the SUV. Considerable error inherent to all of the aforementioned criteria can result in badly flawed measurements and ultimately, false tumor metabolism quantification. In order to reduce the likelihood of introducing error in SUVs, at a minimum, the following must be evaluated and effectively implemented in the SUV calculation [11]:
Scanner cross-calibration: procedure performed to ensure that dose calibrator dose assays match the radioactivity measured by the PET scanner.
Measurement of residual syringe activity: This occurs immediately subsequent to administering the dose to the patient. The residual syringe activity is subtracted and the total quantity administered is recorded in the radiopharmaceutical administration record. This same resulting quantity is used for all SUV calculations.
Synchronization of all clocks utilized in reporting injection time
Assurance of proper infusion of radiopharmaceutical (no dose extravasation)
Accurate patient weight
Accurate patient dose
The equation for SUV calculation is as follows:
SUV= Region of interest of radiopharmaceutical concentration
(Tracer dose/patient weight)
Because radiopharmaceutical dose and patient weight are in the denominator, these are among the 2 most important values to optimize to reduce the magnitude of error inherent to the calculation.
Prior to 1998 and the prototype development of the PET-CT at the University of Pittsburgh, PET-only systems had primacy given that those systems were the only offering available [3]. The genesis of PET combined with CT derived from the suggestion of a Swiss oncology surgeon. During the development of the PET-CT, the oncologist opined that a CT scanner in the voids between the banks of the PET detectors might provide useful anatomical information familiar to oncology surgeons. This suggestion was a catalyst to the advent of the modern-day PET-CT. Dr. David Townsend and Ron Nutt began creating a prototype PET-CT in 1991 but it would not be a viable device for use clinically until 1998 [3].
Since that time, the practice of PET-CT could be considered more largely to be PET-ct in which the CT portion of the scan is used primarily for attenuation correction and anatomic localization. However, the original intent of Townsend and colleagues was to generate clinical CT and clinical PET scans in the course of a single scanning session using a single machine. Moreover, the desired purpose of the CT was to provide clinical patient information rather than only attenuation correction and anatomic localization. Indeed, CT for attenuation correction was a secondary to the main purpose of developing a clinical PET-CT scanner [3]. High-quality, optimized CT was possible routinely even on 2 row CT units that were commonly available and interfaced with the PET gantry at that time [3].
There has been considerable divergence over the routine integration of optimized, contrast enhanced CT with PET. However, over the course of the past decade, the literature has repeatedly borne out the superior quality and efficacy of optimized CT used in conjunction with PET [12, 13]. The most strident objection to performing optimized, contrast-enhanced CT with PET is that the oral and/or intravenous contrasts utilized on the CT creates artifacts in the PET images. More specifically, it was proposed that the intravenous contrast or oral barium sulfate attenuation correction artifacts diminished the readability of the PET [14, 15]. While there are limited examples of attenuation correction artifacts from oral or intravenous contrast, experienced PET-CT readers have learned to utilize filtered back projection uncorrected images to differentiate artifacts versus clinically relevant findings [16]. The emergence of routinely used dual syringe intravenous contrast injectors that permit the injection of a normal saline “chaser” after the initial intravenous contrast have virtually eliminated intravenous contrast artifacts on the attenuation corrected images [17].
There are substantial requirements and preparations necessary to incorporating optimized CT into PET-CT practice [2]. The most ideal approach has been to have truly-dually trained and boarded radiologists and technologists working together to produce the PET-CT images. Regrettably, this situation is rarely achievable given the time investment necessary to garner nuclear medicine physician and radiologist credentials or for similar circumstances to be available to nuclear medicine technologists. Nevertheless, it is possible to routinely incorporate optimized CT into the PET-CT practice provided there can be collaboration between nuclear medicine and CT departments.
Critical considerations for optimizing CT acquired along with PET include configuring scanner parameters for the best quality image while dosing the patient safely. Technologist staff should become knowledgeable regarding basic CT principles such as pitch and slice overlap, CT dose index (mGy and mAs or mA), slice thickness and noise inter-relationship, and x-ray penetration characteristics (keV setting). Intravenous contrast administration requires careful screening of each patient both at the time the patient’s appointment is scheduled as well as during the actual appointment. Internal protocols should be developed to optimize the patient’s ingestion of oral contrast, administration of intravenous contrast for optimized bolus timing, as well as persistent awareness of the potential for contrast reactions. Figure 8 illustrates a protocol for PET-CT incorporating optimized CT:
Optimized CT-PET protocol
A final consideration for performing optimized CT is patient safety given clinically significant findings. In the course of performing optimized CT, it is not uncommon to encounter a large pleural effusion (fluid in the lungs) or a pneumothorax (collapsed region of lung) or similar life-threatening circumstance. PET-CT technologists must be vigilant and trained to routinely evaluate the CT images for obvious significant findings and report these findings to a radiologist for appropriate follow up. Figure 9a illustrates a pleural effusion and Figure 9b shows a pneumothorax:
(a.) Bilateral pleural effusions encountered during viewing of CT images; (b.) Pneumothorax. Note that this clinically-significant finding is only fully revealed upon application of a CT kernel and appropriate windowing.
On rare occasions, pulmonary emboli are also encountered and must be reported but these findings are often extremely subtle even to the experienced imager.
Along with noticing clinically significant findings during and subsequent to the scan, it is vital that the technologist provide the utmost in safety while administering intravenous contrast. The threat of intravenous contrast extravasation, allergic reactions, or renal compromise are the foremost dangers for the patient. It has been well-documented that intravenous contrast extravasations of 100 milliliters or greater almost always require a plastic surgery consult as localized tissue necrosis may occur [18]. This is because the osmolality of commonly used non-ionic intravenous contrast (~650 mOsm/kg) is often vastly different from osmolality of blood (~285 mOsm/kg) creating conditions for unfavorable osmotic gradients to occur [19]. The majority of intravenous contrast extravasations can be avoided entirely by verifying venous patency prior to and during the administration of contrast [1]. Figure 10 demonstrates a graphical depiction of the venous patency both before (10a) and during (10b) contrast administration. Figure 10c reveals an example of a steeply sloped, worrisome curve that may indicate an extravasation event will occur.
a. Saline test bolus phase, b. Intravenous contrast bolus phase, c. Non-patent I.V.: Administering intravenous contrast when the test bolus has a rapidly increasing slope that does not level off is an imminent indicator of extravasation Venous patency tracing viewed both during test bolus of saline (a), injection of intravenous contrast (b) and non-patent IV (c). For maximum safety, the technologist should actually palpate the injection site during an initial bolus of normal saline while also reviewing the time versus pressure tracing.
Additionally, though uncommon, allergic reactions to intravenous contrast range from localized mild urticaria to anaphylactic shock [20]. Also, patients at risk for renal insufficiency such as those who have diabetes, hypertension, solitary kidney, or any combination of the aforementioned are at substantial risk for developing contrast induced nephropathy (CIN) [21]. Therefore, all patients must be carefully screened prior to receiving contrast. This will include a thorough review of the patient’s medical history as well as assessment of creatinine and estimated glomerular filtration rate ideally within 30 days of administering intravenous contrast [22].
Prior to the introduction and routine utilization of modern PET-CT scanners, the technologist or similar staff used third party programs in post-processing attempts targeted at aligning PET and CT or PET and MR image sets that had been acquired on different scanners. In addition, the radiologist was also tasked with customary mental alignment of image metabolism structures, so called “mental fusion” [23]. The fully integrated and combined PET-CT has allowed for practical and real-time image fusion that is considered commonplace in contemporary imaging [24]. Unfortunately, this has not obviated the need for third party image fusion systems because fusion of IR, MR or other modality fusion is now considered standard-of-care. This is increasingly becoming the case in multidisciplinary oncology environments as well as neurology subspecialty environments that include an epileptologist as part of a multidisciplinary epilepsy team. Until recently, rigid fusion was the only possible fusion option. Rigid fusion involves image landmark matching to achieve the closest best fit among anatomic structures and metabolic activity. This is achievable by using software to co-register multiple image volumes against a reference volume. However, due to myriad alterations in patient position between scanners, patient weight changes, and surgical variants rigid fusion frequently reveals undesirable matches between image sets. In contrast, deformable fusion has emerged and permits more favorable metabolic and structural alignment by incorporating virtual stretch algorithms. This involves mutual information algorithms that function at the pixel and/or voxel level to “warp” the image data [25].
Figure 11 demonstrates a post-processed PET-CT fusion image while Figure 12 illustrates a post-processed PET-MR deformably fused image.
PET-CT fusion images: Images were acquired during co-registered acquisition and fused during post-processing
PET-MR fusion images-the PET and MR were acquired separately and fused utilizing deformable fusion post-process application software.
Provided the processed image matrices are similar, deformable fusion is routinely achievable and permits for favorable and clinically useful alignment of morphological and metabolic image sets across multiple cross-sectional modalities [26].
If PET-CT experienced a “golden age” it was immediately following more widespread adoption of PET-CT in the early 2000s. Numerous PET-CT facilities had business models based upon as few as 3 patients per day due to robust reimbursement that prevailed up until 2005. This was an ephemeral but important time of prosperity, growth, and development for PET-CT. At that time, the per scan fee provided by the Centers for Medicare and Medicaid Services (CMS) was at an all time high. This period was destined for an eventual phase out but was hastened by the implementation and enforcement of the Deficit Reduction Act (DRA) [26, 27, 28, 29].The DRA of 2005 (signed into law February of 2006) was implemented as part of a broader strategy targeted at limiting the unnecessary expenditure of funds thought to be redundant in patients’ care [26]. The ultimate result of this policy was that reimbursement for PET-CT was reduced by nearly one half in the non-hospital, free-standing imaging environment [26]. Many independent imaging centers that once prospered by only performing 3 or 4 patients per day no longer could achieve a margin to sustain a solvent business model. In the ensuing aftermath of full phase in of DRA policy, many of these facilities were either assimilated by larger institutions or simply became insolvent and bankrupt.
In addition to the DRA of 2005, a second blow to PET-CT arrived in the form of the major economic downturn and crisis of 2008. This dramatically reduced the borrowing power of institutions as well as the number of patients with healthcare insurance who could afford to have PET-CTs. What emerged was a new paradigm of very efficient, higher volume imaging workflows in PET-CT in both public and private hospital industry. Institutions with targeted and efficient workflows have been able to weather the continued acrimonious economic conditions as funds for both full time equivalents (FTEs) and capital infrastructures such as scanners continues to diminish. PET-CT has continued to grow although the percentage increase has tended to decrease each year since 2005 [30]. This environment is indeed the new normal and will likely persist for several years to come.
Pediatric PET-CT acquisition requires all of the same precautions as those that accompany adult PET-CT plus specific considerations for PET emission times, matrix, and minimization of movement artifacts. Despite the fact that pediatric patients tend to be shorter and have much lower body mass than adult patients, acquisition paradoxically takes longer. This is because ideally, a higher and finer matrix will be used to image the smaller bodies of pediatric patients. As a general guideline, if the matrix size is doubled there should be concomitant quadrupling of acquisition time in order to achieve appropriate imaging statistics and image quality. Given these considerations, achieving high-quality, motion-free images may require coordination of sedation services, immobilization devices and/or considerable psychosocial support from the PET-CT staff as well as accompanying patient guardian(s) [31]. Within a conventional scheduling paradigm, high quality pediatric scanning invariably requires more planning and imaging time. These needs cannot be underestimated and should be an integral part of the pediatric PET-CT scheduling process.
In any pediatric PET-CT imaging environment, there should be age and weight-specific criteria for dosing the patient with radiopharmaceuticals. One method that can be used is to standardize the pediatric dose to the “standard man” of 70 kilograms while also setting absolute low and high dose limits. As an example, an institution might designate 74 MBq (2 mCi) as the minimum dose and 370 MBq (10 mCi) as the maximum dose. The dose would then be computed with the following equation:
Pediatric radiopharmaceutical dose=370 MBq x child’s weight in kg/150 kg
It is helpful to use any number of commercially available spreadsheet programs to extrapolate all values of radiopharmaceutical dosing based on this equation for ease of reference.
Pediatric PET-CT will also require careful consideration of radiation dose delivered in the CT portion of the exam. This is of the utmost importance if the institution has incorporated optimized or diagnostic CT parameters because dose from CT will be nearly twice the radiation dose from the 511 keV emitting radiopharmaceutical such as fluorine-18 2-deoxy-2-fluoro-D-glucose (18FDG) [32]. There are now well-established “Image Gently” protocols available from the American College of Radiology that can assist any facility in creating protocols that provide age-appropriate CT dosing. In recent years, these protocols have become increasingly common in many pediatric-based radiology departments although the adoption of optimized or diagnostic CT parameters in PET-CT has been slower to emerge [33]. Integrated applications to reduce CT dose should be routinely incorporated into the imaging of pediatric patients to maintain their dose as low as reasonably achievable (ALARA). Low dose pediatric CT is generally accepted to be 5 mSv or below for the typical torso axial coverage [34]. This is easily achievable in younger and smaller pediatric patients who possess a lower body mass index (BMI) but becomes considerably more difficult in imaging older and higher BMI pediatric patients. An ongoing and continuing dialogue with a health physicist and radiologist is essential to providing safe and lower dose CT in the pediatric PET-CT environment [35].
Similar to pediatric PET-CT, radiation therapy (RT) planning may be a very small portion of image volume but requires considerable additional time and attention to execute properly. PET-CT has been playing an increasingly important role in the radiation therapy process, especially in multidisciplinary oncology centers [36, 38]. One of the essential advantages that PET-CT offers over CT alone is the detection of smaller lymph nodes that would not likely be considered positive on CT by size criteria [36]. Additionally, there is now ample evidence that PET-CT consistently locates unsuspected distant metastatic disease that is not visible on CT alone [36]. There are several possible approaches to incorporating radiation therapy planning into the PET-CT environment but 2 primary methods have emerged in more routine PET-CT clinical practice. The simplest method is to complete the PET-CT on a flat RT therapy planning pallet with the patient positioned in a manner approximating the positioning established or anticipated in the patient’s RT planning [36-39]. Figure 13 depicts a PET-CT scanner equipped with the RT pallet.
PET-CT equipped with RT pallet. Note radiation therapy planning laser adjacent to scanner (left) that will be used in aligning patient.
This approach requires no additional preparation other than the PET-CT staff receiving notification in advance to place the patient on the RT pallet. A more complex method is to position the patient in the same RT apparatus as created for the patient’s original simulation. In this case, the patient is instructed to bring their simulation position device with them to their PET-CT appointment.
The primary limiting factor for this approach is usually the bore of the PET-CT gantry [36, 40]. Most manufacturers now offer RT-sized PET-CT gantries because of the emerging complementary nature of RT and PET-CT [36]. This approach permits the most accurate but also most complex and time-intensive approach with the simulation and PET-CT occurring all in one session. In this environment, the dosimetrist or radiation therapist will position the patient in their custom radiation therapy body cradle, thermoplastic mask, or similar radiation therapy simulation apparatus [36-38]. Figure 13 a and b depict a patient who has been fitted with the same thermoplastic mask as used in the patient’s actual radiation therapy. Figure 14 shows the fiducials together with RT planning “B pillar” viewed on the reconstructed images. The PET-CT image sets are then migrated to the radiation therapy planning software and used by the radiation oncologist and dosmetrist for the patient’s radiation therapy sessions. The advantage of this approach is that the PET-CT images acquired are the actual simulation or planning images and PET with respect to a simulation CT will contain no error [36]. The disadvantage is that the additional time required to perform a full PET-CT simulation of this type can be upwards of 30 minutes. Moreover, the radiation exposure the dosimetrist and technologist receive while setting the patient up can be significant and unacceptable if performed routinely. Additionally, scanner time is expensive and in a busy institution, the additional time necessary for true PET-CT RT may create significant scheduling backlogs or patient scanning delays. For this approach to be practical, the PET-CT scanner may even be sited in the RT department.
a: Patient positioned for RT planning on RT pallet with simulation position device. Note that external RT planning laser array has been aligned to patient’s fiducials. b: Additional view of patient positioned for RT planning on RT pallet with simulation position device. Note patient has been fitted with thermoplastic mask that will be utilized for each RT treatment event. Intravenous contrast dual injector has also been positioned and is ready to use for optimized CT. Fiducials visualized on axial reconstructed images
A final but important consideration for PET-CT acquisition is the additional maneuvers required for inpatient scanning. Inpatients will almost always require more time to ambulate, transition, and position in the PET-CT scanner. A corresponding increase in staff time must be planned for given the higher level of acuity inherent to inpatient scanning. A variety of imaging workflows and paradigms exist for incorporating inpatients into a busy imaging practice. One approach is to have an inpatient-only scanner dedicated exclusively to performing inpatient requests. This approach is more readily integrated in a large academic institution that has the resources for multiple scanners allocated for specific purposes. It is not well-suited to the typical, smaller imaging environment that relies on higher volume and more closely sequenced outpatients. Nevertheless, as the result of diminishing funds and resources, it has become increasingly common to perform inpatient studies in the outpatient setting. In any case, many institutions have found that a radiology RN is vital link in the preparation necessary to create a high-quality PET-CT scan. The RN should be available to perform a true peer-to-peer interaction with the patient’s RN prior to the patient’s actual arrival. This helps to insure the patient can be transported and maintained in the PET-CT department safely. Primary considerations include but are not limited to the following:
Ambulation and falls: Minimizing falls is at the center of patient safety in any clinical service and becomes especially important when caring for inpatients. The public health and hospital safety literature have repeatedly reported the poor outcomes and compromised care that falls cause in the hospital setting [41-43]. The prevention of falls has arisen to such a level that it has garnered the attention of the Joint Commission as a National Patient Safety Goal [44]. Preventing falls for inpatients undergoing PET-CT will require a peer-to-peer RN interaction whenever possible to reduce the likelihood of the patient falling upon transition to the PET-CT environment.
Diabetes: In an oncology setting, diabetes can be the single most challenging inpatient management regimen as the patient’s medication schedule and diet must be carefully controlled to achieve a euglycemic state compatible with high quality 18FDG PET-CT imaging. If blood glucose levels exceed 200 mg/dL, the PET imaging cannot be undertaken [45]. This is true because image quality will be suboptimal as endogenous glucose competes with the same binding sites as exogenous 18FDG [45].
Medications: Many inpatients receive intravenous medications in an excipient such as dextrose that will make the PET-CT impossible to perform due to glucose receptor saturation. There are also numerous medications that create difficult circumstances for blood sugar control and achieving the desired serum glucose level prior to the PET-CT. These include but are not limited to corticosteroids, chemotherapy infusions, and insulin [45].
Telemetry: Contemporary higher acuity inpatient practice has incorporated routine usage of telemetry as a proactive means of discovering and treating cardiac events. In the peer-to-peer interaction, a plan must be formulated either for safely and temporarily discontinuing the telemetry or sending a specialized individual with the patient to monitor for cardiac events.
Patient line status: Inpatients will have a variety of ostomies, surgical drains, catheters and the like that will require maintenance and specialized positioning within the scanner. Because these devices will contain patient secretions that may be radioactive, additional caution to minimize the likelihood of contamination in the scanner will be required.
Isolation: In an era of increasingly resistant microorganisms, more and more inpatients will be discovered to be colonized with bacteria that cannot be treated with conventional antibiotics. The vast majority of hospital infection control protocols require that once a patient has been characterized as having a resistant microorganism, the patient must be isolated from other patients and staff. The more common resistant bacteria include methicillin resistant staph aureus (MRSA) and vancomycin resistant enterococcus (VRE) [46-48]. Clostridium difficile (C. diff.) isolation also has become problematic in these same hospital scenarios [49]. Since many hospital organizations cannot afford multiple PET-CT scanners, the prospect of needing to scan isolation patients in the midst of a busy outpatient workflow is not uncommon. Internal protocols that uphold cleaning the patient’s uptake room, PET-CT scan room, and scanner itself must be consistently applied to reduce the likelihood that immuno-compromised outpatients do not contract a resistant bacterial strain from a scheduled inpatient.
Attire: Inpatients will typically be attired in standard hospital gowns which may contain metal snaps that can result in beam hardening and scatter on the CT phase of the imaging. This same metal can also introduce artifacts into the attenuation corrected PET-CT images. Therefore, it is beneficial to proactively remove said gowns or provide alternative attire such as scrubs prior to the scanning event.
Pain management: Given the higher acuity of inpatients as compared to outpatients, it is not surprising that a greater degree of patient pain management may be required. It is helpful to identify additional pain management needs in a peer-to-peer interaction prior to the inpatient’s arrival. This will be paramount to maximizing patient comfort such that motion is minimized and a successful PET-CT scanning event will occur. Along with the pain evaluation, the RN can ascertain the patient’s need for anxiolytics targeted at minimizing claustrophobia-related distress. To standardize the care of inpatients and enhance a safe time for the patient in PET-CT, it is highly desirable to collect, review, and access all of the aforementioned information prior to the patient’s arrival. Figure 15 shows an example of an inpatient criteria sheet that assists the PET-CT staff with determining if an inpatient can safely be transported and scanned:
Inpatient criteria sheet example
Once the PET-CT image data has been acquired and processed, a convenient, rapid, and reliable system must exist to archive the image data. The historical arc of image archiving has spanned from hard-copy radiographic film systems to present day systems that permit viewing digital soft-copies of PET-CT images in Picture Archiving and Communication Systems (PACS). In most radiology and medical imaging settings, PACS has emerged as the preferred archival strategy although there continues to be a diversity of images rendered in the varied hospital and imaging center environments across the United States and globally.
PACS has been configured to support the extensive tomographic image production which is the result of torso axial coverage in the typical PET-CT. This has been especially important as multi-detector CT associated with PET has advanced and resulted in thinner and increased number of slices. It is not unusual for the combined PET-CT image set to contain in excess of 2000 image slices that require rapid transfer to the PACS server and corresponding distribution to image review workstations. Image transfer rates and efficiency will be a function of the bandwidth available throughout the hospital or imaging system network. Rate of image transfer is central to availability of image data on centralized and remote workstations. System slow-downs will also impact the performance of the PET-CT acquisitions if the processed data cannot be rapidly transferred to the PACS. This phenomenon is both vendor and system topology dependant but best practices require that an entire study be transmitted in under 5 minutes for a busy PET-CT imaging center. Figure 16 graphically depicts the relationship between image data transfer rate and transfer time. There is a clear exponential relationship which is quickly realized within the imaging workflow because transfer rate and time delays can cause backlogs and impair overall PET-CT system performance.
Relationship between rate of image transfer and archival time:
Given the opportunity, PET-CT, medical informatics professions, and information technology professionals should begin to collaborate early in the process of configuring PET-CT operations. This working relationship has become an imperative as image acquisition and corresponding PET-CT report turn-around-time have become an important metric in quantifying standard-of-care. The shape and layout of the network and nodes (topology) should be considered both before and during the establishing of the PET-CT infrastructure. For large hospital systems with multiple sites and remote viewing requirements, having a scalable network with very high bandwidth and redundancies will be paramount. This becomes a complicated and expensive undertaking as network cabling, switches, servers, and all manner of information technology infrastructure will need to be considered, purchased, deployed, and maintained over the course of many years. Figure17 illustrates an example of the configuration of a typical PET-CT system topology and interconnectivity. A clear understanding of the connectivity, dependence, and relationship of both hardware and software items is vital to initial troubleshooting during system failure. Many issues such as physical disconnection between devices due to lose cabling or locating of devices requiring a reboot can be identified simply by knowing the system topology and understanding the interrelationship of system components.
Example PET-CT system topology
A consistent, reproducible, and accessible PACS workflow should be conceived and followed by the PET-CT staff who generate the images. In particular, it will be important to consider ancillary information that the radiologist requires to read the images and the accessibility of said materials [1, 38]. The PET-CT images are certainly the centerpiece of the exam but additional information such as pathology reports, consults, and imaging reports augment the interpretation process. There are three approaches to incorporating this information into the PACS workflow effectively. The first option will be to simply printout and provide the radiologist with any ancillary clinical information that will be used to render the report. This is the least desirable method because it involves a substantial shuffling of paper and usage of printer resources. However, many institutions still use the standard paper method because of the imaging culture of the institution. The 2nd option will be to forego any printing of documents and deliver these to the radiologist in a purely “paperless” or soft format. This will require a favorable and convenient adjacency of the Health Information System/Radiology Information System (HIS/RIS) to the PACS workstation. It also requires support staff to scan in any documents that are not native to the hospital or imaging center. The third option that occurs in highly integrated healthcare environments is a merger of PACS, HIS, & RIS all within the PACS environment. This requires maximum collaboration and cooperation of Radiology and Medical Informatics as well as appropriately planned monitor and screen real estate. In a well-planned and executed fully integrated PACS/HIS/RIS, the radiologist can readily navigate and among the aforementioned applications with minimal paper waste and stream lined workflow. Figure 18 shows a fully functional PACS/HIS/RIS configuration.
Fully-integrated PACS together with HIS & RIS. Note that full voice recognition transcription functionality has also been incorporated into the process for the most optimized report turn-around-time.
In addition to PACS-based image viewing systems, it is inevitably necessary to view PET-CT images in other venues where PACS may not be available. Given that all data is DICOM-based, the best solution is to obtain the images on a solid-state media such as compact disk (CD) or digital video disk (DVD) and upload the data to PACS for viewing. This option also has the advantage of being executed on the user’s computer regardless of bandwidth limitations.
Hospital or imaging centers with virtual private networking (VPN) capability may use file transfer protocol (FTP) as a means of securely and reliably transferring image data. With contemporary firewall systems, this often becomes a challenging undertaking fraught with information technology issues that will require an advanced user with administrative system access capabilities. Invariably, however, many institutions lack a full PACS or means of securely transmitting image data via ftp. This includes many surgical suites outside of the hospital or imaging center where the PET-CT originated, as well as community-based oncology groups, and virtually any location beyond the reach of native PACS. For such situations, the next best option for viewing images will be client-server based viewing capabilities. This will involve providing the remote user with a username and password to authenticate with the PACS server and then streaming data to the remote user’s monitor. The distinct disadvantage of this method is that almost no PC-based client server monitors possess the appropriate resolution inherent to a PACS monitor that has true DICOM gray scale standard rendering [50, 51].
There are instances in which PACS does not provide a desirable location for storage. This is particularly true in instances whereby raw data sets such as PET or CT sinograms must be stored. This situation will commonly occur and be an imperative for research protocols that require the original raw data to be available in perpetuity. Sending the PET and/or CT sinograms across the network from the modality to PACS invariably results in raw data corruption resulting either in transmission failure or unusable data. Offline storage devices such as Redundant Arrays of Independent Disks (RAID) or terabyte hard drives are viable solutions in these cases. The compatibility of these options must first be vetted with the PET-CT scanner vendor to ensure long-term stability and recoverability of the raw data. These systems do have the advantage of being scalable as additional disk space can be added both to RAID and other types of offline hard drive systems [1, 38, 40].
From PET’s primary research-oriented imaging in the 1970s and 1980s to contemporary PET-CT routinely used for oncology and neurology, PET continues to play an important role in the management of and characterization of a wide variety of disease processes. PET-CT as practiced today remains one of the most challenging and complex type of imaging studies performed in most hospital or imaging center environment. This derives largely from the integration of 2 somewhat divergent modalities along with the multifaceted diagnostic requirements of patients in oncology and neurology. An understanding of the acquisition, processing, and archiving of PET-CT data is central to sustaining a safe, patient-centered and high-quality PET-CT image product.
The author wishes to thank Dr. Paul Shreve and the staff of the Spectrum Health Lemmen Holton PET-CT Cancer Pavilion for their insight and support in writing this chapter.
UTI affects approximately 150 million people worldwide, which is most common infection with female predominance [1]. Around 15–25% hospitalized patients receiving indwelling urinary catheter develops CAUTI with prolonged catheterization and in among 40% nosocomial UTI, 80% is due to CAUTI [2]. CAUTI causes about 20% of episodes of health-care acquired bacteraemia in intensive care facilities and over 50% in long term care facilities [3]. The microbiology of biofilm on an indwelling catheter is dynamic with continuing turnover of organisms in the biofilm. Patients continue to acquire new organisms at a rate of about 3–7%/day. In long term catheterization that is by the end of 30 days CAUTI develops in 100% patients usually with 2 or more symptoms or clinical sign of haematuria, fever, suprapubic or loin pain, visible biofilm in character or catheter tube and acute confusion all state [4]. In CAUTI the incidence of infection is Escherichia coli in 24%, Candida in 24%, Enterococcus in 14% Pseudomonas in 10%, Klebsiella in 10% and remaining part with other organisms [5]. Bacteraemia occurs in 2–4% of CAUTI patients where case fatality is three times higher than nonbacteremic patients [6]. Adhesions in bacteria initiate attachment by recognizing host cell receptors on surfaces of host cell or catheter. Adhesins initiate adherence by overcoming the electrostatic repulsion observed between bacterial cell membranes and surfaces to allow intimate interactions to occur [7]. A biofilm is an aggregate of micro-organisms in which cells adhere to each other on a surface embedded within a self-produced matrix of extracellular polymeric substance [8]. In biofilm micro-organisms growing in colonies within an extra-cellular mucopolysaccharide substance which they produce. Tamm-Horsfall protein and magnesium and calcium ions are incorporated into this material. Immediately after catheter insertion, biofilm starts to form and organisms adhere to a conditioning film of host proteins along the catheter surface. Both the inner and outer surfaces of catheter are involved. In CAUTI biofilms are initially formed by one organism but in prolonged Catheterization multiple bacteria’s are present. In biofilm main mass is formed by extra cellular polymeric substance (EPS) within which organisms live. So there are three layers in biofilm, where deeper layer is abiotic, than environmental zone and on surface biotic zone [9]. Growth of bacteria in biofilms on the inner surface of catheters promotes encrustation and may protect bacteria from antimicrobial agents and the consequence is more drug resistance of biofilm organisms. When antibiotic treatment ends the biofilm can again shed bacteria, resulting recurrent acute infection. The patients may present as asymptomatic bacteriuria or symptomatic. In symptomatic bacteriuria patient present with fever, suprapubic or costovertebral angle tenderness, and systemic symptoms such as altered mentation, hypotension, or evidence of a systemic inflammatory response syndrome. In asymptomatic CAUTI diagnosis is made with presence of 105 cfu/mL of one bacterial species in a single catheter urine specimen [10]. In symptomatic CAUTI bacteriological criteria is present with clinical symptoms.
It is recommended that urine specimens be obtained through the catheter port using aseptic technique or, if a port is not present, puncturing the catheter tubing with a needle and syringe in patients with short term catheterization [11]. In long term indwelling catheterization, the ideal method of obtaining urine for culture is to replace the catheter and collect the specimen from the freshly placed catheter. In a symptomatic patient, this should be done immediately prior to initiating antimicrobial therapy. Culture specimens from the urine beg should not be obtained [10, 12]. Urine sample can be collected from suprapubic puncture also. Biofilm can be cultured from the catheter, for this swab is taken from inner side of catheter.
Catheter Associated Asymptomatic Bacteriuria (CA-ASB) is diagnosed when one or more organisms are present at quantitative counts ≥105 cfu/mL from an appropriately collected urine specimen in a patient with no symptoms [13]. Lower quantitative counts may be isolated from urine specimens prior to ≥105 cfu/mL being present, but these lower counts likely reflect the presence of organisms in biofilm forming along the catheter, rather than bladder bacteriuria [14]. Thus, it is recommended that the catheter be removed and a new catheter inserted, with specimen collection from the freshly placed catheter, before antimicrobial therapy is initiated for symptomatic infection [13]. In biofilm culture, most biofilm contains mixed bacterial communities meaning polymicrobial colonization.
Patients who remain catheterized without having antimicrobial therapy and who have colony counts ≥10 2 cfu/mL (or even lower colony counts), the level of bacteriuria or candiduria uniformly increases to >105 cfu/mL within 24–48 h [14]. Given that colony counts in bladder urine as low as 102 cfu/mL are associated with symptomatic UTI in non-catheterized patients [15], untreated catheterized patients and those who have colony counts ≥102 cfu/mL or even lower, the level of bacteriuria or candiduria uniformly increases to >105 cfu/mL within 24–48 h [10, 16]. Colony counts as low as 102 cfu/mL in bladder urine may be associated with symptomatic UTI in non-catheterized patients. Whereas low colony counts in catheter urine specimens are likely to be contaminated by periurethral flora, and the colony counts will increase rapidly if untreated. Low colony counts in catheter urine specimens are also reflective of significant bacteriuria in patients with intermittent catheterization [14].
Pyuria is usually present in CA-UTI, as well as in CA-ASB. The sensitivity of pyuria for detecting infections due to enterococci or yeasts appears to be lower than that for gram-negative bacilli. Dipstick testing for nitrites and leukocyte esterase was also shown to be unhelpful in establishing a diagnosis in catheterized patients hospitalized in the ICU [17].
It is the most common cause of CAUTI in 24–60% patients [5, 18]. In CAUTI the source of this organism is usually patients own colonic flora. E. coli is large and diverse group of bacteria found in environment, foods and intestine of human and animal. Among many species of E. coli only a few causes disease in human being. It is beneficial in that it prevents the growth and proliferation of other harmful species of bacteria. Even it plays an important role in current biological engineering.
E. coli was discovered in 1885 by Theodor Escherich, German bacteriologist, is gram negative rod, lactose fermenter, composed of one circular chromosome which is common facultative anaerobes in colon and farces of human. Distribution is diverse and most of them are harmless belonging to genus Escherichia. Harmful species causes infection of urinary tract, gastrointestinal tract, respiratory system and rarely bacteraemia and septicemia. Phylogenetic analysis of E. coli showed majority of the strains responsible for UTI belongs to the phylogenetic group B2 and D, while in smaller percentage belong to A and B1 [19].
It has three antigens O-cell was antigen, H- flagella antigen and k- Capsular antigen. It has pili—a capsule, fimbriae, endotoxins and exotoxins also. Uropathogenic E. coli use P fimbriae (pyelonephritis-associated pili) to bind urinary tract endothelial cells. Vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae and around 73% in E. coli causing CAUTI [20]. In UPEC fimbrial genes are ygiL, yadN, yfcV, and c2395 [21]. Pathogenesis of CAUTI initiated with UPEC colonization in periurethral and vaginal areas. Then it ascends to bladder lumen and grows as planktonic cells in urine. Sequentially adherence to bladder epithelium, then biofilm formation and invasion with replication and kidney colonization and finally bacteremia [22] (Figure 1).
Gram stain picture and morphology of E. coli. Adapted from CCBC faculty web. BIOL 230 Lab Manual: gram stain of E. coli and infection landscapes: Escherichia coli. http://faculty.ccbcmd.edu/courses/bio141/labmanua/lab16/gramstain/gnrod.html.
Diagnosis of E. coli infection is simple, by isolation and laboratory identification of bacterium from urine or biofilm. Laboratory diagnosis by culture of specimen—urine or catheter biofilm in blood agar, MacConkey’s agar or eosin-methylene blue agar (which reveal lactose fermentation). Immunomagnetic separation and specific ELISA, latex agglutination tests, colony immunoblot assays, and other immunological-based detection methods are other ways for diagnosis of E. coli.
Proteus species, member of the Enterobacteriaceae family of gram-negative bacilli are distinguishable from most other genera by their ability to swarm across an agar surface [23, 24]. Proteus species are most widely distributed in environment and as other enterobacteriaceae, this bacteria is part of intestinal flora of human being [25, 26]. Proteus also found in multiple environmental habitats, including long-term care facilities and hospitals. In hospital setting, it is not unusual for proteus species to colonize both the skin and mucosa of hospitalized patient and causing opportunistic nosocomial infections. It is one of the common causes of UTI in hospitalized patients undergoing urinary catheterization [26, 27].
UTIs are the most common manifestation of Proteus infection. Proteus infection accounts for 1–2% of UTIs in healthy women and 5% of hospital acquired UTIs. Catheters associated UTI have a prevalence of 20–45%. Proteus mirabilis causes 90% of proteus infection and proteus vulgaris and proteus penneri also isolated from long-term care facilities and hospital and from patients with underlying disease or specialized care. Most common age group is 20–50 years. More common in female group and the ratio between male female begins to decline after 50 years. UTI in men younger than 50 are usually caused by urologic abnormalities. Patients with recurrent infections, those with structural abnormalities of the urinary tract, those who have had urethral instrumentation or catheterization have an increase frequency of infection caused by proteus species [28].
Proteus mirabilis produces an acidic capsular polysaccharide which was shown from glycose analysis, carboxyl reduction, methylation, periodate oxidation and the application high resolution nuclear magnetic resonance techniques. Proteus species possess an extracytoplasmic outer membrane, a common feature shared with other gram-negative bacteria. Infection depends upon the interacting organism and the host defense mechanism. Various component of the membrane interplay with the host to determine virulence. Virulence factors associated with adhesion, motility, biofilm formation, immunoavoidance, nutrient acquisition and as well as factors that cause damage to the host [29, 30] (Figure 2).
Gram stain picture and morphology of Proteus. Adapted from CCBC faculty web. BIOL 230 Lab Manual: gram stain of Proteus mirabilis and Proteus vulgaris bacteria (SEM) | Macro & Micro: Up Close and Personal | Pinterest | Microbiology, Bacteria shapes and Fungi. https://www.pinterest.com › pin.
Certain virulence factors such as adhesin, motility and biofilm formation have been identified in Proteus species that has a positive correlation with risk of infection. After attachment of Proteus with urothelial cells, interleukin 6 and interleukin 8 secreted from the urothelial cells causes apoptosis and mucosal endothelial cell desquamation. Urease production of proteus also augments the risk of UTI. Urease production, together with the presence of bacterial motility and fimbriae or pili, as well as adhesins anchored directly within bacterial cell membrane may favor the upper urinary tract infection. Once firmly attached on the uroepithelium or catheter surface, bacteria begin to phenotypically change, producing exopolysaccharides that entrap and protect bacteria. These attached bacteria replicate and form microcolonies that eventually mature into biofilms [31, 32]. Once established, biofilms inherently protect uropathogens from antibiotic and the host immune response [33, 34]. Proteus mirabilis as with other uropathogens is capable of adapting to the urinary tract environment and acquiring nutrients. And this is accomplished by the production of degradative enzymes such urease and proteases, toxins such as Haemolysin Hpm A and iron nutrient acquisition proteins.
The infection with Proteus can be diagnosed by taking a urine sample for microscopy and culture which is sufficient in most of the cases except in few cases where advanced diagnostic tools are used. If the urine is alkaline, it is suggestive of infection with Proteus sp. The diagnosis of Proteus is made on swarming motility on media, unable to metabolized lactose and has a distinct fishy door. Ultrasound or CT scan to identify renal stone (Struvite stone) or to visualized kidneys or surrounding structures. It will allow to exclude other possible problems, mimicking symptoms of urinary tract infection [35, 36].
Pseudomonas is a gram-negative bacteria belonging to the family Pseudomonadaceae and containing 191 validly described species [37]. Because of their widespread occurrence in water and plant seeds, the pseudomonas was observed in early history of microbiology. Pseudomonas is flagellated, motile, aerobic organism with Catalase and oxidase-positive. Pseudomonas may be the most common nuclear or of ice crystals in clouds, thereby being of utmost importance to the formation of snow and rain around the world [38]. All species of Pseudomonas are strict aerobes, and a significant number of organisms can produce exopolysaccharides associated with biofilm formation [39]. Pseudomonas is an opportunistic human pathogen that is especially adept at forming surface associated biofilms. Pseudomonas causes catheter associated urinary tract infection(CAUTIs) through biofilm formation on the surface of indwelling catheters, and biofilm mediated infection including ventilator associated pneumonia, infections related to mechanical heart valves, stents, grafts, sutures, and contract lens associated corneal infection [40].
Pseudomonas is third ranking causes nosocomial UTI about 12%, where E. coli remain on the top [41]. CAUTI is directly associated with duration of catheterization. Within 2–4 days of catheterization 15–25% patients develop bacteriuria [42].
Pseudomonas aeruginosa is a gram-negative, rod shaped, asporogenous and monoflagellated, noncapsular bacterium but many strains have a mucoid slime layer. Pseudomonas has an incredible nutritional versatility. Pseudomonas can catabolize a wide range of organic molecule including organic compounds such as benzoate. This, then make Pseudomonas a very ubiquitous microorganism and Pseudomonas is the most abundant organism on earth [43] (Figure 3).
Gram stain picture and morphology of Pseudomonas aeroginosa. Adapted from Science News. A new antibiotic uses sneaky tactics to kill drug-resistant Pseudomonas aeruginosa illustration and Pseudomonas Aeruginosa Stock Photos & Pseudomonas Aeruginosa Stock Images—Alams. https://www.alamy.com › stock-photo.
Pseudomonas is widely distributed in nature and is commonly present in moist environment of hospitals. It is pathogenic only when introduce into areas devoid of normal defense such as disruption of mucous membrane and skin, usage of intravenous or urinary catheters and neutropenia due to cancer or in cancer therapy. Its pathogenic activity depends on its antigenic structure, enzymes and toxins [44]. Among the enzymes Catalase, Pyocyanin, Proteases, elastase, haemolysin, Phospholipase C, exoenzyme S and T and endotoxin and endotoxin A play role in disease process and as well as immunosuppression. Pseudomonas can infect almost any organ or external site. Pseudomonas in invasive and toxigenic. It attached to and colonized the mucous membrane of skin. Pseudomonas can invade locally to produce systemic disease and septicemia. Pseudomonal UTs are usually hospital acquired and are associated with catheterization, instrumentation and surgery. These infections can involve the urinary tract through an ascending infection or through bacteriuria spread. These UTIs may be a source of bacteraemia or septicemia [45].
Identification of bacterium with microscopy is simple method of identification of pseudomonas. Culture and antibiotic sensitivity pattern can be done in most laboratory media commonly on blood agar or eosin-methylthionine blue agar. Pseudomonas has inability to ferment lactose and has a positive oxidase reaction. Fluorescence under UV light is helpful in early identification of colonies. Fluorescence is also used to suggest the presence of pseudomonas in wounds [46].
Urinary catheters are standard medical devices utilized in both hospital and nursing home settings are associated with a high frequency of catheter-associated urinary tract infections (CAUTI). The contribution of Klebsiella spp. in CAUTI is near about 7.7% [47].
Klebsiella pneumoniae is a gram-negative pathogenic bacterium, is part of the Enterobacteriaceae family. It has got polysaccharide capsule attached to the bacterial outer membrane, and it ferments lactose. Klebsiella species are found ubiquitously in nature, including in plants, animals, and humans. They are the causative agent of several types of infections in humans. It has a large accessory genome of plasmids and chromosomal gene loci. This accessory genome divides K. pneumoniae strains into opportunistic, hyper virulent, and multidrug-resistant groups [48] (Figure 4).
Gram stain picture and morphology of Klebsiella pneumonie. Adapted from studyblue.com. Microbio Lab Practical I—Microbiology 101 with Johnson at University of Vermont—StudyBlue. Study 368 Microbio Lab Practical I flashcards from Tess H. on StudyBlue and Klebsiella Pneumoniae Stock Photos and Pictures. Getty Images https://www.gettyimages.com › photos.
The source of Klebsiella causing CAUTI can be endogenous typically via meatal, rectal, or vaginal colonization or exogenous, such as via equipment or contaminated hands of healthcare personnel. They typically migrate along the outer surface of the indwelling urethral catheter, until they enter the urethra.
Migration of the Klebsiella along the inner surface of the indwelling urethral catheter occurs much less frequently, compared with along the outer surface Internal (intraluminal) bacterial ascension occurs by Klebsiella tend to be introduced when opening the otherwise closed urinary drainage system, ascend from the urine collection bag into the bladder via reflux, biofilm formation occurs.
A critical step in progression to CAUTI by Klebsiella is to adhere to host surfaces, which is frequently achieved using pili (fimbriae) [49]. Pili are filamentous structures extending from the surface of Klebsiella. They can be as long as 10 μm and between 1 and 11 nm in diameter. Among the two types of pili—type 1 (fim) pili and type 3 (mrk) pili, type 1 aids virulence by their ability to adhere with mucosal surfaces and type 3 pili strongly associated with biofilm production [50]. Both fim and mrk pili are considered part of the core genome [51]. It is thought that both types of pili play a role in colonization of urinary catheters, leading to CAUTI [52]. In addition to fim and mrk pili, a number of additional usher-type pili have been identified in Klebsiella with an average of ~8 pili clusters per strain. Based on varying gene frequencies, some of these appear to be part of the accessory genome. Immediately after catheterization Klebsiella starts biofilm production on the inner as well as outer surface of the catheter and on urothelium. Biofilm augments migration of Klebsiella into urethra and urinary bladder. Biofilm formation on the catheter surface by Klebsiella pneumoniae causes severe problem. Type 1 and type 3 fimbriae expressed by K. pneumoniae enhance biofilm formation on urinary catheters in a catheterized bladder model that mirrors the physicochemical conditions present in catheterized patients. These two fimbrial types does not is expressed when cells are grown planktonically. Interestingly, during biofilm formation on catheters, both fimbrial types are expressed, suggesting that they are both important in promoting biofilm formation on catheters [53]. The biofilm life cycle illustrated in three steps: initial attachment events with inert surfaces type 1 and type 3 fimbriae encoded by the mrk ABCDF gene cluster within K. pneumoniae promotes biofilm formation [54, 55]. Detachment events by clumps of Klebsiella or by a ‘swarming’ phenomenon within the interior of bacterial clusters, resulting in so-called ‘seeding dispersal’.
Modifiable risk factor are prolonged catheterization, lack of adherence to aseptic catheter care, insertion of the indwelling urethral catheter in a location other than an operating room, presence of a urethral stent, feecal incontinence. Non-modifiable risk factor—renal disease (i.e., serum creatinine >2 mg/dL), diabetes mellitus, older age (i.e., age > 50 years old), female sex, malnutrition and severe underlying illness [53]. For infection several virulence factors such as surface factors (fimbriae, adhesins, and P and type 1 pili) and extracellular factors toxins, siderophores, enzymes, and polysaccharide coatings are necessary for initial adhesion with colonization of host mucosal surfaces for tissue invasion overcoming the host defense mechanisms, and causing chronic infections [55].
Diagnosis of klebsiella infection is by isolation and laboratory identification of bacterium from urine or biofilm. Laboratory diagnosis can be done by culture of specimen—urine or catheter biofilm in blood agar, MacConkey’s agar. Specific ELISA, latex agglutination tests, PCR and other immunological-based detection methods are sophisticated alternatives for diagnosis of klebsiella. Determination of a gene on capsule of Klebsiella is rapid and simple method for the determination of the K types of most K. pneumoniae clinical isolates [56].
Enterobacter species, particularly Enterobacter cloacae and Enterobacter aerogenes, are important nosocomial pathogens responsible for about 1.9–9% CAUTI, rarely causes bacteremia [57, 58]. Enterobacter cloacae exhibited the highest biofilm production (87.5%) among isolated pathogens [53].
Enterobacter bacteria are motile, rod-shaped cells, facultative anaerobic, non-spore-forming, some of which are encapsulated belonging to the family Enterobacteriaceae. They are important opportunistic and multi-resistant bacterial pathogens. As facultative anaerobes, some Enterobacter bacteria ferment both glucose and lactose as a carbon source, presence of ornithine decarboxylase (ODC) activity and the lack of urease activity. In biofilms they secrete various cytotoxins (enterotoxins, hemolysins, pore-forming toxins. Though it is microflora in the intestine of humans, it is pathogens in plants and insects. Amp C β-lactamase production by E. cloacae is responsible for cephalosporin resistance. They possess peritrichous, amphitrichous, lophotrichous, polar flagella. E. aerogenes flagellar genes and its assembly system have been acquired in bloc from the Serratia genus [59] (Figure 5).
Gram stain picture and morphology of Enterobacter species. Adapted from Gram Stain Kit | Microorganism Stain | abcam.comAdwww.abcam.com/ and Science Prof Online. Gram-negative Bacteria Images: photos of Escherichia coli, Salmonella & Enterobacter and Enterobacter aerogenes | Gram-negative microorganism—HPV Decontamination | Hydrogen Peroxide Vapour—Bioquellhealthcare.bioquell.com › microbiology.
The most important test to document Enterobacter infections is culture. Direct gram staining of the specimen is also useful. In the laboratory, growth of Enterobacter isolates is occurs in 24 h or less; Enterobacter species grow rapidly on selective (i.e., MacConkey) and nonselective (i.e., sheep blood) agars.
Enterococci are gram-positive facultative anaerobic cocci, two species are common commensal organisms in the intestines of humans: Enterococcus faecalis (90–95%) and Enterococcus faecium (5–10%) [60]. Though normally a gut commensal, these organisms are commonly responsible for nosocomial infection of urinary tract, biliary tract and blood, particularly in intensive care units (ICU) [61]. E. coli is usually the most frequent species isolated from bacteremic catheter associated urinary tract infections (CAUTI). However, Enterococcus spp. (28.4%) and Candida spp. (19.7%) were also reported to be most common [62]. In another study, E. coli was found the commonest (36%) followed by Enterococcus spp. (25%), Klebsiella species (20%) and Pseudomonas spp. (5%) [63].
The most important cause of bacteriuria is the formation of biofilm along the catheter surface [64]. Enterococcus is gram positive bacteria often found in pairs or short chains. Broadly, Enterococcus is in two groups—faecalis and non-faecalis (E. gallinarum and E. casseliflavus). Enterococcus faecalis formerly classified as part of the group D Streptococcus is a gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans and other mammals, survive harsh environmental conditions including drying, high temperatures, and exposure to some antiseptics [65]. E. faecalis has the important characteristics of complex set of biochemical reactions, including fermentation of carbohydrates, hydrolysis of arginine, tolerance to tellurite, and motility and pigmentation. Presence of the catheter itself is essential for E. faecalis persistence in the bladder, E. faecalis depends on the catheter implant for persistence via an unknown mechanism that more than likely involves its ability to produce biofilms on the silicone tubing and immune-suppression [66].
E. faecalis produce a heteropolymeric extracellular hair-like fimbrial structure called the endocarditis- and biofilm-associated pilus-Ebp, having three components the organelle (EbpC), a minor subunit that forms the base of the structure (EbpB) and a tip-located adhesin (EbpA) [67]. EbpA is responsible for adhesion in urothelial and catheter surface for biofilm production (Figure 6).
Morphology of Enterococcus. Adapted from Science Photo Library/Alamy Stock Photo Image ID: F6YBC3.
Urine sample and biofilm microscopy can identify this gram positive organism. Culture yields the growth of E. faecalis in appropriate media. Advanced diagnostic methods like immunological-based detection methods and PCR are rarely needed for diagnosis.
One of the common causes of catheter associated urinary tract infection is fungal infection. Bacterial infections are accounted for 70.9% of catheter associated urinary infection. E. coli is the most commonly isolated organism (41.6%) whereas fungal infections are accounted for 16.6% and mixed fungal and bacterial infections accounted for 12.5% [68]. The National nosocomial infections surveillance (NNIS) data indicated that C. albicans caused 21% of catheter-associated urinary tract infections, in contrast to 13% of non-catheter-associated infections [69]. In one study 24% of the cases showing fungal yeast growth. Candida spp. was the commonest. Non-albicans Candida (86%) isolated more commonly than Candida albicans (14%) [70]. Candida are commensals, and to be pathogenic, interruption of normal host defenses is crucial which is facilitated in conditions like immunocompromised states as AIDS, diabetes mellitus, prolonged broad spectrum antibiotic use, indwelling devices, intravenous drug use and hyperalimentation fluids [71]. Diabetes mellitus has been reported as the most common risk factor for fungal infection [72, 73]. The duration of catheterization is also an important risk factor as the duration increases the incidence of fungal infection is increased [74].
Candida albicans is an oval, budding yeast, which is a member of the normal flora of mucocutaneous membrane. Twenty species of Candida yeasts can cause in human infection but most common is Candida albicans. Sometimes it can gain predominance and can produce disease. Other candida species that can cause disease occasionally are Candida parapsilosis, Candida tropicalis and Candida krusei [75]. Although Candida albicans are common isolates in CAUTI, Candida tropicalis is increasingly reported in CAUTI [76]. The majority of Candida albicans infections are associated with biofilm formation on host or abiotic surfaces such as indwelling medical devices, which carry high morbidity and mortality [63, 77]. Several factors and activities contribute to the pathogenesis of this fungus which mediate adhesion to and invasion into host cells, which are in sequences are the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes [78] (Figure 7).
Morphology of Candida albicans. Adapted from biomedik8888, Aug 24, 2011. http://www.BioMedik.com.au3.
Urine and materials removed from catheter are needed. Microscopic examinations of gram-stained specimen showed pseudohyphae and budding cells. Culture on Sabouraud’s agar at room temperature and at 37°C showed typical colonies and budding pseudomycelia [79].
It is facultative anaerobic bacilli gram-negative rod of Enterobacteriaceae family considered opportunistic human pathogen but not a component of human facial flora. It is capable of producing a pigment called prodigiosin, which ranges in color from dark red to pale pink. It is ubiquitously spent in nature and has preference for damp conditions. Though previously known as nonpathogenic, but since 1970s it is associated with multi drug resistant infection due to presence of R factor—a plasmid. A study in Japan showed 6.8% incidence of UTI with this organism [80]. It also causes bacteraemia rarely. Diagnosis is confirmed by culture of the urine specimen or catheter biofilm. Automated bacterial identification systems and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is the other modality for diagnosis of serratia as well as other enterobacteriaceae [81].
This non-fermentative gram-negative rod discovered as plant growth-promoting bacterium and potential biocontrol agent against plant pathogens. Infection with this uncommon organism in CAUTI occurs in combination with commonest bacteria E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. D. tsuruhatensis and E. coli coexist and tend to co-aggregate over time and also cooperate synergistically [82]. D. tsuruhatensis metabolized citric acid more rapidly leaving more uric acid available in the medium to be used by E. coli for dynamic growth of both organisms. Identification of this organism is not confirmatory with culture, so molecular methods are more reliable [83].
Achromobacter denitrificans is gram negative bacterium formerly known as Alcaligenes denitrificans. Infection with this organism predominantly observed in elderly patients with predisposing factors as urological abnormalities, malignancies and immune-suppression. Rarely it causes bacteraemia. This bacterium has high level of antibiotic resistance [84].
In polymicrobial biofilm, Achromobacter xylosoxidans cohabits with common organisms E. coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Diagnosis is by bacterial culture and molecular methods.
Staphylococci (methicillin-sensitive Staphylococcus aureus [MSSA] and methicillin-resistant S. aureus [MRSA], Staphylococcus saprophyticus. These are the common gram positive bacteria usually responsible for skin and soft tissue infections but rarely cause CAUTI and bacteraemia [85].
The incidence of Staphylococcal UTI as well as CAUTI is increasing and the organisms carry wide variety of multidrug-resistant genes on plasmids, which augment spread of resistance among other species [86].
Diagnosis is easy, gram stain of the sample, culture is sufficient. Advanced techniques rarely needed (Figure 8).
Morphology of Staphylococcus aureus. Adapted from abcam.comAdwww.abcam.com/ pharmacist-driven intervention improves care of patients with S aureus Bacteremia/Staph aureus. Nebraska Medicine https://asap.nebraskamed.com.
CAUTI is one of the most nosocomial Infection worldwide resulting from rational as well as sometimes irrational use of indwelling urinary catheter. Cause of CAUTI is formation of pathogenic biofilm commonly due to UPEC, Proteus, Klebsiella, Pseudomonas, Enterobacter rarely Candida and other uncommon opportunistic organisms. CAUTI has got high impact on morbidity and mortality as biofilm producing organisms are more antibiotic resistant. Antibiotic resistance is a global problem. Early detection of CAUTI is simple by examination of urine and catheter biofilm with microscopy as well as culture with antibiogram. It is easy and cost effective with early diagnosis and treatment for good clinical outcome. Advanced and sophisticated methods like Immunomagnetic separation, specific ELISA, colony immunoblot assays and PCR for diagnosis of CAUTI is seldom necessary.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10704",title:"Cardiac Arrhythmias - Translational Approach from Pathophysiology to Advanced Care",subtitle:null,isOpenForSubmission:!0,hash:"0e5d67464d929fda6d8c83ec20c4138a",slug:null,bookSignature:"Dr. Endre Zima",coverURL:"https://cdn.intechopen.com/books/images_new/10704.jpg",editedByType:null,editors:[{id:"201263",title:"Dr.",name:"Endre",surname:"Zima",slug:"endre-zima",fullName:"Endre Zima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10705",title:"Healthcare Access",subtitle:null,isOpenForSubmission:!0,hash:"e8e9561a91e5f7771932aa5d49c3b687",slug:null,bookSignature:"Prof. Amit Agrawal and Dr. Srinivas Kosgi",coverURL:"https://cdn.intechopen.com/books/images_new/10705.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10706",title:"Fighting the COVID-19 Pandemic",subtitle:null,isOpenForSubmission:!0,hash:"1a5246f0b6ba4f0e9ad1fbfa4134c598",slug:null,bookSignature:"Dr. Manal Mohammad Baddour",coverURL:"https://cdn.intechopen.com/books/images_new/10706.jpg",editedByType:null,editors:[{id:"174598",title:"Dr.",name:"Manal Mohammad",surname:"Baddour",slug:"manal-mohammad-baddour",fullName:"Manal Mohammad Baddour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Care",subtitle:null,isOpenForSubmission:!0,hash:"bdb1aeb61b1eb116c1bdb09d25593686",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!0,hash:"264f7f37033b4867cace7912287fccaa",slug:null,bookSignature:"Prof. Víctor M. Whizar-Lugo and Dr. José Ramón Saucillo-Osuna",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:null,editors:[{id:"169249",title:"Prof.",name:"Víctor M.",surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10710",title:"Recent Advances in the Treatment of Orofacial Clefts",subtitle:null,isOpenForSubmission:!0,hash:"ec438b5e4be44dc63870c1ace6a56ed2",slug:null,bookSignature:"Dr. Marcos Roberto Tovani Palone",coverURL:"https://cdn.intechopen.com/books/images_new/10710.jpg",editedByType:null,editors:[{id:"221178",title:"Dr.",name:"Marcos Roberto",surname:"Tovani Palone",slug:"marcos-roberto-tovani-palone",fullName:"Marcos Roberto Tovani Palone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!0,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:null,bookSignature:"M.D. Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:null,editors:[{id:"235976",title:"M.D.",name:"Carlos",surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:51},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1410",title:"Viticulture",slug:"agricultural-and-biological-sciences-viticulture",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:2,numberOfAuthorsAndEditors:122,numberOfWosCitations:38,numberOfCrossrefCitations:26,numberOfDimensionsCitations:61,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-and-biological-sciences-viticulture",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8054",title:"Advances in Grape and Wine Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"f6b9b3b3d887ed9e7c0ad09cb07edf2b",slug:"advances-in-grape-and-wine-biotechnology",bookSignature:"Antonio Morata and Iris Loira",coverURL:"https://cdn.intechopen.com/books/images_new/8054.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6077",title:"Grapes and Wines",subtitle:"Advances in Production, Processing, Analysis and Valorization",isOpenForSubmission:!1,hash:"61fe601d66e441800c8ed9503f86280f",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",bookSignature:"António Manuel Jordão and Fernanda Cosme",coverURL:"https://cdn.intechopen.com/books/images_new/6077.jpg",editedByType:"Edited by",editors:[{id:"186821",title:"Dr.",name:"António",middleName:null,surname:"M. Jordão",slug:"antonio-m.-jordao",fullName:"António M. Jordão"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"58633",doi:"10.5772/intechopen.72800",title:"The Evolution of Polyphenols from Grapes to Wines",slug:"the-evolution-of-polyphenols-from-grapes-to-wines",totalDownloads:1328,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Violeta-Carolina Niculescu, Nadia Paun and Roxana-Elena Ionete",authors:[{id:"187102",title:"Dr.",name:"Roxana",middleName:null,surname:"Ionete",slug:"roxana-ionete",fullName:"Roxana Ionete"},{id:"206056",title:"Dr.",name:"Violeta",middleName:"Carolina",surname:"Niculescu",slug:"violeta-niculescu",fullName:"Violeta Niculescu"},{id:"207020",title:"Mrs.",name:"Nadia",middleName:null,surname:"Paun",slug:"nadia-paun",fullName:"Nadia Paun"}]},{id:"59216",doi:"10.5772/intechopen.73132",title:"Potential for Use of the Residues of the Wine Industry in Human Nutrition and as Agricultural Input",slug:"potential-for-use-of-the-residues-of-the-wine-industry-in-human-nutrition-and-as-agricultural-input",totalDownloads:945,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Renato Vasconcelos Botelho, Gabriela Datsch Bennemann,\nYohandra Reyes Torres and Alessandro Jefferson Sato",authors:[{id:"64335",title:"Prof.",name:"Renato",middleName:"Vasconcelos",surname:"Botelho",slug:"renato-botelho",fullName:"Renato Botelho"},{id:"208714",title:"MSc.",name:"Gabriela",middleName:null,surname:"Datsch Bennemann",slug:"gabriela-datsch-bennemann",fullName:"Gabriela Datsch Bennemann"},{id:"208715",title:"Dr.",name:"Yohandra",middleName:null,surname:"Reyes Torres",slug:"yohandra-reyes-torres",fullName:"Yohandra Reyes Torres"},{id:"208716",title:"Dr.",name:"Alessandro Jefferson",middleName:null,surname:"Sato",slug:"alessandro-jefferson-sato",fullName:"Alessandro Jefferson Sato"}]},{id:"57946",doi:"10.5772/intechopen.71627",title:"Microbiological, Physical, and Chemical Procedures to Elaborate High-Quality SO2-Free Wines",slug:"microbiological-physical-and-chemical-procedures-to-elaborate-high-quality-so2-free-wines",totalDownloads:1088,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Raúl Ferrer-Gallego, Miquel Puxeu, Laura Martín, Enric Nart, Claudio\nHidalgo and Imma Andorrà",authors:[{id:"207221",title:"Dr.",name:"Raúl",middleName:null,surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"},{id:"208597",title:"Dr.",name:"Miquel",middleName:null,surname:"Puxeu",slug:"miquel-puxeu",fullName:"Miquel Puxeu"},{id:"208598",title:"Dr.",name:"Laura",middleName:null,surname:"Martín",slug:"laura-martin",fullName:"Laura Martín"},{id:"208599",title:"Mr.",name:"Enric",middleName:null,surname:"Nart",slug:"enric-nart",fullName:"Enric Nart"},{id:"208600",title:"Dr.",name:"Claudio",middleName:null,surname:"Hidalgo",slug:"claudio-hidalgo",fullName:"Claudio Hidalgo"},{id:"208601",title:"Dr.",name:"Imma",middleName:null,surname:"Andorrà",slug:"imma-andorra",fullName:"Imma Andorrà"}]}],mostDownloadedChaptersLast30Days:[{id:"58638",title:"Occurrence and Analysis of Sulfur Compounds in Wine",slug:"occurrence-and-analysis-of-sulfur-compounds-in-wine",totalDownloads:1193,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Daniela Fracassetti and Ileana Vigentini",authors:[{id:"207271",title:"Dr.",name:"Daniela",middleName:null,surname:"Fracassetti",slug:"daniela-fracassetti",fullName:"Daniela Fracassetti"},{id:"220967",title:"Dr.",name:"Ileana",middleName:null,surname:"Vigentini",slug:"ileana-vigentini",fullName:"Ileana Vigentini"}]},{id:"57041",title:"Fingerprints of Anthocyanins and Flavonols in Wild Grapes (Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi)",slug:"fingerprints-of-anthocyanins-and-flavonols-in-wild-grapes-vitis-vinifera-l-ssp-sylvestris-gmelin-heg",totalDownloads:924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Eugenio Revilla, Rosa Arroyo-Garcia, Alberto Bellido, David\nCarrasco, Anna Puig and Leonor Ruiz-Garcia",authors:[{id:"154744",title:"Dr.",name:"Rosa Adela",middleName:null,surname:"Arroyo-Garcia",slug:"rosa-adela-arroyo-garcia",fullName:"Rosa Adela Arroyo-Garcia"},{id:"207857",title:"Prof.",name:"Eugenio",middleName:null,surname:"Revilla",slug:"eugenio-revilla",fullName:"Eugenio Revilla"},{id:"207926",title:"Dr.",name:"Alberto",middleName:null,surname:"Bellido",slug:"alberto-bellido",fullName:"Alberto Bellido"},{id:"207927",title:"Dr.",name:"Davis",middleName:null,surname:"Carrasco",slug:"davis-carrasco",fullName:"Davis Carrasco"},{id:"207928",title:"Dr.",name:"Anna",middleName:null,surname:"Puig",slug:"anna-puig",fullName:"Anna Puig"},{id:"207929",title:"Dr.",name:"Leonor",middleName:null,surname:"Ruiz",slug:"leonor-ruiz",fullName:"Leonor Ruiz"}]},{id:"58633",title:"The Evolution of Polyphenols from Grapes to Wines",slug:"the-evolution-of-polyphenols-from-grapes-to-wines",totalDownloads:1326,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Violeta-Carolina Niculescu, Nadia Paun and Roxana-Elena Ionete",authors:[{id:"187102",title:"Dr.",name:"Roxana",middleName:null,surname:"Ionete",slug:"roxana-ionete",fullName:"Roxana Ionete"},{id:"206056",title:"Dr.",name:"Violeta",middleName:"Carolina",surname:"Niculescu",slug:"violeta-niculescu",fullName:"Violeta Niculescu"},{id:"207020",title:"Mrs.",name:"Nadia",middleName:null,surname:"Paun",slug:"nadia-paun",fullName:"Nadia Paun"}]},{id:"67039",title:"The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics",slug:"the-microvine-a-versatile-plant-model-to-boost-grapevine-studies-in-physiology-and-genetics",totalDownloads:583,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Anne Pellegrino, Charles Romieu, Markus Rienth and Laurent Torregrosa",authors:[{id:"284414",title:"Prof.",name:"Laurent",middleName:null,surname:"Torregrosa",slug:"laurent-torregrosa",fullName:"Laurent Torregrosa"},{id:"285872",title:"Dr.",name:"Charles",middleName:null,surname:"Romieu",slug:"charles-romieu",fullName:"Charles Romieu"},{id:"285873",title:"Dr.",name:"Anne",middleName:null,surname:"Pellegrino",slug:"anne-pellegrino",fullName:"Anne Pellegrino"},{id:"298280",title:"Dr.",name:"Markus",middleName:null,surname:"Rienth",slug:"markus-rienth",fullName:"Markus Rienth"}]},{id:"59187",title:"Grapevine Trunk Diseases (GTDs): Impact on Table Grapes and Wine Vineyards in Chile",slug:"grapevine-trunk-diseases-gtds-impact-on-table-grapes-and-wine-vineyards-in-chile",totalDownloads:930,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Ximena Besoain",authors:[{id:"207574",title:"Prof.",name:"Ximena",middleName:null,surname:"Besoain",slug:"ximena-besoain",fullName:"Ximena Besoain"}]},{id:"58458",title:"Water Balance Indices for Tropical Wine Grapes",slug:"water-balance-indices-for-tropical-wine-grapes",totalDownloads:748,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Antônio Heriberto de Castro Teixeira, Jorge Tonietto and Janice F.\nLeivas",authors:[{id:"212840",title:"Dr.",name:"Antônio",middleName:null,surname:"Teixeira",slug:"antonio-teixeira",fullName:"Antônio Teixeira"},{id:"212843",title:"Dr.",name:"Jorge",middleName:null,surname:"Tonietto",slug:"jorge-tonietto",fullName:"Jorge Tonietto"},{id:"213180",title:"Dr.",name:"Janice",middleName:null,surname:"Leivas",slug:"janice-leivas",fullName:"Janice Leivas"}]},{id:"67760",title:"Production and Marketing of Low-Alcohol Wine",slug:"production-and-marketing-of-low-alcohol-wine",totalDownloads:735,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Tamara Bucher, Kristine Deroover and Creina Stockley",authors:[{id:"289140",title:"Dr.",name:"Creina",middleName:null,surname:"Stockley",slug:"creina-stockley",fullName:"Creina Stockley"},{id:"289141",title:"Dr.",name:"Tamara",middleName:null,surname:"Bucher",slug:"tamara-bucher",fullName:"Tamara Bucher"},{id:"289142",title:"Ms.",name:"Kristine",middleName:null,surname:"Deroover",slug:"kristine-deroover",fullName:"Kristine Deroover"}]},{id:"57206",title:"Viticulture in Warmer Climates: Mitigating Environmental Stress in Douro Region, Portugal",slug:"viticulture-in-warmer-climates-mitigating-environmental-stress-in-douro-region-portugal",totalDownloads:1967,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Manuel Oliveira",authors:[{id:"181227",title:"Dr.",name:"Manuel",middleName:"T.",surname:"Oliveira",slug:"manuel-oliveira",fullName:"Manuel Oliveira"}]},{id:"58589",title:"Convenience of Applying of Viticulture Technique as a Function of the Water Status of the Vine-Stock",slug:"convenience-of-applying-of-viticulture-technique-as-a-function-of-the-water-status-of-the-vine-stock",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Ester Gamero, Francisco Espinosa, Daniel Moreno, David Uriarte,\nMaría Henar Prieto, Inmaculada Garrido and María Esperanza\nValdés",authors:[{id:"209994",title:"Dr.",name:"Francisco",middleName:null,surname:"Espinosa",slug:"francisco-espinosa",fullName:"Francisco Espinosa"},{id:"222512",title:"Dr.",name:"Esperanza",middleName:null,surname:"Valdés",slug:"esperanza-valdes",fullName:"Esperanza Valdés"},{id:"222515",title:"Dr.",name:"David",middleName:null,surname:"Uriarte",slug:"david-uriarte",fullName:"David Uriarte"},{id:"222516",title:"Dr.",name:"Inmaculada",middleName:null,surname:"Garrido",slug:"inmaculada-garrido",fullName:"Inmaculada Garrido"},{id:"222518",title:"Dr.",name:"Esther",middleName:null,surname:"Gamero",slug:"esther-gamero",fullName:"Esther Gamero"},{id:"222519",title:"Dr.",name:"Maria-Henar",middleName:null,surname:"Prieto",slug:"maria-henar-prieto",fullName:"Maria-Henar Prieto"},{id:"222520",title:"Mr.",name:"David",middleName:null,surname:"Moreno",slug:"david-moreno",fullName:"David Moreno"}]},{id:"67444",title:"Somatic Variation and Cultivar Innovation in Grapevine",slug:"somatic-variation-and-cultivar-innovation-in-grapevine",totalDownloads:487,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Pablo Carbonell-Bejerano, Carolina Royo, Nuria Mauri, Javier Ibáñez and José Miguel Martínez Zapater",authors:[{id:"287215",title:"Prof.",name:"Jose Miguel",middleName:null,surname:"Martinez Zapater",slug:"jose-miguel-martinez-zapater",fullName:"Jose Miguel Martinez Zapater"},{id:"287226",title:"Dr.",name:"Javier",middleName:null,surname:"Ibáñez",slug:"javier-ibanez",fullName:"Javier Ibáñez"},{id:"300441",title:"Dr.",name:"Pablo",middleName:null,surname:"Carbonell-Bejerano",slug:"pablo-carbonell-bejerano",fullName:"Pablo Carbonell-Bejerano"},{id:"300442",title:"Dr.",name:"Carolina",middleName:null,surname:"Royo",slug:"carolina-royo",fullName:"Carolina Royo"},{id:"300444",title:"Dr.",name:"Nuria",middleName:null,surname:"Mauri",slug:"nuria-mauri",fullName:"Nuria Mauri"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-and-biological-sciences-viticulture",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/171969/ana-rodrigues-costa",hash:"",query:{},params:{id:"171969",slug:"ana-rodrigues-costa"},fullPath:"/profiles/171969/ana-rodrigues-costa",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()