\n\n
\r\n\t
",isbn:"978-1-83968-760-0",printIsbn:"978-1-83968-759-4",pdfIsbn:"978-1-83968-761-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"cc49d6034d85f8f2e2890c6acc3cc629",bookSignature:"Dr. Abhijit Biswas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10285.jpg",keywords:"Mott Insulators, Semi Metals, Polycrystals, Single Crystals, Electronic Properties, Magnetic Properties, PLD, MBE, Topological Insulators, Topological Hall Effect, Devices Applications, Catalysis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 9th 2020",dateEndSecondStepPublish:"October 7th 2020",dateEndThirdStepPublish:"December 6th 2020",dateEndFourthStepPublish:"February 24th 2021",dateEndFifthStepPublish:"April 25th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in the field of tailoring metal oxide crystal surfaces and growth as well as engineering of thin films for various emergent phenomena and energy applications. Dr. Biswas received his Ph.D. from POSTECH, South Korea.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"194151",title:"Dr.",name:"Abhijit",middleName:null,surname:"Biswas",slug:"abhijit-biswas",fullName:"Abhijit Biswas",profilePictureURL:"https://mts.intechopen.com/storage/users/194151/images/system/194151.png",biography:"Dr. Abhijit Biswas is a research associate at the Indian Institute of Science Education and Research (IISER) Pune, in India. His research goal is to design and synthesize highest quality epitaxial heterostructures and superlattices, to play with their internal degrees of freedom to exploit the structure–property relationships, in order to find the next-generation multi-functional materials, in view of applications and of fundamental interest. His current research interest ranges from growth of novel perovskite oxides to non-oxides epitaxial films, down to its ultra-thin limit, to observe unforeseeable phenomena. He is also engaged in the growth of high quality epitaxial layered carbides and two-dimensional non-oxide thin films, to exploit the strain, dimension, and quantum confinement effect. His recent work also includes the metal-insulator transitions and magneto-transport phenomena in strong spin-orbit coupled epitaxial perovskite oxide thin films by reducing dimensionality as well as strain engineering. He is also extremely interested in the various energy related environment friendly future technological applications of thin films. In his early research career, he had also extensively worked on the tailoring of metal oxide crystal surfaces to obtain the atomic flatness with single terminating layer. Currently, he is also serving as a reviewer of several reputed peer-review journals.\nDr. Biswas received his B.Sc. in Physics from Kalyani University, followed by M.Sc in Physics (specialization in experimental condensed matter physics) from Indian Institute of Technology (IIT), Bombay. His Ph.D., also in experimental condensed matter physics, was awarded by POSTECH, South Korea for his work on the transport phenomena in perovskite oxide thin films. Before moving back to India as a national post-doctoral fellow, he was a post-doc at POSTECH working in the field of growth and characterizations of strong spin-orbit coupled metal oxide thin films.",institutionString:"Indian Institute of Science Education and Research Pune",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Indian Institute of Science Education and Research Pune",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61881",title:"Possible Couplings of Dark Matter",doi:"10.5772/intechopen.77252",slug:"possible-couplings-of-dark-matter",body:'\nIt is fascinating to think that only roughly 4% of our universe is made up of ordinary matter that we are familiar with, while dark matter and dark energy comprise the rest. We still do not understand the fundamental nature of dark matter or dark energy.
\nDark matter has only been detected gravitationally so far, and the candidates for dark matter include macroscopic objects, such as black holes and massive compact halo objects (MACHOs), and many non-baryonic particle models [1], including weakly interacting massive particle (WIMP) models. Dark matter was first inferred from the rotation curves of galaxies [2, 3], which seemed to indicate that there must be some unseen mass providing the gravitational potential needed for the orbiting rates of stellar matter near the outer reaches of galaxies to be as high as what was observed. Direct detection experiments that look for direct interaction between dark matter and a target material have strongly constrained the allowed cross section for many interactions due to non-observation [4, 5], and indirect detection may potentially come from the detection of decay products [6, 7], such as neutrinos that the IceCube experiment may detect [8], or cosmic rays accelerated by supernovae that the AMS-02 experiment has studied [9]. There is currently a 3.5-keV radiation signature coming from certain galaxies (and which is noticeably absent in others) that may be explained by interactions with dark matter [10]. For more review of dark matter, consider [11, 12, 13].
\nIn the following, we present interesting aspects of some possible dark matter couplings. We examine a connection between dark matter and other fields via non-minimal coupling (i.e., coupling to other fields through the Ricci scalar). After briefly reviewing some parametrizations of coupled dark matter and dark energy in the literature, we explore in detail the coupling between dark energy and dark matter that must be present simply due to space-time curvature by making some reasonable and general assumptions about the dark energy potential and the coupling strength, and we are able to describe the conversion between dark energy and dark matter without ever explicitly specifying a coupling parametrization. Next, we describe a model beyond the Standard Model called the luminogenesis model, which incorporates in a consistent way the inclusion of dark matter and the inflaton, along with other particles beyond the Standard Model. We describe the unique coupling between dark matter and the inflaton in this model, and we use astrophysical constraints to arrive at an upper bound on the dark matter mass, which in turn constrains the unification scale and another scale of the luminogenesis model, along with the number of \n
Consider the action for general relativity in which dark energy is represented by a real scalar field (\n
where the first term is the usual contribution to the Einstein tensor (\n
where
\nWe have included the variation of the interaction term in \n
Each component of the contents of the universe is typically modeled as a perfect fluid so that in the fluid’s rest frame
\nwhere \n
In standard cosmology, the flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which describes a homogeneous and isotropic universe, is typically used:
\nUsing this metric, the solutions to Einstein’s equations are called the Friedmann equations:
\nwhere \n
Energy-momentum conservation, Eq. (5), implies
\nThis equation can also be obtained from Eqs. (8) and (9) and so is not independent of these. Minimizing the action with respect to the field \n
where \n
In the concordance model of cosmology, each component of the universe is assumed to be separately conserved, that is,
\nfor all \n
and the interaction between the dark matter and dark energy fluids is typically described as
\nA sampling of proposals for the interaction term \n
The third interaction term listed here has been used as an approach toward solving the coincidence problem. For more details on these models and others see the review [15]. It has also been shown that some amount of interaction between dark energy and dark matter may alleviate tension between local measurements of \n
We are still ignorant of the fundamental nature of dark matter and dark energy, so they very well may interact directly through an interaction term coupling the dark matter and dark energy fields directly, leading to a particular form of \n
We now present a clever procedure of studying the coupling between dark matter and dark energy without out directly specifying a potential \n
Since
\nwe have
\nand
\nWe specify the usual equation-of-state parametrization for dark energy and dark matter,
\nand we assume pressureless dark matter,
\nWe use the methodology and results of [18] in what follows. Instead of specifying \n
So we assume slow-roll conditions:
\nIn addition, we assume
\nmeaning that \n
for simplification, and this assumption is inclusive of the case in which \n
where a \n
According to our assumptions, we expect \n
Under the approximations, we can express \n
According to the definition of the incomplete beta function, in Eq. (33), \n
In general (no approximation), because the total pressure \n
And using Eq. (10) and
\nit can be shown that in general
\nNow we have what we need to express what \n
and we can express this in terms of our expressions for \n
As one might expect, for parameters that accord with cosmological data, \n
Plot \n\n−\nQ\n\n (in solar masses \n\n×\n\nparsec\n\n−\n3\n\n\n\n/second) vs. \n\nξ\n\n for the case of redshift \n\nz\n=\n0\n\n, \n\n\nΩ\n\nϕ\n0\n\n\n=\n0.69\n\n, \n\n\nλ\n0\n\n=\n0.01\n\n, and \n\n\nz\n0\n\n=\n0.01\n\n.
Plot \n\n−\nQ\n\n (in solar masses \n\n×\n\nparsec\n\n−\n3\n\n\n\n/second) vs. redshift \n\nz\n\n for the case of \n\nξ\n=\n0.1\n\n, \n\n\nΩ\n\nϕ\n0\n\n\n=\n0.69\n\n, \n\n\nλ\n0\n\n=\n0.01\n\n, and \n\n\nz\n0\n\n=\n0.01\n\n.
Plots \n\n\nρ\nϕ\n\n\n and \n\n\nρ\nm\n\n\n (in solar masses \n\n×\n\nparsec\n\n−\n3\n\n\n\n) vs. redshift \n\nz\n\n for the case of \n\nξ\n=\n0.1\n\n, \n\n\nΩ\n\nϕ\n0\n\n\n=\n0.69\n\n, \n\n\nλ\n0\n\n=\n0.01\n\n, and \n\n\nz\n0\n\n=\n0.01\n\n. \n\n\nρ\nϕ\n\n\n is represented by the blue solid line, and \n\n\nρ\nm\n\n\n is represented by the dashed green line.
\n\n | \n\n\n | \n
---|---|
\n\n | \n\n\n | \n
\n\n | \n\n\n | \n
\n\n | \n\n\n | \n
\n | \n\n | \n
As there is currently no place for a new particle responsible for dark matter in the Standard Model of particle physics, we need a model beyond the Standard Model to include it. One such model is known as the luminogenesis model [23, 24, 25]. In the luminogenesis model, dark matter is uniquely connected to the inflaton, as we will discuss, and we are going to utilize astrophysical constraints on strongly-coupled dark matter to constrain its mass, which will allow us to constrain the unification scale and a lower scale of this theory, as well as the number of \n
The formation of galaxies and galaxy clusters is heavily influenced by the nature of dark matter. For the usual framework of cold dark matter, there are discrepancies between their predictions for them and observations of them. \n
In the luminogenesis model, the dark and luminous sectors are unified above the Dark Unified Theory (DUT) scale. At this DUT scale, the unified symmetry of the model breaks (\n
The \n
It is assumed that \n
In [25], we make predictions for the mass of \n
We run the \n
Then we run \n
In order to specify that scale, we need to specify a DUT scale. Since \n
Using this method and the \n
where \n
Because of the confinement of \n
which shows that the pion mass vanishes as \n
For unspecified \n
We take the interaction between dark matter (a CHIMP, denoted by \n
where \n
where \n
We carried out the computational method for solving Schrödinger’s equation exactly as described in [33] with a similar level of computational accuracy for most of the steps, and we plot \n
Plot \n\n\nm\nX\n\n\n vs. \n\n\nm\n\nπ\nDM\n\n\n\n for the case of \n\n\nα\nDM\n\n=\n1\n\n. We see that all three constraints from clusters (green), the milky way (red), and dwarf galaxies (blue) (described in the text) can be met for \n\n\nm\nX\n\n\n ranging from a few \n\n100\n\n GeV to about \n\n1\n\n TeV since this parameter space falls within all three sets of colored lines.
Plot \n\n\nm\nX\n\n\n vs. \n\n\nm\n\nπ\nDM\n\n\n\n for the case of \n\n\nα\nDM\n\n=\n10\n\n. We see that all three constraints from clusters (green), the milky way (red), and dwarf galaxies (blue) (described in the text) can be met for a range of \n\n\nm\nX\n\n\n with an upper limit of about \n\n4\n\n TeV.
Using the convention of [33], the plots are described as follows:
Blue lines going from left to right respectively represent \n
Red lines going from left to right respectively represent \n
Green lines going from left to right respectively represent \n
The above astrophysical upper and lower bounds on \n
We plot the results of our analysis in Figure 5 for \n
Plot \n\n\nμ\nDUT\n\n\n vs. \n\n\nM\n1\n\n\n for \n\n\nm\nχ\n\n≤\n1\n\n TeV.
Given the numerical results in the previous paragraph, and since \n
We now consider the implications of this upper bound on the mass of strongly-coupled dark matter for the luminogenesis model. Since we saw that \n
Using this upper bound on \n
In general, dark matter is weakly coupled to standard luminous matter (except for gravitational coupling on large scales). However, it is unknown how exactly dark matter interacts with non-standard entities, such as dark energy and the inflaton. We have examined two cases of dark matter coupling.
\nIn the first case, we studied the coupling of dark matter to dark energy without assuming a particular functional form for the conversion rate, and we assumed that dark matter and dark energy were the only components present in the universe. We illustrated a useful way of having interaction between dark matter and dark energy that avoided the need to specify a parametrization for \n
In the second case of dark matter coupling, we showed one way that dark matter may be coupled to the inflaton. We showed an interesting connection between the two fields in the luminogenesis model, which is a unified field theory that consistently combines the Standard Model with other groups that contain dark matter, the inflaton, and other non-standard fields. Using constraints from \n
There are many potential ways in which dark matter couples to other fields, and we simply pointed out interesting facets of two different possible couplings. The true nature of dark matter and how it interacts with other matter is yet to be fully unraveled, but we must pursue every feasible avenue in order to be ready when more precise measurements are available.
\nNeurological disorders are devastating diseases which usually occur in the brain, spinal cord, cranial nerves, peripheral nerves, and so on. It has reported that there are more than 600 kinds of neuropathological conditions including epilepsy, brain tumor, Parkinson’s disease, Alzheimer’s disease, and stroke. Nowadays, it is estimated that more than 1 billion people suffer from neurological disorders, seriously affecting people’s life quality [1]. These kinds of diseases are especially prevalent in developing countries at any stage of age [2, 3]. There are several factors contributing to etiology of neurological disorders such as aggravating tendency of aging population, irregular diet, and insufficient exercise [4].
\nDrug therapy is an important way for curing neurological diseases in the clinic. Nevertheless, serious neurological disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are usually incurable in late stages of diseases with current therapeutic intervention [5, 6]. In the meantime, drug treatment often becomes less effective and causes serious side effects due to individual differences. Taking epilepsy as example, nearly 30% of epileptic patients are unable to obtain seizure control following treatment with marketed drugs [7, 8]. In addition, they have no significant effect on the improvement of cognitive dysfunction in patients with severe epilepsy [9]. Thus, it is essential for investigation of more effective and/or less toxic CNS targeted drugs.
\nDrug repurposing, also known as drug reprofiling or drug repositioning, includes the development of new uses and dosage forms for existing drugs or drug candidates. It is regarded as an economic and practical strategy [10]. Drug repurposing avoids the defects of new drug development. Compared to the drug repurposing, development of new drugs consumes much more time and huge investments. It is roughly reported that the cost from basic research for a new drug to clinical trials is 2.6 billion US dollars [11] and it often takes an average of 13–15 years [12]. Although more and more drug candidates are developed, many cases have failed in recent years [13]. Most of new drugs are withdrawn from the market due to unsatisfactory efficacy or intolerable side effects [14, 15]. Therefore, reusing existing drugs, namely, drug repurposing, has attracted great attention, as this approach has the capacity of saving cost and expediting drug development process.
\nThe purpose of this chapter is to discuss the role of drug repurposing in human diseases especially neurological diseases and summarize repurposing candidates currently in clinical trials for neurological diseases and potential mechanisms as well as preliminary results. Subsequently we also list drug repurposing approaches and limitations and challenges in the future investigations.
\nPrior to development of repurposed drugs for neurological diseases therapeutics, it is emphasized how the drug reposition process is carried out. Generally, there are three stages in drug repurposing. First, diverse approaches including serendipitous clinical observation, cellular drug activity assays, in silico drug screens, and data mining of clinical drug interaction are employed to obtain drug candidates [16]. The detailed illustrations in grounds of methodologies are summarized as mentioned above [17]. Second, preclinical investigations including in vivo rodent models and in vitro cell lines for these drugs are conducted in neurological diseases [18]. Finally, large-scale and multicenter clinical trials are implemented for evaluating efficacy and safety of repurposed drugs [19]. Up to date, there are plenty of drugs which are repurposed in neurological diseases through the above approaches. Then, in the following section, we also cite several repurposed drugs to elaborate how they function in neurological diseases. Table 1 summarizes various repurposed drugs in the treatment of neurological disorders.
\nName of drug | \nOriginal indication | \nNovel indication | \nTarget | \nSummarization of evidence | \n
---|---|---|---|---|
Verapamil | \nHypertension Angina pectoris Arrhythmia | \nIntractable epilepsy Subarachnoid hemorrhage Stroke Resistant depression | \nP-glycoprotein | \n\n
| \n
Bumetanide | \nLiver disease Heart failure Stubborn edema Acute and chronic renal failure | \nEpilepsy Autism | \nNKCC1 protein | \n\n
| \n
Minocycline | \nAntibacterial | \nEpilepsy Spinal cord injury Brain inflammation Neurodegenerative diseases | \nActivated microglia IL-6, TNF-α TrkB/BDNF PPAR-γ/NF-κB LKB1/AMPK | \n\n
| \n
Fenfluramine | \nSimple obesity Diabetes Hypertension | \nEpilepsy Parkinson’s disease | \n5-HT receptors | \n\n
| \n
Propranolol | \nHypertension Supraventricular tachycardia Prolonged Q-T interval Thyrotoxicosis | \nMigraine Traumatic brain injury Parkinson’s disease | \nIL-6 β-adrenergic | \n\n
| \n
Sunitinib | \nGastrointestinal stromal tumor Non-small-cell lung cancer Renal cell carcinoma | \nGlioma Pheochromocytoma Alzheimer’s disease’ | \nAcetylcholinesterase CGNs, SH-SY5Y | \n\n
| \n
Angiotensin receptor blockers | \nEssential hypertension Renal disease Diabetes | \nAlzheimer’s disease Episodic migraine | \nAT1 receptor Angiotensin II | \n\n
| \n
Amantadine | \nAntiviral | \nParkinson’s disease Chronic traumatic brain injury | \nN-methyl-D-aspartate (NMDA) Anticholinergic | \n\n
| \n
List of repurposed drugs in neurological disease.
Verapamil, a classical calcium channel blocker, is mainly used in the treatment of hypertension, angina pectoris, arrhythmia, and other diseases, especially for paroxysmal supraventricular tachycardia [20]. It has been found that administration of verapamil greatly improves seizure control in drug-resistant epileptic patients via inhibiting P-glycoprotein (Pgp). Pgp is responsible for the transport of antiepileptic drug (AED) into the blood vessels through the blood–brain barrier (BBB). And there is evidence supporting that overexpression of Pgp in the brain represents a major mechanism underlying drug resistance in epileptic patients [21]. Verapamil is found to suppress Pgp expression and subsequently facilitates the entry of this drug into epileptogenic zones. As a marketed drug, verapamil treatment in patients with intractable epilepsy can doubtfully alleviate brain injury caused by repetitive seizures [22]. Actually, in clinical trials, verapamil has previously shown to exhibit great efficacy in intractable depression or mania via inhibiting the function of Pgp [23, 24]. Moreover, it is documented that verapamil has been approved to treat cerebral vasospasm secondary to subarachnoid hemorrhage due to its vasodilatory effects [25]. Intra-arterial (IA) treatment with verapamil, which was physiologically feasible, safe, and neuroprotective as a therapeutic adjunct in stroke, significantly reduces infarct volume and improved functional outcome [26], although there are still some mysteries about the mechanism.
\nAs a potent diuretic agent, bumetanide, which is mainly employed to cure liver disease, heart failure, and various kinds of stubborn edema in clinic [27], is a specific inhibitor of Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) [28]. Mechanically, NKCC1 significantly modulates the content of intracellular Cl−. Upregulation of NKCC1 leads to elevation of intracellular concentration of Cl−, which is associated with pathogenesis of neurological diseases. It has been unequivocally proven that many of the available drugs have anti-seizure potential via activating GABAA-mediated hyperpolarization due to accumulation of neuronal Cl− [29]. Indeed, current investigations have confirmed that bumetanide exerts antiepileptic effect via switching the GABA-mediated inhibitory postsynaptic potential in neurons from depolarization to hyperpolarization, resulting in decreased neuronal discharge [30, 31]. In addition, previous work reinforces that bumetanide can enhance the anticonvulsant effect of phenobarbital in hypoxic rats [32]. It suggests that the combination of phenobarbital and bumetanide may provide a promising therapeutic strategy for ceasing seizures in neonatal epilepsy and may increase the neuroprotective effect of hypothermia on asphyxiated newborns [33]. Persuasively, a current clinically pilot study further demonstrated that bumetanide, as a specific NKCC1 antagonist, considerably reduced seizure frequency in adult patients with temporal lobe epilepsy [34]. Additionally, as a consequence of a randomized controlled trial, bumetanide may also be effective for treatment of autism [35]. It should be considered that there are two obstacles for bumetanide treatment in neurological disorders [31, 36]. It has been shown that the highly potent diuretic effect of bumetanide can lead to hypokalemic alkalosis and the poor penetration into brain exists. This indicates that reuse of bumetanide in neurological diseases brings about opportunities and challenges in the future.
\nMinocycline is the second generation of semisynthetic broad-spectrum antibacterial tetracycline analogues. It has immunomodulatory, anti-inflammatory, and anti-apoptosis effects. Minocycline has neuroprotective effects in rodent models of ischemia, spinal cord injury, and infection [37]. It can efficiently penetrate the BBB and has a good effect on activated microglia, which indicates a possible role in the treatment of epilepsy. Minocycline may have synergistic effects with other compounds in manipulating epilepsy. Minocycline has been found to remarkably obviate epileptic conditions and reduce seizure-induced brain impairment at early stage [38]. In addition, minocycline also inhibits pro-inflammatory cytokines through caspase-dependent and caspase-independent pathways, thus inhibiting cell death in kainic acid-induced status epilepticus [39]. An obvious improvement of seizure phenotype is also observed in a rat model of amygdala kindling [40]. Additionally, increasing studies have reported the neuroprotective effects of minocycline in neurologic diseases, such as ischemic stroke, multiple sclerosis (MS), and traumatic brain injury (TBI) [41, 42, 43]. In in vivo animal model, minocycline promotes M2 microglia polarization via activation of tyrosine kinase receptor B (TrkB)/brain-derived neurotrophic factors (BDNF) pathway and facilitates neurogenesis after intracerebral hemorrhage (ICH) [44]. In the process of acute cerebral infarct, minocycline also effectively inhibits oxidative stress via elevating the activity of superoxide dismutase (SOD) and activating the liver kinase B1 (LKB1)/adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway [45]. However, repurposing of minocycline in treating neurological diseases requires to be re-evaluated as there is a clinical study showing serious neurodegeneration TBI [46].
\nFenfluramine, which has been successfully applied in obesity, diabetes, and hypertension [47], is a potent 5-hydroxytryptamine (5-HT) releaser activating multiple 5-HT receptor subtypes. Of note, elevation of extracellular 5-HT levels inhibits focal and generalized seizures, while depletion of 5-HT lowers the threshold of epileptic seizures [48]. Therefore, 5-HT agonist fenfluramine is assessed for treatment of epilepsy. In a small-scale retrospective study, it has reported that adjuvant treatment with fenfluramine has evidently obtained seizure control in patients with Dravet syndrome. As the side effects is not serious, it does not lead to the termination of treatment [49]. This drug may have anticonvulsant effects on other severe epilepsy syndromes, especially those characterized by photosensitive or induced convulsions [50, 51]. Encouragingly, a recent investigation has unveiled that fenfluramine significantly reduces convulsive seizure frequency compared with placebo and exhibits good tolerance [52]. It indicates that fenfluramine could be functioned as a potent novel therapeutic regime for patients with Dravet syndrome. It is noteworthy that fenfluramine also alleviates L-DOPA-induced dyskinesia via stimulation of 5-HT1A receptor in PD [53].
\nPropranolol as a β-adrenoceptor antagonist (b-blocker) has been commonly used in hypertension, supraventricular tachycardia, prolonged Q-T interval, and thyrotoxicosis in clinic [54]. Since 1996, in patients who were being treated for angina pectoris, Rabkin et al. has disclosed the therapeutic effect of propranolol on migraine headache [55]. Meanwhile, further clinical studies have noted that administration of propranolol within 24 h of admission after TBI triggers lower mortality [56]. The evidence also arises from a recent study that propranolol blocks the upregulation of IL-6 and prevents neuronal cell necrosis in CA1 and CA3 hippocampus in a pig model of TBI [57]. Given that propranolol has neuroprotective potential in neuropathological conditions, it is likely to serve as a neuroprotective drug in epilepsy. Additionally, both clinical and experimental studies have demonstrated the potential of propranolol to resist dyskinesia in PD, as modulation of β-adrenergic receptors (βAR), which is abundantly, expressed in striatum, is involved L-DOPA-induced dyskinesia (LID) [58, 59].
\nSunitinib, which is an oral, small molecule receptor tyrosine kinase inhibitor approved by the US Food and Drug Administration, has been currently implemented in the treatment of various cancers such as gastrointestinal stromal tumor (GIST), non-small-cell lung cancer, and renal cell carcinoma [60]. Clinical evidence has revealed that oral administration of sunitinib penetrates the BBB and subsequently facilitates the entry into central nervous system [61]. Furthermore, on the basis of its potent antiangiogenic and antitumoral characteristics, it has discovered that sunitinib can alleviate glioma-induced neurodegeneration and glioma progression in vivo models [60]. Meanwhile, sunitinib has been found to exert therapeutic effects on learning and memory deficits in a mouse model of AD through inhibition of acetylcholinesterase (AChE) [62]. Additionally, sunitinib has also demonstrated to prevent neuronal death induced by neurotoxins via inhibiting NO overproduction in cerebellar granule neurons (CGNs) and SH-SY5Y cells following exposure with low potassium or 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis [63]. It indicates that sunitinib may improve brain dysfunction via inhibition of oxidative stress.
\nIn in vitro studies, angiotensin receptor blockers (ARBs) are generally known to treat essential hypertension by influencing the level of angiotensin II (Ang II) via two distinct pathways, namely, through interrupting the AT1 receptor and augmentation of Ang II processing which plays a critical role in cognition regulation [64]. For example, valsartan, which has previously been found to penetrate BBB and elicit antihypertensive responses in the brain, has been demonstrated to reduce Aβ accumulation and aggregation in vivo and in vitro [65]. Actually, similar situation exists in losartan and telmisartan, which are also classical ARBs [66, 67]. Overall, it indicates ARBs are potential candidates for treating AD. Significantly, several clinically epidemiological studies and RCTs certify the efficacy of ARBs in AD. A large-scale retrospective cohort study has revealed an obvious reduction of dementia in patients treated with ARBs compared with other cardiovascular agents [68]. Likewise, the further UK-based study also reports a similar trend, with a 50% reduction in AD after ARBs treatment [69]. In brief, ARBs, the conventional cardiovascular medicine, have been confirmed to exert a vital effect in AD, and it is further deserved to identify the most suitable dosage in clinic.
\nAmantadine is a classic antiviral compound which has been found to moderately ameliorate impaired motor behavior in Parkinson’s disease [70]. Intriguingly, in 1969, it was coincident that Schwab et al. found an improvement of motor symptoms in a female PD patient, who took 200 mg amantadine daily for antiviral prophylaxis [71]. Subsequently, three potential mechanisms have been proposed to explain the efficacy of amantadine in PD. Several preclinical data demonstrate an activation of the dopamine system’s both presynaptic and postsynaptic actions [72], and amantadine also inhibits the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors [72, 73]. The mild anticholinergic effect is also involved [74]. Surprisingly, PD is well known to be frequently associated with depression, and antagonism of NMDA receptors is also a promising target for new antidepressants, although there is no definite evidence to certify its efficacy in depressive disorder.
\nThere are three important stages in the field of drug repurposing: generation of candidate compounds, preclinical investigation, and clinical trial. Determination of appropriate drugs for potential indications is crucial for production of candidate compounds. At present, two approaches are widely used for drug repurposing including experimental screening approaches and molecular docking by computer. In the following items, we make a detailed description of these two methods in drug repurposing process.
\nExperimental screening approaches are usually regarded as the first stage in the process of drug discovery and drug repurposing. Proteomic techniques such as affinity chromatography and mass spectrometry have been widely employed to identify drug candidates [75]. Nowadays, drug target analysis and drug repurposing are inseparable. Drug repurposing is distinct from drug discovery in terms of alteration of drug target. Cellular thermo stability assay technique can predict the affinity of drug ligands by mapping the contact patterns of intracellular targets [76]. The molecular on and off targets have been disclosed for many clinically approved drugs via this method. Especially in the field of kinases, new targets of well-known drugs are obtained through affinity matrices [77, 78]. For example, imatinib, a tyrosine kinase inhibitor, has been successfully reused in the treatment of gastrointestinal stromal tumors [79].
\nIn addition, chemical compounds with disease-related effects can be defined in the model through phenotype screening [80]. Phenotype screening has always been more successful than target screening in the facet of drug development [81, 82]. In the case of drug repurposing, if the compounds selected through phenotypical assays are approved clinical drugs or ongoing clinical trials, they are probable to reuse. Several drugs approved for tobacco dependence have been evaluated, and it has been found that topiramate changes nicotine- or ethanol-induced behavior in zebrafish models [83]. However, there are some challenges that the efficacy of drug candidates in in vitro experiments require to be validated in human diseases [84].
\nMolecular docking by a computer is also an important method for evaluating drug target binding kinetics and drug residence times of existing drugs or drug candidates [85]. Large amounts of computational drug repositioning methods choose transcriptomic data to identify potential new indications for drugs. Furthermore, these methods have applied techniques such as comparison of gene expression profiles between a disease model and drug-treated condition [86], network integration [87], prediction of drug-protein interactions [88], and utilization of genotype–phenotype associations. Recently, a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) for Alzheimer’s disease occurs on the basis of inverse associations between disease-induced or drug-induced gene and protein perturbation patterns [89]. Briefly, these approaches can be applicable to discovery of drug targets or biomarkers.
\nIt should be considered that for many neurological disorders, drugs require good penetration into BBB. Then, the therapeutic approaches of targeting brain have been classified as invasive and noninvasive categories [90, 91]. The invasive approaches contain the temporary increase of BBB permeability, and noninvasive approaches involve modification of drug molecule via physiological, chemical, or colloidal carrier system approach. Meanwhile, these methods are also related to computational approaches. Influx clearance into the brain (K\nin), which is the unidirectional influx constant from the blood to brain, can be used to calculate the transport of drugs in the brain. Similar computational approaches conclude the permeability surface area (PS), brain/plasma ratio (K\np), brain uptake index (BUI), and apparent permeability (P\napp) [92, 93, 94, 95]. Consequently, drug repurposing in neurological diseases covers various manners to participate in integrating the role of transporters and pathophysiological complexity of BBB to establish a suitable model for high-throughput screening.
\nDrug repurposing is a vital strategy for developing new therapeutic values of existing drugs or drug candidates due to its ability to save time and reduce cost [96]. This type of innovative concept will undoubtedly expedite the drug development process. Meanwhile, some limitations need to be considered during drug repurposing process in neurological diseases. Owing to complex molecular and cellular signaling mechanisms in neuropathological states, drug repurposing may be difficult. Additionally, drugs not only respond to a single target but also affect multiple targets [97], causing a variety of adverse reactions. A comprehensive assessment of the advantages and disadvantages of these side effects can help us understand drug repositioning from a more all-round perspective [98, 99].
\nIn order to overcome limitations faced during drug repurposing, we make proposals in the following descriptions. Firstly, it is foremost to establish a comprehensive data analysis platform to maximize data sharing. Information science services and artificial intelligence can help unlock and reanalyze the large amount of data accumulated by approved drugs or drug candidates to clinical trials. These data may be stored in a diversified way. Storage locations, formats, and types may vary, including different storage locations, formats, and types. The data obtained from clinical trials and biological databases are too large and complex that the traditional data processing methods cannot deal with it, which leads to the bottleneck in the research process [99]. Big data can significantly improve our understanding of the disease and make more accurate disease-related strategies. However, there is a big gap between generating biomedical data and data analysis [99, 100]. To ensure the efficiency of research, it takes time, energy, and expertise to find technical solutions to integrate them. Secondly, it is encouraged to provide more financial support for clinical trials of drug repurposing, including technical support. The preclinical research of drug repurposing requires financial support to obtain the data in clinical trials. In this case, drugs that can be developed to treat rare diseases are more likely to apply in clinical neurological diseases therapeutics [101]. Finally, in order to facilitate drug repurposing process, we advocate it is indispensable to solve patent restrictions and take reasonable supervision. All applications of drug repurposing should be accompanied by a risk management plan. Drug’s safety can be supported by clinical trial data or post marketing data.
\nIn conclusion, drug repurposing is a novel approach for expediting drug development process in neurological diseases. Repurposed drugs may provide an efficient avenue for improving a plethora of pathological conditions including neurological disorders. In the future, it is essential to exploit molecular mechanisms during drug repurposing processes due to the possibility that targets of repurposed drugs in neurological diseases are distinct from original targets in treating other diseases, in order to make these drugs more effective and safe.
\nThe authors apologize to all the investigators whose work cannot be cited in this paper due to space constraint. This work was partly supported by the National Natural Science Foundation of China (No. 81974502 and 81671293).
\nThere is no potential conflict of interest.
CNS | central nervous system |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
AED | antiepileptic drug |
BBB | blood–brain barrier |
Pgp | P-glycoprotein |
NKCC1 | Na+-K+-2Cl-cotransporter isoform 1 |
GABAA | gamma-aminobutyric acid |
MS | multiple sclerosis |
TBI | traumatic brain injury |
TrkB | tyrosine kinase receptor B |
BDNF | brain-derived neurotrophic factors |
ICH | intracerebral hemorrhage |
SOD | superoxide dismutase |
LKB1 | liver kinase B1 |
AMPK | adenosine 5′-monophosphate (AMP)-activated protein kinase |
5-HT | 5-hydroxytryptamine |
LID | L-DOPA-induced dyskinesia |
βAR | β-adrenergic receptors |
AChE | acetylcholinesterase |
CGNs | cerebellar granule neurons |
ARBs | angiotensin receptor blockers |
Ang II | angiotensin II |
NMDA | N-methyl-D-aspartate |
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"11"},books:[{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10826",title:"Artificial Muscles",subtitle:null,isOpenForSubmission:!0,hash:"2f86f1caeed80b392ec14ecd61def8e7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10826.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11049",title:"Thin Films Photovoltaics",subtitle:null,isOpenForSubmission:!0,hash:"90a2c8cb0c5a28dd7ec35f6dbfc00729",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11049.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:null,bookSignature:"Associate Prof. Daisuke Tashima",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:null,editors:[{id:"254915",title:"Associate Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:21},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"723",title:"Hybrid Control Systems",slug:"hybrid-control-systems",parent:{title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:6,numberOfAuthorsAndEditors:69,numberOfWosCitations:174,numberOfCrossrefCitations:140,numberOfDimensionsCitations:206,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hybrid-control-systems",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2091",title:"Frontiers of Model Predictive Control",subtitle:null,isOpenForSubmission:!1,hash:"6166a4de20ca045671e04f32ba700957",slug:"frontiers-of-model-predictive-control",bookSignature:"Tao Zheng",coverURL:"https://cdn.intechopen.com/books/images_new/2091.jpg",editedByType:"Edited by",editors:[{id:"10515",title:"Prof.",name:"Tao",middleName:null,surname:"Zheng",slug:"tao-zheng",fullName:"Tao Zheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"160",title:"Advanced Model Predictive Control",subtitle:null,isOpenForSubmission:!1,hash:"a3750d51b11b698f9ad36dd8eac98ac7",slug:"advanced-model-predictive-control",bookSignature:"Tao Zheng",coverURL:"https://cdn.intechopen.com/books/images_new/160.jpg",editedByType:"Edited by",editors:[{id:"10515",title:"Prof.",name:"Tao",middleName:null,surname:"Zheng",slug:"tao-zheng",fullName:"Tao Zheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3656",title:"Model Predictive Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"model-predictive-control",bookSignature:"Tao Zheng",coverURL:"https://cdn.intechopen.com/books/images_new/3656.jpg",editedByType:"Edited by",editors:[{id:"10515",title:"Prof.",name:"Tao",middleName:null,surname:"Zheng",slug:"tao-zheng",fullName:"Tao Zheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3618",title:"Switched Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"switched-systems",bookSignature:"Janusz Kleban",coverURL:"https://cdn.intechopen.com/books/images_new/3618.jpg",editedByType:"Edited by",editors:[{id:"2934",title:"Dr.",name:"Janusz",middleName:null,surname:"Kleban",slug:"janusz-kleban",fullName:"Janusz Kleban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3699",title:"Adaptive Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"adaptive_control",bookSignature:"Kwanho You",coverURL:"https://cdn.intechopen.com/books/images_new/3699.jpg",editedByType:"Edited by",editors:[{id:"252219",title:"Dr.",name:"Kwanho",middleName:null,surname:"You",slug:"kwanho-you",fullName:"Kwanho You"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3697",title:"Frontiers in Adaptive Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"frontiers_in_adaptive_control",bookSignature:"Shuang Cong",coverURL:"https://cdn.intechopen.com/books/images_new/3697.jpg",editedByType:"Edited by",editors:[{id:"3118",title:"Prof.",name:"Shuang",middleName:null,surname:"Cong",slug:"shuang-cong",fullName:"Shuang Cong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"29691",doi:"10.5772/37638",title:"A Real-Time Gradient Method for Nonlinear Model Predictive Control",slug:"a-real-time-gradient-method-for-nonlinear-model-predictive-control",totalDownloads:2158,totalCrossrefCites:47,totalDimensionsCites:60,book:{slug:"frontiers-of-model-predictive-control",title:"Frontiers of Model Predictive Control",fullTitle:"Frontiers of Model Predictive Control"},signatures:"Knut Graichen and Bartosz Käpernick",authors:[{id:"113632",title:"Prof.",name:"Knut",middleName:null,surname:"Graichen",slug:"knut-graichen",fullName:"Knut Graichen"},{id:"139321",title:"MSc.",name:"Bartosz",middleName:null,surname:"Kaepernick",slug:"bartosz-kaepernick",fullName:"Bartosz Kaepernick"}]},{id:"5999",doi:"10.5772/6500",title:"Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties",slug:"adaptive_estimation_and_control_for_systems_with_parametric_and_nonparametric_uncertainties",totalDownloads:2696,totalCrossrefCites:11,totalDimensionsCites:13,book:{slug:"adaptive_control",title:"Adaptive Control",fullTitle:"Adaptive Control"},signatures:"Hongbin Ma and Kai-Yew Lum",authors:null},{id:"16069",doi:"10.5772/18535",title:"Model Predictive Control and Optimization for Papermaking Processes",slug:"model-predictive-control-and-optimization-for-papermaking-processes",totalDownloads:4250,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"advanced-model-predictive-control",title:"Advanced Model Predictive Control",fullTitle:"Advanced Model Predictive Control"},signatures:"Danlei Chu, Michael Forbes, Johan Backstrom, Cristian Gheorghe and Stephen Chu",authors:[{id:"24575",title:"Dr.",name:"Danlei",middleName:null,surname:"Chu",slug:"danlei-chu",fullName:"Danlei Chu"},{id:"31788",title:"Mr",name:"Cristian",middleName:null,surname:"Gheorghe",slug:"cristian-gheorghe",fullName:"Cristian Gheorghe"},{id:"31789",title:"Mr",name:"Johan",middleName:null,surname:"Backstrom",slug:"johan-backstrom",fullName:"Johan Backstrom"},{id:"31790",title:"Mr.",name:"Stephen",middleName:null,surname:"Chu",slug:"stephen-chu",fullName:"Stephen Chu"},{id:"79673",title:"Dr.",name:"Michael",middleName:null,surname:"Forbes",slug:"michael-forbes",fullName:"Michael Forbes"}]}],mostDownloadedChaptersLast30Days:[{id:"11592",title:"Plasma Stabilization System Design on the Base of Model Predictive Control",slug:"plasma-stabilization-system-design-on-the-base-of-model-predictive-control",totalDownloads:1916,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Margarita Sotnikova and Evgeny Veremey",authors:null},{id:"16067",title:"Nonlinear Autoregressive with Exogenous Inputs Based Model Predictive Control for Batch Citronellyl Laurate Esterification Reactor",slug:"nonlinear-autoregressive-with-exogenous-inputs-based-model-predictive-control-for-batch-citronellyl-",totalDownloads:4923,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"advanced-model-predictive-control",title:"Advanced Model Predictive Control",fullTitle:"Advanced Model Predictive Control"},signatures:"Siti Asyura Zulkeflee, Suhairi Abdul Sata and Norashid Aziz",authors:[{id:"26810",title:"Dr.",name:"Norashid",middleName:null,surname:"Aziz",slug:"norashid-aziz",fullName:"Norashid Aziz"},{id:"31236",title:"Mrs.",name:"Siti Asyura",middleName:null,surname:"Zulkeflee",slug:"siti-asyura-zulkeflee",fullName:"Siti Asyura Zulkeflee"},{id:"31237",title:"Dr.",name:"Suhairi",middleName:null,surname:"Abdul Sata",slug:"suhairi-abdul-sata",fullName:"Suhairi Abdul Sata"}]},{id:"11593",title:"Predictive Control of Tethered Satellite Systems",slug:"predictive-control-of-tethered-satellite-systems",totalDownloads:1861,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Paul Williams",authors:null},{id:"11584",title:"Robust Model Predictive Control Design",slug:"robust-model-predictive-control-design",totalDownloads:3916,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Vojtech Vesely and Danica Rosinova",authors:null},{id:"29691",title:"A Real-Time Gradient Method for Nonlinear Model Predictive Control",slug:"a-real-time-gradient-method-for-nonlinear-model-predictive-control",totalDownloads:2157,totalCrossrefCites:47,totalDimensionsCites:60,book:{slug:"frontiers-of-model-predictive-control",title:"Frontiers of Model Predictive Control",fullTitle:"Frontiers of Model Predictive Control"},signatures:"Knut Graichen and Bartosz Käpernick",authors:[{id:"113632",title:"Prof.",name:"Knut",middleName:null,surname:"Graichen",slug:"knut-graichen",fullName:"Knut Graichen"},{id:"139321",title:"MSc.",name:"Bartosz",middleName:null,surname:"Kaepernick",slug:"bartosz-kaepernick",fullName:"Bartosz Kaepernick"}]},{id:"11586",title:"A New Kind of Nonlinear Model Predictive Control Algorithm Enhanced by Control Lyapunov Functions",slug:"a-new-kind-of-nonlinear-model-predictive-control-algorithm-enhanced-by-control-lyapunov-functions",totalDownloads:1968,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Yuqing He and Jianda Han",authors:null},{id:"11594",title:"MPC in Urban Traffic Management",slug:"mpc-in-urban-traffic-management",totalDownloads:2527,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Tamás Tettamanti, Istvan Varga and Tamas Peni",authors:null},{id:"11587",title:"Robust Model Predictive Control Algorithms for Nonlinear Systems: an Input-to-State Stability Approach",slug:"robust-model-predictive-control-algorithms-for-nonlinear-systems-an-input-to-state-stability-approac",totalDownloads:2076,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Davide Martino Raimondo, Daniel Limon, Teodoro Alamo and Lalo Magni",authors:null},{id:"11591",title:"Model Predictive Trajectory Control for High-Speed Rack Feeders",slug:"model-predictive-trajectory-control-for-high-speed-rack-feeders",totalDownloads:1833,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Harald Aschemann and Dominik Schindele",authors:null},{id:"11596",title:"Nonlinear Predictive Control of Semi-Active Landing Gear System",slug:"nonlinear-predictive-control-of-semi-active-landing-gear-system",totalDownloads:3446,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"model-predictive-control",title:"Model Predictive Control",fullTitle:"Model Predictive Control"},signatures:"Dongsu Wu, Hongbin Gu and Hui Liu",authors:null}],onlineFirstChaptersFilter:{topicSlug:"hybrid-control-systems",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/171433/rogelio-sotolongo-sospedra",hash:"",query:{},params:{id:"171433",slug:"rogelio-sotolongo-sospedra"},fullPath:"/profiles/171433/rogelio-sotolongo-sospedra",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()