\r\n\tThe overall objective of the book is to propose a methodological/ technological state of play and an operational assessment on the complex issues regarding the management and optimization of the multiple components of a transportation system: users, infrastructures, technologies and services.
\r\n\r\n\tThe book welcomes topics such as smart mobility, smart transportation systems, smart vehicle, smart infrastructures, smart people: citizens and users.
",isbn:"978-1-83880-823-5",printIsbn:"978-1-83880-802-0",pdfIsbn:"978-1-83880-824-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ef80dab7f0350ea7cb28f40eedea2b35",bookSignature:"Prof. Stefano De Luca, Dr. Roberta Di Pace and Dr. Chiara Fiori",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9872.jpg",keywords:"Transportation, Intelligent Information Systems, Smart Vehicles, Vehicle Management, Driving Assistance Technologies, Smart Infrastructures, Smart Transportation Systems, Sustainable Transportation Systems, Vehicle Routing, Travel Demand Modeling, Life Cycle Assessment, Environmental Impacts Modeling",numberOfDownloads:664,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 6th 2020",dateEndSecondStepPublish:"May 27th 2020",dateEndThirdStepPublish:"July 26th 2020",dateEndFourthStepPublish:"October 14th 2020",dateEndFifthStepPublish:"December 13th 2020",remainingDaysToSecondStep:"8 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Scientific coordinator of the Transportation Planning and Modelling laboratory, a consultant for the Italian Ministry of Transportation, the Transport commission of Campania Region, of Salerno and Avellino Transportation Departments and member of the IEEE Intelligent Transportation Systems Society.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"De Luca",slug:"stefano-de-luca",fullName:"Stefano De Luca",profilePictureURL:"https://mts.intechopen.com/storage/users/271061/images/system/271061.jpeg",biography:"Stefano de Luca, got a Ph.D. in transportation engineering at the University of Rome 'La Sapienza” and is an associate professor at the Department of Civil Engineering of the University of Salerno (Italy). He is a professor of Transportation Planning (BSc, Civil Eng. and Environmental Eng.) and Transportation Systems Theory (MSc, Civil Eng.). Currently, he is vice-coordinator of the Ph.D. course on 'Risk and sustainability”, scientific coordinator of the Transportation Planning and Modelling laboratory. He is a consultant for the Italian Ministry of Transportation, the Transport commission of Campania Region, of Salerno and Avellino Transportation Departments. His main research interest includes transportation planning techniques, travel demand modeling, users’ behavior modeling, signal settings design, traffic assignment models, air transportation. He is member of IEEE Intelligent Transportation Systems Society.",institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"271713",title:"Dr.",name:"Roberta",middleName:null,surname:"Di Pace",slug:"roberta-di-pace",fullName:"Roberta Di Pace",profilePictureURL:"https://mts.intechopen.com/storage/users/271713/images/system/271713.jpeg",biography:"Roberta Di Pace received both the MSc degree and the Ph.D. degree in transportation engineering from the University of Naples 'Federico II,” Naples, Italy, in 2005 and 2009, respectively. She is an assistant professor in Transportation Engineering at the Department of Civil Engineering of the University of Salerno (Italy). She is an aggregate professor of Technique and Transport Economics (BSc, Civil Eng. and Environmental Eng) and Transportation Systems Design (MSc, Civil Eng). Since 2010 she is a member of the Transportation Planning and Modelling Laboratory. Her main research fields include the development of analytical tools for advanced traveler information systems, the traffic flow modeling, the network signal setting design, the advanced traffic management systems. She is a member of IEEE Intelligent Transportation Systems Society and IEEE Women in Engineering.",institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:{id:"321783",title:"Dr.",name:"Chiara",middleName:null,surname:"Fiori",slug:"chiara-fiori",fullName:"Chiara Fiori",profilePictureURL:"https://mts.intechopen.com/storage/users/321783/images/system/321783.jpg",biography:"Chiara Fiori is assistant professor at the Department of Civil Engineering of the University of Salerno, Italy. She earned the Ph.D. from Sapienza University of Rome, Italy in 2015. From 2016 to 2019 she was post-doc at the Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy. She was Visiting Scientist at the European Commission, Joint Research Center, Directorate for Energy, Transport and Climate Change, Ispra, Italy, from 2017 to 2018. Moreover, from 2015 to 2016 she was Visiting Scientist at the Center for Sustainable Mobility of the Virginia Tech Transportation Institute, USA, and, in 2013, Visiting Scholar at the Center for Automotive Research of the Ohio State University, USA. Her research interests include: sustainable mobility; modeling and simulation for the functional and environmental efficiency improvement of container terminals; integration of microscopic energy consumption model for EVs with traffic control systems; energy consumption modeling and simulation of hybrid and electric powertrains; integration of traffic and energy consumption modeling at microscopic scale; impact assessment of emerging powertrain technologies on route choice behaviors and development of eco-routing strategies for personal and freight mobility; impact assessment of emerging powertrain technologies and charging systems on power electric infrastructure; electric freight logistics, electrification of ports and port operations; well-to-wheels analysis of conventional, hybrid and electric vehicles; impact assessment of emerging railway services (e.g. High Speed/High Capacity services); energy systems, alternative fuels, hydrogen and renewable sources.",institutionString:"University of Salerno",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salerno",institutionURL:null,country:{name:"Italy"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"73624",title:"BIM Approach for Smart Infrastructure Design and Maintenance Operations",slug:"bim-approach-for-smart-infrastructure-design-and-maintenance-operations",totalDownloads:115,totalCrossrefCites:0,authors:[null]},{id:"73595",title:"Advanced Vehicles: Challenges for Transportation Systems Engineering",slug:"advanced-vehicles-challenges-for-transportation-systems-engineering",totalDownloads:18,totalCrossrefCites:0,authors:[null]},{id:"73941",title:"Towards Shared Mobility Services in Ring Shape",slug:"towards-shared-mobility-services-in-ring-shape",totalDownloads:23,totalCrossrefCites:0,authors:[null]},{id:"74201",title:"Attitudes and Behaviours in Relation to New Technology in Transport and the Take-Up amongst Older Travellers",slug:"attitudes-and-behaviours-in-relation-to-new-technology-in-transport-and-the-take-up-amongst-older-tr",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"73973",title:"Models and Methods for Intelligent Highway Routing of Human-Driven and Connected-and-Automated Vehicles",slug:"models-and-methods-for-intelligent-highway-routing-of-human-driven-and-connected-and-automated-vehic",totalDownloads:64,totalCrossrefCites:0,authors:[null]},{id:"74412",title:"Centralised Traffic Control and Green Light Optimal Speed Advisory Procedure in Mixed Traffic Flow: An Integrated Modelling Framework",slug:"centralised-traffic-control-and-green-light-optimal-speed-advisory-procedure-in-mixed-traffic-flow-a",totalDownloads:55,totalCrossrefCites:0,authors:[null]},{id:"74333",title:"Transit Signal Priority in Smart Cities",slug:"transit-signal-priority-in-smart-cities",totalDownloads:91,totalCrossrefCites:0,authors:[null]},{id:"73356",title:"Optimal Management of Electrified and Cooperative Bus Systems",slug:"optimal-management-of-electrified-and-cooperative-bus-systems",totalDownloads:64,totalCrossrefCites:0,authors:[null]},{id:"73240",title:"Recent Progress in Activity-Based Travel Demand Modeling: Rising Data and Applicability",slug:"recent-progress-in-activity-based-travel-demand-modeling-rising-data-and-applicability",totalDownloads:138,totalCrossrefCites:0,authors:[null]},{id:"73821",title:"Driver Assistance Technologies",slug:"driver-assistance-technologies",totalDownloads:67,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7408",title:"Transportation Systems Analysis and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"1a950b01c0e05eda01c6d2364c7af3aa",slug:"transportation-systems-analysis-and-assessment",bookSignature:"Stefano De Luca, Roberta Di Pace and Boban Djordjevic",coverURL:"https://cdn.intechopen.com/books/images_new/7408.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",surname:"De Luca",slug:"stefano-de-luca",fullName:"Stefano De Luca"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42175",title:"The Species Problem: A Conceptual Problem?",doi:"10.5772/54134",slug:"the-species-problem-a-conceptual-problem-",body:'There have long been multiple ways of conceiving species that divide up biodiversity in different and inconsistent ways. This “species problem” goes back at least to Aristotle, who used the Greek term eidos (translated as the Latin species) in at least three different ways. [1] Two thousand years later, Darwin confronted the species problem, listing some of the different ways species were conceived.
How various are the ideas, that enter into the minds of naturalists when speaking of species. With some, resemblance is the reigning idea & descent goes for little; with others descent is the infallible criterion; with others resemblance goes for almost nothing, & Creation is everything; with other sterility in crossed forms is an unfailing test, whilst with others it is regarded of no value. [2]
And one hundred years after Darwin, Ernst Mayr worried about this same problem in a book he edited, titled The Species Problem.\n\t\t\t
Few biological problems have remained as consistently challenging through the past two centuries as the species problem. Time after time attempts were made to cut the Gordian knot and declare the species problem solved either by asserting dogmatically that species did not exist or by defining, equally dogmatically, the precise characteristics of species. Alas, these pseudosolutions were obviously unsatisfactory. One might ask: “Why not simply ignore the species problem?” This also has been tried, but the consequences were confusion and chaos. The species is a biological phenomenon that cannot be ignored. Whatever else the species might be, there is no question that it is one of the primary levels of integration in the many branches of biology, as in systematics (including that of microorganisms), genetics, and ecology, but also in physiology and in the study of behavior. Every living organism is a member of a species, and the attributes of these organisms can often best be interpreted in terms of this relationship. [3]
More recently, the species problem seems to have gotten worse. In 1997, Richard Mayden identified at least twenty-two species concepts currently in use. [4]
This multiplicity of species concepts is a genuine problem in that different ways of conceiving species divide biodiversity in different and inconsistent ways, and no single species concept is adequate. What counts as a species under one concept may not count as a species under another. So whether a group of organisms counts as a species depends on which species concept is used. One researcher might, for instance, use morphological or genetic similarity to group into species, while another might use interbreeding, and yet another might appeal to history or phylogeny. In other words, one person might use a species concept based on morphological or genetic similarity, while another might use a concept based on interbreeding or phylogeny.
The consequences of using different species concepts are often striking. Species counts, one way of measuring biodiversity, depend on which concept is used. The replacement of other concepts with the phylogenetic species concept, for instance, has multiplied 15 amphibian species into 140. [5] A recent survey of taxonomic research [6] quantifies the effects of a shift to this particular species concept from other concepts, finding a 300% increase in fungus species, a 259% increase in lichen species, a 146% increase in plant species, a 137% increase among reptile species, an 88% increase among bird species, an 87% increase among mammals, and a 77% increase among arthropods. Running counter to this trend, there was a 50% decrease in mollusc species. Overall, there was an increase of 48.7% when a phylogenetic species concept replaced other concepts.
Given that this there is so far no consensus on species concepts, these differences in species counts suggest that the conventional grouping of organisms into species may be arbitrary and reflects only the subjective point of view assumed, as Joel Cracraft suggests (emphasis added):
The primary reason for being concerned about species definitions is that they frequently lead us to divide nature in very different ways. If we accept the assumption of most systematists and evolutionists that species are real things in nature, and if the sets of species specified by different concepts do not overlap, then it is reasonable to conclude that real entities of the world are being confused. It becomes a fundamental scientific issue when one cannot even count the basic units of biological diversity. Individuating nature “correctly” is central to comparative biology and to teasing apart pattern and process, cause and effect. Thus, time-honored questions in evolutionary biology--from describing patterns of geographic variation and modes of speciation, to mapping character states or ecological change through time, to biogeographic analysis and the genetics of speciation, or to virtually any comparison one might make--will depend for their answer on how a biologist looks at species. [7]
This problem is magnified by the fact that which concept is used often depends on seemingly arbitrary facts, such as which organism is studied, as Cracraft explains:
There has been something of a historical relationship between an adopted species concept and the taxonomic group being studied... Thus, for many decades now, ornithologists, mammalogists, and specialists from a few other disciplines have generally adopted a Biological Species Concept; most invertebrate zoologists, on the other hand, including the vast majority of systematists, have largely been indifferent to the Biological Species Concept in their day-to-day work and instead have tended to apply species status to patterns of discrete variation. Botanists have been somewhere in the middle, although most have not used a Biological Species Concept. [7]
But even among those who study the same organisms, there is disagreement about which species concept is best. Those who are committed to the method of taxonomy sometimes known as “cladistics” tend to use different concepts than those who have adopted the more traditional “evolutionary systematics.” And even those who regard themselves as cladists find little agreement. In a recent volume, five different cladistic species concepts were proposed and developed, seemingly without any consensus. [8]
This is clearly problematic for the understanding and preserving biodiversity, as Claridge, Dawah and Wilson recognize in their introduction to a recent collection of articles on species concepts:
The prolonged wrangle among scientists and philosophers over the nature of species has recently taken on added and wider significance. The belated recognition of the importance of biological diversity to the survival of mankind and the sustainable use of our natural resources makes it a matter of very general and urgent concern. Species are normally the units of biodiversity and conservation... so it is important that we should know what we mean by them. One major concern has been with estimating the total number of species of living organisms that currently inhabit the earth... In addition, many authors have attempted to determine the relative contributions of different groups of organisms to the totality of living biodiversity... Unless we have some agreed criteria for species such discussions are of only limited value. [9]
Moreover, if the application of endangered species legislation is affected by species counts, then the consequences of the species problem spreads beyond biology and into public policy. [1] There are clearly costs if the adoption of a particular species concept results in increased species counts. The authors of the survey quoted above, have estimated the costs of the proliferation of species taxa, based on the fact that the adoption of the phylogenetic species concept results in increased species counts that reduce the geographic range of species, and that in turn make more species protected.
Any increase in the number of endangered species requires a corresponding increase in resources and money devoted toward conserving those species. For example, it has been estimated that the complete recovery of any of the species listed by the U.S. Endangered Species Act will require about $2.76 million… Thus, recovering all species listed currently would cost around $4.6 billion. With widespread adoption of the PSC [phylogenetic species concept], this already formidable amount could increase to $7.6 billion, or the entire annual budget for the administering agency (U.S. Fisheries and Wildlife Services) for the next 120 years. [6]
These additional costs might be justified if the increased species counts represented an objective improvement in the measure of biodiversity. But the additional costs are hard to justify if they are merely a consequence of some arbitrary choice of species concepts.
There are theoretical concerns here as well. If species are the fundamental units of evolution and classification, as is typically assumed, surely we need a satisfactory, unambiguous way to determine what counts as the fundamental units in these ways. [1] We need to have a good idea, for instance, about what counts as a species in order to identify and study speciation events. After all, only if a new species has been formed can there be speciation. And as long as species are the fundamental, basal units of classification, as is usually assumed, we need to know unambiguously what counts as a species to generate an unambiguous classification.
We might make progress on this long-standing species problem by thinking about scientific problems in general. Some scientific problems are empirical in the sense that they are solved by the addition of new empirical data or information. For example, we might solve a problem of disease by the observation of some bacterial or viral pathogen. As is well known, this is happening with a variety of cancers. On the other hand, some scientific problems are largely conceptual in the sense that they are solved not so much by the addition of new empirical information, but through some conceptual innovation, change or clarification. For example, problems related to planetary motion were solved by Johannes Kepler through the use of a new orbital concept based on elliptical rather than circular motion. And around the turn of the twentieth century, Wilhelm Johannsen coined the terms ‘gene,’ ‘genotype,’ and ‘phenotype’ to introduce new and useful concepts to the many problems in the study of heredity. [10] Sometimes old concepts get modified, as we see in relativistic physics with its new ways of conceiving mass, space and time. In each of these latter cases, progress was made through thinking about the concepts used, not just through the addition of new empirical information.
There is a general insight to be gained in thinking about scientific problems in this way. From at least Plato and Aristotle on, it has been recognized that knowledge of the world is based on the application of language, ideas or concepts to the world. Consequently, successful inquiry depends in part on getting our language, ideas or concepts right. This can be relatively straightforward, as in Kepler’s application of the ellipse to planetary motion, or in the invention of the concepts of quark, atom, electron, element, compound, gene, protein, homology, enzyme, genotype, population, species, ecosystem, neuron, etc. Or less straightforwardly, progress may be found in the relation between concepts. How is the idea of an electron related to the idea of an atom? And how is the concept of a species related to that of a population? It may also be that getting concepts right involves something less concrete and more abstract. Scientific progress might be predicated partly on getting clear about scientific law, evidence, explanation, theory, testing, observation and so on. And at an even more abstract level, scientific progress might result from thinking more clearly about the nature of various concepts, and how they are related. For instance, how is observation related to evidence and theory? And what is the relation between scientific law and scientific explanation?
So is the species problem empirical, conceptual or both? If empirical it will be solved by more empirical data or information. Present trends suggest that the problem is not exclusively empirical. The last century has made great progress in the empirical investigation of biodiversity and evolution, but the species problem seems to instead be getting worse! We now have more jointly inconsistent and individually inadequate concepts than ever. It is my contention here that the species problem is at least partly conceptual, and it is solved at an abstract level: the nature and relation of various species concepts. The solution is not merely a matter of introducing a new species concept, or modifying an existing concept. Rather it is to be found in an understanding how the various species concepts are related within a framework, how each concept works individually, and how this all has resulted in the species problem.
I shall argue that the species problem is solved first, by understanding the division of labor within the conceptual framework. Some species concepts are theoretical and are concerned with the nature of species things. Others are operational, telling us how to identify and individuate species things. Here I follow the lead of Richard Mayden and Kevin de Queiroz, but go a step further and argue that these operational concepts are better conceived as correspondence rules. The second component of the solution is based on an understanding of the structure of theoretical species concepts. I will argue that the primary, theoretical species concept has a structure - a definitional core and a descriptive periphery - and once we see how this conceptual structure works, we can understand why there has been an enduring species problem and how to solve it. Finally, I will conclude with a few thoughts about scientific concepts and how they get used within the social, “demic” structure of science. Part of understanding the species problem is to be found in how researchers and theorists in different fields, with different interests, engage the species concept.
The recent history of the species problem is not promising. Along with the increase in our understanding of biodiversity and the evolutionary processes that produced it has come a proliferation of species concepts. Richard Mayden [4] has identified and individuated over twenty species concepts currently in use. Some species concepts he identifies are based on similarity. The morphological species concept asserts that “species are the smallest groups that are consistently and persistently distinct, and distinguishable by ordinary means.” The phenetic species concept is based on overall similarity and phenetic clustering. Some species concepts are based on molecular similarity, such as the genotypic cluster concept and the genealogical concordance concept. Other concepts are based on evolutionary processes. The biological species concept, advocated by Ernst Mayr, and Hugh Paterson’s recognition species concept are based on sexual reproduction. But since not all organisms reproduce sexually, the agamospecies concept was proposed to serve as an umbrella concept for all taxa that are uniparental and asexual. Some process concepts are based on ecology, such as the ecological species concept, which identifies species with unique adaptive zones. Historical species concepts treat species as historical entities, extended in time. Here we find the evolutionary species concept; the successional species concept; the paleospecies concept; and the chronospecies concept, that each conceives of species as segments of a changing lineage. The cladistic species concept, the composite species concept, the internodal species concept, and the phylogenetic species concept are all based on the idea that speciation events can serve to demarcate the beginnings and endings of species lineages.
The details of each of these species concepts are not important for purposes here. What is important is that first, with increased empirical understanding, species concepts seem to be proliferating; second, these concepts are inconsistent, carving nature in different and inconsistent ways; third, no single concept is adequate, applying across biodiversity. The biological species concept, for instance, applies only to sexually reproducing organisms, and therefore cannot be used to group asexual organisms. Fourth, the species problem does not seem to be solved by additional empirical information. This suggests that the problem is not exclusively empirical, and requires a conceptual solution.
Mayden recognizes this. After outlining all these species concepts, he argues that there are really two main kinds of species concepts: primary theoretical concepts tell us what kinds of things species taxa are; secondary operational concepts tell us how to identify and individuate species taxa. This approach is hierarchical because the operational concepts depend on the theoretical concepts. Operational concepts do not tell us what species are, but given a particular theoretical concept, how to identify and individuate them. [4] Operational and theoretical concepts are therefore not competing but supplementary ways of thinking about species. It is therefore possible to use different operational concepts, without dividing biodiversity up in inconsistent ways – if a single theoretical concept is used.
This hierarchical thinking about species may have the potential to solve the species problem, but only if there is a single, adequate theoretical concept. Mayden argues that there is such a concept, based on the fundamental idea of a lineage: the evolutionary species concept (ESC). Mayden [4] gives three statements of this concept. The first from G. G. Simpson asserts that a species is “a lineage (an ancestral-descendent sequence of populations) evolving separately from others and with its own unitary evolutionary role and tendencies.” The second statement, from Edward Wiley, identifies species as “a single lineage of ancestor-descendent populations which maintains its identity from other such lineages and which has its own evolutionary tendencies and historical fate.” The third formulation, from Wiley and Mayden, is that a species is “an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies.” According to Mayden, the ESC is theoretically significant and universal. It can apply across biodiversity. [4]
The Evolutionary Species Concept is not obviously operational. One cannot just observe lineages of the relevant kind in nature. The ESC therefore requires other operational, species concepts:
While the ESC is the most appropriate primary concept, it requires bridging concepts permitting us to recognize entities compatible with its intentions. To implement fully the ESC we must supplement it with more operational, accessory notions of biological diversity – secondary concepts. Secondary concepts include most of the other species concepts. While these concepts are varied in their operational nature, they are demonstrably less applicable than the ESC because of their dictatorial restrictions on the types of diversity that can be recognized, or even evolve. [4]
Secondary operational concepts are those that can be readily applied to biodiversity, and are indicative of species lineages. Species concepts based on morphological or genetic similarity, for instance, can help identify lineages, since organisms within a single lineage will generally share some morphological and genetic traits. Concepts based on processes such as reproductive isolation and cohesion, mate recognition systems and ecological niches, can also be used to identify lineages since these are processes that operate in the formation and persistence of lineages.
Kevin de Queiroz has proposed a similarly hierarchical way to think about species concepts. According to de Queiroz, there are the species concepts proper that give the necessary properties of species and provide theoretical definitions. Then there are species criteria that give contingent properties and are “standards for judging whether an entity qualifies as a species.” [11] Many of the species concepts in use are to be understood as species criteria rather than species concepts proper.
The species criteria adopted by contemporary biologists are diverse and exhibit complex relationships to one another (i.e. they are not necessarily mutually exclusive). Some of the better-known criteria are: potential inter-breeding or its converse, intrinsic reproductive isolation... common fertilization or specific mate recognition systems... occupation of a unique niche or adaptive zone... potential for phenotypic cohesion... monophyly as evidenced by fixed apomorphies... or the exclusivity of genic coalescence... qualitative... or quantitative... Because the entities satisfying these various criteria do not exhibit exact correspondence, authors who adopt different species criteria also recognize different species taxa. [11]
Like Mayden, de Queiroz argues that there is single, primary species concept that is adequate – applying across biodiversity. This is, according to de Queiroz, the general lineage concept:
Species are segments of population-level lineages. This definition describes a very general conceptualization of the species category in that it explains the basic nature of species without specifying either the causal processes responsible for their existence or the operational criteria used to recognize them in practice. It is this deliberate agnosticism with regard to causal processes and operational criteria that allows the concepts of species just described to encompass virtually all modern views on species, and for this reason, I have called it the general lineage concept of species. [11]
In a later paper, de Queiroz describes this general theoretical concept in terms of a “metapopulation lineage,” which he describes as “sets of connected subpopulations, maximally inclusive populations.” [12]
Mayden and de Queiroz are largely right about the conceptual framework and the potential solution to the species problem. There may be multiple, seemingly inconsistent ways of thinking about species, but these ways of thinking are not all equivalent. The biological species concept and the evolutionary species concept, for instance, are not competing ways to think about species. Rather they a complementary. The biological species concept, based on interbreeding, is valuable insofar as it indentifies the kind of lineages required by the evolutionary species concept. Nor need each concept be individually adequate, applying across biodiversity. The biological species concept, based on reproductive cohesion and isolation, need only apply to sexually reproducing organisms. The important insight here is that some ways of thinking are substantive (evolutionary species concept) and tell us what species things are, and some ways are operational (biological species concept), telling us how to identify and individuate species taxa. But it may be misleading to think about all these ways of thinking as “concepts.”
This division of conceptual labor echoes a debate early in the twentieth century about how to define scientific concepts in physics, such as length and mass. The physicist P. W. Bridgman proposed that we should define these concepts in terms of the operations we use to measure them. Mass, for instance, would be defined in terms of the ways of measuring mass - the resistance to acceleration, or the operation of gravity. Bridgman’s proposal that operations give definitions became known as “operationalism,” and came to be seen as an answer to the philosophical problem of how to connect theoretical laws, that contain only non-observational terms, to observation. How can we connect laws about unobservable particles, for instance, to the empirical regularities we observe in nature? The philosopher of science Rudolf Carnap explained this problem:
Our theoretical laws deal exclusively with the behavior of molecules, which cannot be seen. How, therefore, can we deduce from such laws a law about observable properties such as the pressure or temperature of a gas or properties of sound waves that pass through the gas? The theoretical laws contain only theoretical terms. What we seek are empirical laws containing observable terms. Obviously, such laws cannot be derived without having something else given in addition to the theoretical laws.... That something else that must be given is this: a set of rules connecting the theoretical terms with the observable terms. [13]
Carnap called these rules connecting theoretical and observable terms “correspondence rules.” What is significant in Carnap’s proposal is that these correspondence rules connecting theoretical concepts to observation are not really concepts in the usual theoretical sense. This is clear in Carnap’s rejection of the view (disagreeing with Bridgman) that operational rules can provide definitions: “There is a temptation at times to think that the set of rules provides a means for defining theoretical terms, whereas just the opposite is really true”. [13] Nor can correspondence rules function as definitions: “What we call these rules is, of course, only a terminological question; we should be cautious and not speak of them as definitions. They are not definitions in any strict sense.” [13] Rather, the definitions give operational guidance, telling us what operations are relevant. What is important here is that those concepts that function operationally are different from those that function theoretically. In effect, they tell us how to observe a thing, not what sort of a thing it is.
We can apply Carnap’s insight here to the species problem. As argued by Mayden and de Queiroz, some species concepts are theoretical. They tell us how to conceive species. They define species taxa and constitute the species category. But some species concepts are operational. They tell us how to identify and individuate the groups that are properly species given a particular theoretical concept. But these so-called operational concepts are really rules that help us to determine if a group of organisms satisfies the demands of the theoretical concept. The biological species concept is really a rule about how to identify and individuate the sexually reproducing lineages that constitutes species taxa. By using this terminology, referring to operational concepts as “correspondence rules,” Carnap thought we could avoid the general confusion of definitions and operations. He also thought this solved a problem in science, the tendency of philosophers to ask scientists for definitions of scientific concepts in familiar, non-theoretical terms.
They want the physicist to tell them just what he means by “electricity”, “magnetism”, “gravity”, “a molecule”. If the physicist explains them in theoretical terms, the philosopher may be disappointed. “That is not what I meant at all”, he will say. “I want you to tell me, in ordinary language, what those terms mean.” [13]
The problem here is that the scientist is being asked for something he or she cannot give – a definition in something other than theoretical terms. Each of these concepts has satisfactory definitions, but they are in terms of the theoretical framework. That is the proper source for definitions – telling us how to interpret these concepts – not the operations to measure or identify the things that satisfy them. Carnap concluded:
The answer is that a physicist can describe the behavior of an electron only by stating theoretical laws, and these laws contain only theoretical terms. They described the field produced by an electron, the reaction of an electron to a field, and so on…. There is no way that a theoretical concept can be defined in terms of observables. We must, therefore, resign ourselves to the fact that definitions of the kind that can be supplied for observable terms cannot be formulated for theoretical terms. [13]
There are three things to note here about Carnap’s analysis. First is his emphasis on the role of theoretical frameworks in the interpretation of scientific concepts. Theoretical terms are to be understood in terms of the overarching theory. For a species concept the overarching theory is evolutionary theory. Second is the proposal that we think about operations as rules rather than concepts. What we might call operational concepts, are really rules for connecting theoretical concepts to observation. Third, there soon came to be a general consensus against operationalism in physics. That consensus continues today. There are obvious reasons for the rejection of operationalism. It seemed to lead to the multiplication of concepts of such basic things as length. [14] The operations to measure length at the scale of stars and galaxies are different than the operations to measure length at the scale of a football field or at the atomic level. The problem is that if we base concepts on operations, there seems to be a new concept for each distinct operation. With operationalism comes the proliferation of concepts like length. Similarly we should expect the proliferation of concepts like mass, density and temperature, etc. If there is more than one way to measure each, there will be multiple concepts. It is no wonder that operationalism was rejected in physics. It should similarly be rejected in evolutionary biology and with respect to the species problem.
If we adopt Carnap’s approach, distinguishing theoretical definitions from operational “correspondence rules,” and apply this approach to the species problem, the species problem largely dissolves. So, for instance, given a particular theoretical concept (either Mayden‘s ESC or de Queiroz’s general lineage concept) some kinds of similarities will be indicative of the relevant kind of population lineage, and will therefore help identify and individuate species taxa. For those population lineages of sexually reproducing organisms, reproductive cohesion, reproductive isolation and mate recognition systems will be relevant to the identification and individuation of species taxa. And for non-sexually reproducing lineages, there will other correspondence rules. If so, then the species problem is largely a consequence of not discriminating between species concepts proper and the correspondence rules that help apply species concepts to the world.
Implicit in this division of conceptual labor are two distinct sets of evaluative criteria. Theoretical concepts best serve the needs of evolutionary theory and biosystematics if they are universal – apply across biodiversity. This is in effect, a unification requirement. A single concept will ideally unify phenomena – the apparently discrete groupings of organisms that we see across biodiversity and processes that produce these groupings. On the other hand, operational concepts, or better “correspondence rules,” do not need to unify. Rather as different processes operate across biodiversity there is instead a proliferation of rules. We need different rules, for instance, for sexual and asexual organisms. The more we find out about evolutionary processes, the more rules we will discover to identify and individuate species things. Rather than unification, with correspondence rules/operational concepts there is proliferation. The more the merrier!
There are good reasons to think that Mayden and de Queiroz have the broad outlines of a primary theoretical concept right as well - even though there may be differences in each of the three formulations Mayden provides of the ESC and de Queiroz’s general lineage concept. A primary theoretical concept must be theoretically significant and consistent with evolutionary theory. At the most basic level, the theory of evolution tells us that there is change over time. Darwin thought that this involved the origin of new species through divergent change, whereby mere varieties become species. [15] This principle of divergence then explained the branching evolutionary tree diagram that in turn served to illustrate his approach to classification.
I request the reader turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups... So that we here have many species descended from a single progenitor grouped into genera; and the genera are included in, or subordinate to, sub-families, families and orders, all united into one class. [15]
What is important here is that this tree (figure 1) [16] emphasized the temporal, historical dimension of evolution, and the branching associated with speciation. It tells us that species have beginnings in speciation events. They have duration. They change. And they have endings. Since Darwin, this historical component has become further entrenched in evolutionary thinking about species.
This is not to say, of course, that species taxa are just historical entities. Evolutionary theory tells us that they exist as well, as groups of organisms at particular times, groups that share similarities, sometimes interbreed, occupy ecological niches, vary geographically, form gene pools, and have a variety of social structures. This way of thinking about species has been developed and refined most notably by the thinkers of the Modern Synthesis, such as Mayr, Dobzhansky, and Simpson. This population dimension, along with the historical, suggests that there are two ways to think about species taxa. We can think about them over time, as historical, diachronic entities that originate, change and go extinct. Or we can think about them at a single time, as synchronic groups of organisms that are connected or given some sort of structure by some biological process. If so, then evolutionary theory tells us that whatever else species taxa are, they have two dimensions – diachronic and synchronic, and an adequate theoretical species concept must reflect that fact.
Evolutionary theory also tells us that species are the things that evolve. First, they have beginnings and endings in speciation and extinction events. Accordingly, each species taxon also has its own distinctive fate, in its trajectory of change or stasis and ultimate extinction. But species taxa also have some sort of cohesion, whether through reproduction, social interaction, gene transfer or the operation of natural selection. But to be universal, a theoretical concept must be indeterminate about which processes produce these general features. If there is a solution to the species problem, as I think there is, it will surely be based on something like what Mayden and de Queiroz propose – a primary theoretical species concept that treats species taxa as segments of populations lineages with cohesion and distinctive fates. And the more researchers find out about the processes that segment these population lineages and that produce cohesion, and that preserve or produce morphological, behavioral and molecular similarities, the more correspondence rules they will have at hand to identify and individuate species taxa. Since these correspondence rules are subservient to the primary theoretical species concept, when understood correctly they cannot ultimately divide biodiversity in inconsistent ways. It is only when they are taken to be independent of a primary theoretical concept that they can conflict.
This is not to say, however, that the nature and application of the correspondence rules is obvious and unproblematic. It is not always obvious which correspondence rules are appropriate in particular instances. That will often depend on empirical facts about the relevant organisms and processes in question - facts that may or may not be known. Nor is the nature of the primary theoretical concept unproblematic. The lineage and population concepts both require clarification. It is not always clear what kinds of cohesion are relevant and operate in the various groups of organisms. But more pertinent to purposes here, this division of conceptual labor is only half of the solution to the species problem. The other half is found at a lower level, the level of the individual theoretical species concept, and how it functions.
Mayden and de Queiroz suggest that even with the use of multiple operational concepts/species criteria there is general agreement that species are segments of population lineages. This is what evolutionary theory requires. There is good reason to agree with them. Ironically though, an historical conception of species as lineages predates evolution in the ideas of John Ray and Linnaeus. [1] And Darwin noted that an historical way of thinking about species was largely accepted by his contemporaries.
With species in a state of nature, every naturalist has in fact brought descent into his classification; for he includes in his lowest grade, or that of a species, the two sexes; and how enormously these sometimes differ in the most important characters, is known to every naturalist: scarcely a single fact can be predicated in common of the males and hermaphrodites of certain cirripedes, when adult, and yet no one dreams of separating them. The naturalist includes as one species the several larval stages of the same individual, however much they may differ from each other and from the adult... He includes monsters; he includes varieties, not solely because they closely resemble the parent-form, but because they are descended from it... [15]
But as Darwin’s evolutionary tree diagram in the Origin shows, this historical thinking about species is also central to evolutionary theory. The idea here is that even with the use of other criteria for grouping into species, and identifying and individuating species taxa, there has been guidance from the basic conception that species are lineages. In Darwin’s tree diagram, species are the branches of the tree. If so, a systematist might use morphological or molecular similarity to identify and individuate species, but in ways that are constrained by a population lineage conception of species. This requires that the systematist ignore irrelevant morphological traits based on sexual dimorphism and developmental stages. If so, then there is an implicit hierarchy here, ust as Mayden and de Queiroz have argued.
There are puzzles about actual usage that remain. When naturalists, evolutionists and systematists actually use the term species, they don’t always seem to mean “segments of population lineages with cohesion and distinctive fates.” Rather they seem often to have other things in mind, as Darwin recognized in his own time:
[H]ow various are the ideas, that enter into the minds of naturalists when speaking of species. With some, resemblance is the reigning idea & descent goes for little; with others descent is the infallible criterion; with others resemblance goes for almost nothing, & Creation is everything; with other sterility in crossed forms is an unfailing test, whilst with others it is regarded of no value. [2]
This is still the case. One person might apply the term species to a frog population on the basis of a distinctive morphology and behavior, without consciously thinking or claiming that the morphological or behavioral similarities are subservient to some other theoretical concept. Another might take the term to mean interbreeding and reproductive isolation as applied to a population of birds. A geneticist might take the term to mean something related to genotypic similarity. The point is that even if there is a primary theoretical concept available to guide thinking about species, not always does this theoretical concept get manifest in the actual usage and meaning of the term species. A molecular systematist might mean one thing, a naturalist might mean another, and a geneticist might mean yet something else when using the term species. How do we account for this variability in usage, given a single primary theoretical concept? The division of conceptual labor doesn’t seem to adequately answer this question. It just tells us that there are different ways available to think about species, some theoretical some operational. To answer this question we need to look more closely at how concepts get structured and actually used.
Much modern thinking about concepts begins with a framework laid out by Gottlob Frege, in a classic German paper of 1892, and its English translation, “On Sense and Reference.” [17] Here Frege addressed the question of how language can represent things in the world. He argued that linguistic entities such as concept terms function in propositions in two ways: first, through a “nominatum,” what the term refers to (what it designates or denotes); second, through the “sense,” or meaning of the term. According to Frege, the sense of a term is grasped by anyone who knows the language, and is to be identified with the description that would be associated with the term in that language. The sense or meaning of the term water for instance would be identified with an associated description of water. The meaning of a term must be distinguished from what it refers to, or denotes, because, according to Frege, co-referential terms (terms that refer to the same thing) often have different meanings. Two terms that referred to the planet Venus, for instance, have different meanings based on the descriptions that designate different times of appearance in the sky: “The nominata of ‘evening star’ and ‘morning star’ are the same, but not their senses.” [17] Meaning is therefore more fine-grained than reference, in that two terms can refer to the same thing, yet still have different meanings. (As we shall see, the meaning of ‘species’ is more fine-grained than its reference.)
If meaning is to be associated with some descriptive content – a description that gives conditions for the application of the concept, then to understand the meaning of a term we need to know the descriptive content. One standard, “classical” approach conceives the description in terms of a definition with a particular definitional structure, a set of singly necessary and jointly sufficient conditions for falling under the concept. The meaning of the concept term is then this set of necessary and sufficient conditions. [18] This does not rule out non-definitional descriptive content though. Alongside the definitional core is a set of conditions that are associated with the term, but in an “accidental” way.
The term water, for instance, has a theoretically provided definitional core based on its particular composition of two hydrogen atoms and one oxygen atom. But it also has a descriptive periphery: its density, freezing point, where it is found, its taste and appearance, recreational potential etc. On the classical approach, the term species similarly has a definitional core based on a set of singly necessary and jointly sufficient conditions, and a descriptive periphery. As argued here, the definitional core of species is constituted by the conditions that species are segments of a population lineage with cohesion and a distinct fate. These are singly necessary conditions – each one is required, and together they are sufficient for being a species taxon.
There are, however, other ways to think about definitional structure. One limitation of the classical approach is that it implies that falling under a concept is all or nothing. Either the necessary and sufficient conditions are satisfied or they are not. But it seems possible for this to be a matter of degree. The “cluster” approach asserts that something can fall under a concept to varying degrees depending on how many conditions are met, and how typical or characteristic the particular conditions satisfied are. [19] This way of thinking about concepts as probabilistic clusters of conditions has lead some to advocate a “prototype” or “exemplar” approach, where some instance of the concept that instantiates the core set of conditions comes to represent it as an exemplar or ideal instance. [19] Here there are then degrees of concept application. Something can more or less fall under a particular concept depending on how many and which conditions are satisfied, or how close the analogy is with the exemplar. Definitional structure on the cluster approach then, is a conceptual core that has greater definitional weight than other conditions, without thereby constituting a set of singly necessary and jointly sufficient condition. The definition of a term would then be some weighted cluster or other of the descriptive properties or conditions associated with the concept.
On this approach, water would still have a conceptual core, its molecular composition, but that may not be strictly necessary or sufficient. It might be that we would require some additional conditions. To count as water, there must some cluster of other conditions met. Perhaps we might require that it be made of up a certain range of proportion of “light” (with protium hydrogen atoms) versus “heavy water” (with deuterium hydrogen atoms). Or perhaps we might require some set of conditions related to functioning – safe for humans to drink etc.
But neither of these theories of meaning is fully adequate. Neither can answer questions about what determines the inclusion of conditions in the definition, or about how these conditions are related. They only designate the structure of concepts. What then determines the descriptive content and makes it cohere? Recently, an approach known as the “theory theory,” has provided an answer to these questions. The idea is that the definitional structure of concepts is filled out and made coherent by some theory, scientific or otherwise, that contains the relevant concept. Chemical theory, for instance, gives the definitional conditions of the concept of water (whether the structure is classical or cluster) based on its molecular composition of two hydrogen atoms and one oxygen atom. Other descriptive conditions provided include freezing point, density, appearance and so on. These conditions cohere because the concept of water is given its meaning – definitional and descriptive content – by a chemical theory that identifies which attributes or conditions are important and how they are related. ‘Found in beer and wine,’ for instance, is an attribute of water that is unimportant according to chemical theory and is therefore not included in the definitional content.
So given the theory theory, which of the competing conceptual models is correct? I suspect that they are both applicable, depending on the concept. In the use of everyday non-technical concepts, such as ‘vegetable,’ the cluster model may be better. What counts as a vegetable, for instance, depends on a variety of factors, nutritive functioning, tradition, menu organization, etc. In a typical “meat and three” restaurant of the southern United States, for instance, french fries and peach cobbler sometimes count as vegetables for purposes of ordering from the menu. But in science, the conceptual structure may typically be more tightly specified and the classical model may better. What counts as a quark, electron, element, compound, gene, population, reproduction, neuron, etc. is in normal situations tightly specified by a well-defined set of definitional conditions, and the descriptive periphery does not play a significant role in determining whether something falls under a concept or not. (This may not be true in cases where the concept is still contested.) Similarly, for species, there might be a tightly specified structure and what counts as a species is limited to a well-defined conceptual core. More specifically, what makes something a species is determined by whether it is a segment of a population lineage with cohesion and distinctive fate, and nothing else is ultimately determinative. This is clearly more consistent with the classical approach.
This is not to say that there is no vagueness in the application of classical concepts. The condition themselves may be vague. In the case of species, what counts as a population may be borderline vague in the way that town and city are vague. There is no well-defined boundary between the two even if there are clearly significant differences in terms of size. Instead there is a range of population values that are borderline and could go either way. Similarly with species, there may be borderline vagueness in terms of population. There are no well-defined boundaries that demarcate non-populations and populations. There may also be vagueness (or perhaps ambiguity if there are several well-defined alternatives) in the other conditions. There might be different kinds of lineages, different kinds of cohesion, and different ways to think about evolutionary fates or trajectories.
This vagueness goes hand-in-hand with a referential indeterminacy. If the definitional conditions are vague or ambiguous, in the ways just outlined, then we may not know precisely how to apply the concept to the world. There may be groups of organisms that might be populations but not clearly and unambiguously so. Or there may be within some populations some level of cohesion, but not clearly and unambiguously enough cohesion to count as a species. In these cases, there is referential indeterminacy. It is not precisely clear how to apply the term species. [1] That is not to say, however, that the application of species is not restricted in some way. There will be a reference potential, limits within which the concept might be applied. Some groups of organisms clearly do not count as populations in the right way, and are therefore outside the reference potential. [1] In short, even though the classical conceptual structure may be unambiguous, the application of the concepts may still be problematic.
It may also be that a concept is not yet settled on theoretical grounds, in that there is some dispute about which definitional conditions are correct. This may be because there is some disagreement about the theoretical significance of certain conditions. After Darwin’s Origin, for instance, speciation processes came to be important theoretically in thinking about species in a way that they were not before. Later theorists, especially those associated with the Modern Synthesis, developed a framework for thinking about speciation. In the terms William Whewell used, a species concept may become “explicated” – developed, refined and clarified as it gets applied to the world. [20, 1]
There are some important implications to this analysis of species concepts. First, there is an abstract, objective meaning constituted by a descriptive content associated with the term species, that is independent of any particular use of the term. This content is structured into a definitional core, determined in large part by the overarching theory of evolution, and a descriptive periphery, established at least in part by the contingent, empirical facts about those things that satisfy the theoretical definition. Included here are facts about morphological, behavioral, molecular similarities, processes operating in speciation and cohesion in both sexual and asexual organisms.
Second, this descriptive content is available in part or whole, to anyone who uses the term species, and has knowledge of evolutionary theory and the relevant empirical facts. Depending on context and interests though, focus may fall on either the definitional core or various parts of the descriptive periphery. Like the person for whom water means ‘stuff to drink, bathe with, or swim in,’ one could focus only on specific parts of the periphery. But he or she need not be thought of as denying that water is a compound of hydrogen and oxygen – whether or not he or she knows the molecular composition of water. Similarly, a person could concentrate on limited parts of the descriptive content of the term species, depending on theoretical or practical interests. This person could focus on reproductive isolation, genetic similarity or ecological functioning, without denying a theoretical definition of species that identifies species as segments of population lineages with cohesion and a distinctive fate – whether or not he or she is aware of that particular theoretical definition. So even if the subjective meaning of the terms species may vary in the actual usage of different researchers, there is an objective meaning of the term that is independent of the interests and backgrounds of those who use the term.
There is yet another factor relevant to a full understanding of the species problem. In the practice of science, scientists do not interact with all other scientists. Theoretical physicists, for instance, typically interact little with biologists. And even those within these disciplines scientists don’t interact equally. Rather science gets practiced mostly within smaller groups. Vertebrate systematists, for instance, interact mostly just with other vertebrate systematists. And even within this group there are subgroups based on other factors such as the particular vertebrates studied, and whether molecules, morphology or behavior is the focus. Similarly geneticists who work on very specific problems are most likely to interact. There is then a hierarchy within the practice of science. Those within a particular discipline interact more than they do with those outside the discipline. And those within subdisciplines interact more. At the lowest level there are small groupings where the interaction is greatest. Following David Hull [21, 1], we can think of these small groups as demes - groups of interacting scientists that share distinctive subject matter, problems, methods and values.
Each of the demes may need to engage the species concept in various ways, depending on their distinctive interests, problems, methods and values. And most important for purposes here, each deme may focus on various parts of the descriptive content of the species concept, and ignore other parts. So a geneticist may not need to worry about the morphological similarity typical of species, or the historical dimensions of species in engaging the species concept. And an ecologist may not need to worry so much about genetic similarity. De Queiroz recognizes these differences in interests:
The existence of diverse species concepts is not altogether unexpected, because concepts are based on properties that are of the greatest interest to subgroups of biologists. For example, biologists who study hybrid zones tend to emphasize reproductive barriers, whereas systematists tend to emphasize diagnosability and monophyly, and ecologists tend to emphasize niche differences. Paleontologists and museum taxonomists tend to emphasize morphological differences, and population geneticists and molecular systematists tend to emphasize genetic ones. [12]
We need not follow de Queiroz there though, in thinking of these as different concepts. Rather these are just different emphases on the descriptive content of the theoretical species concept. Moreover, researchers need not focus on just one part of the descriptive content. In behavioral genetics, both genes and behavior are obviously important. And for evolutionary theorists all aspects of species may be relevant.
What is important here is first that particular interests may guide how the members of each deme thinks about species. Second, this does not entail that across demes researchers are using different theoretical concepts. The primary theoretical concept is still available to all. And most importantly, the primary concept constrains the usage of the term species. A geneticist may, for instance, think about species in terms of genes, but not in ways that are inconsistent with the fact that species have two dimensions – populational and historical, as segments of population lineages. The bottom line is that researchers may focus on different parts of the descriptive content that constitute the objective meaning of the term species. Which part they focus on may be determined by contingent, pragmatic factors that are unique to their particular deme.
Not all of these uses of the species term across demes are equally authoritative though. There is a linguistic division of labor. Since evolutionary theory plays an important role in determining the definitional core of the term species, those who work most directly on evolutionary theory have some linguistic authority over the term species. Just as theoretical particle physicists have linguistic authority over terms like quark and tell us what quarks really are through a theoretical definition, evolutionary theorists have linguistic authority over the term species, and tell us what they really are through a theoretical definition. So what constitutes the definitional core of a term is determined by those with linguistic authority. What this means is that some uses of the term species are parasitic on other more constitutive uses. And just as anyone who uses the term quark should know and respect the authoritative meaning established by theoretical physicists, anyone who uses the term species should know and respect the authoritative meaning of that term as determined by those with linguistic authority.
The species problem has been in part a consequence of the neglect of two facts: first, there is a social hierarchy in science that governs interaction, ultimately into demes; and second, there is a division of linguistic labor that arises out of this hierarchy. Those who work in these demes do not always recognize or respect this division of linguistic labor, and sometimes treat their own usage as authoritative. If so, then it would seem that there really are different concepts in use. The invertebrate systematist’s concept is seemingly not the vertebrate systematist’s, which is not the ecologist’s, and which is in turn not the evolutionary theorist’s. Here the use of apparently inconsistent concepts is an illusion, generated by a misunderstanding of the structure and content of the theoretical species concept, and a neglect of the division of linguistic labor. By understanding all this, we can, in effect, “dissolve” the species problem
Some conceptual problems are relatively easy to solve. We propose or invent a new concept that works better. Or we modify a current concept to better serve theoretical purposes. Both kinds of solutions are central to the practice and progress of science. While these solutions are not easy in the sense that the solutions are always or even ever obvious, they are easy in that they are straightforward and uncomplicated. The species problem is not easy in this way though. Its solution requires a sophisticated understanding of how scientific concepts work, are structured and get content. It also requires an understanding of how they work within the social structure of science. This complexity explains the long-endurance of the species problem. In part, the understanding of how concepts work was lacking. Only recently do we have the theoretical framework to understand such conceptual problems. So, just as we need evolutionary theory to understand what species are, we need a satisfactory conceptual theory to understand complex conceptual problems like the species problem.
There are, however, worries still lurking. What if there are theoretically important differences between the various segments of population lineages that we are identifying as species? Perhaps there are crucial differences between vertebrates, invertebrates, fungi and bacteria such that they should not all be regarded as forming the same kinds of species. What if, on our best theoretical understanding, there really do seem to be different kinds of species things? Is there really then, a single, fully adequate species concept? Or might there be multiple, irreducible concepts? If so, then the species problem returns, and not just as an illusion.
Marc Ereshefsky argues for just this kind of possibility. He accepts the basic idea that species are genealogical - historical lineages, but denies that they are all the same kinds of lineages. First he begins by noting there are three main ways of thinking about species - in terms of interbreeding, ecology and monophyly. Then he argues that these are different kinds of lineages produced by different evolutionary forces.
The positive argument for species pluralism is simply this: according to contemporary biology, each of the three approaches to species highlights a real set of divisions in the organic world… All of the organisms on this planet belong to a single genealogical tree. The forces of evolution segment that tree into a number of different types of lineages, often causing the same organisms to belong to more than one type of lineage. The evolutionary forces at work here include interbreeding, selection, genetic homeostasis, common descent, and developmental canalization… The resultant lineages include lineages that form interbreeding units, lineages that form ecological units, and lineages that form monophyletic taxa. [22]
These different kinds of lineage concepts apply in different ways to biodiversity. Some organisms, for instance, may not form ecological lineages. Consequently, that lineage concept would therefore not apply.
It is not initially obvious how to respond to Ereshefsky’s pluralism. He considers and then rejects the suggestion that there is an additional parameter that can unite these three different kinds of lineages under one conception. [22] But at some level he seems to be already thinking of them under one conception. To even think of them as three kinds of lineages seems to assume that there is an overarching, more general way of thinking about species based on the idea of a lineage. It seems that if the theoretical concept is general enough, then surely it can be universal.
More worrisome perhaps, what if the species concept itself is ultimately unnecessary and misguided, the way the outdated ideas of phlogiston and vital force are? From my perspective as a philosopher, this anti-realist worry is abstract and not given much force by either evolutionary theory or what we know about the world. Nonetheless it cannot by dismissed on purely philosophical grounds. The answer, I believe, will be found ultimately in the practice of science. Is the theoretical species concept discussed here ultimately necessary for the practice of the biological sciences? It seems to me that it is, but the future might prove otherwise.
Clinical decision support (CDS), leveraging features within the electronic health record (EHR), is increasingly recognized as a valuable tool for providing cognitive support for diagnosis, severity assessment, clinical management, and disposition. CDS is defined as “providing clinicians with clinical knowledge and patient-related information, intelligently filtered, and presented at appropriate times to enhance patient care” [1, 2]. In the best examples, CDS systems guide clinician decision-making and actions [3], prevent errors [4, 5], improve quality [6, 7], reduce costs [8], save time [9], and promote the use of evidence-based recommendations [10]. CDS has the potential to enable clinicians to better address rising information needs, providing the opportunity to pick up on subtle early indications of risk or vulnerability while sorting through an avalanche of data. The availability of evidence-based guidelines for clinical care and for CDS implementation encourages providers to deliver the best, evidence-based care available.
The potential solution that CDS represents is limited by problems associated with improper design, implementation, and local customization. The interaction of poorly designed technologies, organizational constraints, and lowered functional capability has the potential to multiply latent risks in healthcare technologies. Computerized systems that are designed to help clinicians make decisions fail two-thirds of the time as a result of factors such as providing incorrect information or providing information at a point that is incompatible with the workflow [11]. There are surprisingly low acceptance rates for some forms of CDS; approximately 91% of real-time CDS is overridden or ignored by clinicians due to time constraints, perceived misleading alerts, or their patients did not meet certain criteria (such as age or condition) [12]. High rates of alert overrides have been widely acknowledged as a deterrent to acceptance and appropriate use of CDS [13]. Alert overload is detrimental to clinician performance, not only because it can lead to errors by overriding true positive alerts, but also because the false alerts consume clinicians’ time and mental resources. The overabundance of pop-ups, notifications, and check-boxes is highly distracting and produces sensory overload and a perception of extra work without value which contributes to the development of negative perceptions of health information technology. These negative perceptions contribute to low job satisfaction, early retirement, and high turnover [14]. As a result, research indicates that the use of automated, and real-time alerts are only modestly effective in increasing the performance of key tasks [15].
Backed by sophisticated analytics and algorithms to advance clinical decision-making, coupled with increasing pressure to increase throughput and reduce costs, the EHR is often thought to be the solution to the deadly problems of adverse events and inappropriate prescribing. However, the EHR often provides alerts that are perceived by the physicians as unnecessary and clinically insignificant, contributing to alert fatigue and provider burnout [16]. Despite an emphasis on EHR usability, little progress has been made to protect end-users from inadequately designed workflows and unnecessary interruptions [17]. Clinicians’ lack of motivation to use CDS appears to be related to the perceived value of the function combined with the lack of integration into workflow [18]. By identifying factors that predict clinically insignificant alerts and inappropriate responses, informatics personnel can improve alert logic to account for factors such as workflow and patient complexity, increasing specificity of alerts. As a result of the improved specificity, clinicians may experience less alert fatigue, override fewer alerts, and provide better care for patients with conditions that warrant serious alerts. The ultimate goal is to integrate clinical research with human factors engineering to develop optimized CDS systems to satisfy the information needs of clinicians as they formulate, debate, and discuss next steps in treatment or diagnostics for patients. CDS interventions improve care processes and outcomes when they achieve the CDS Five Rights—i.e., deliver the right information to the right people using the right formats via the right channels at the right times in the workflow [19]. This chapter leverages the Five Rights of CDS framework to describe good and bad examples of CDS design, development, and implementation; demonstrate the application of human factors engineering principles to CDS; and describe emerging trends to optimize data analytics, usability, workflow, and design.
Human factors engineering (HFE) is an established scientific discipline used in many high-reliability organizations. HFE takes a system approach to identify crucial components of the man-machine interface and human interactions such as communication, teamwork, and culture. By acknowledging human limitations and system vulnerabilities, HFE minimizes and mitigates human frailties to optimize system performance [20]. Given the complexity of healthcare systems and processes, current HFE healthcare research emphasizes the need for increasing partnerships between human factors engineers and clinical medicine to enhance the standard of care through in-depth evaluation and thoughtful system redesign. Human factors principles, standards, and guidelines provide considerations for the design and development of CDS.
Human factors principles suggest that the format and presentation of the CDS may not be readily applied in the busy acute clinical setting and fail to provide confidence to clinical staff. Effective presentation of an alert, including how and what is displayed, may offer better cognitive support during busy patient encounters and may help providers extract information quickly. Following good human factors principles, alerts should signal to an important matter, inform, and guide the provider [21]. Traditionally, alerts are system components that serve to direct a user’s attention to information related to a value that has exceeded a parameter threshold [22]. Newer alerts, however, have advanced to the point of becoming a “type of automation that supplements the human powers of observation and decision” [23]. Alerts amplify the capacity of clinicians to continuously monitor changes in patient status and thereby support timely intervention. Alerts should be prioritized according to the severity of consequence that could be prevented by taking corrective action (severity) and according to the time available for successful corrective action to be performed (urgency). Substantial human factors analysis remains to be done to realize the potential benefits of CDS.
A useful framework for achieving success in CDS design, development, and implementation is the “CDS Five Rights” approach [24]. The CDS Five Rights model states that we can achieve CDS-supported improvements in desired healthcare outcomes if we communicate: [1] the right information: evidence-based, suitable to guide action, pertinent to the circumstance; [2] to the right person: considering all members of the care team, including clinicians, patients, and their caretakers; [3] in the right CDS intervention format: such as an alert, order set, or reference information to answer a clinical question; [4] through the right channel: for example, a clinical information system such as the EHR, a personal health record (PHR), or a more general channel such as the Internet or a mobile device; [5] at the right time in workflow: for example, at time of decision/action/need. CDS has not reached its full potential in driving care transformation, in part because opportunities to optimize each of the five rights has not been fully explored and cultivated [25].
Right information is defined as providing the right information to end users (e.g., clinicians, patients), presenting evidence-based data that is shaped by national clinical guidelines, performance measures, and predictive analytics. The evidence-based data should be relevant to the issue at hand and actionable, meaning the information supports driving clinical actions [19, 24]. The rapid acceleration of technology and the convergence of predictive analytics and human factors address Centers for Medicare and Medicaid Services (CMS) Stage 3: Meaningful Use [26]. The process of integrating real-time analytics into clinical workflow represents a shift towards more agile and collaborative infrastructure building, expected to be a key feature of future health information technology strategies. As interoperability and big data analytics capabilities become increasingly central to crafting the healthcare information systems of the future, the need to address issues that ease the flow of health information and communication become even more important.
Without tools that select, aggregate, and visualize relevant information among the vast display of information competing for visual processing, clinicians must rely on cues by “hunting and gathering” in the EHR. Alerts that embody “right information” should provide just enough data that drives end user action, but not so much data so as to cause alert fatigue [27]. Providing too much information to the end user can spur cognitive overload, with the CDS being ignored or overridden.
In a random sample survey of 300 ambulatory care clinicians using an electronic prescribing system, attitudes towards a drug-drug interaction (DDI) alerting system were measured. In relation to the first of the five CDS rights, relevant and right information, 58% of survey respondents noted dissatisfaction with alerts being triggered by discontinued medications [28]. This dissatisfaction towards alerts that lack usefulness in the clinical environment has been noted by physicians as a potential reason for low rates of alert acceptance [29].
Recent literature has attempted to identify usability design principles relevant to CDS alerting, specifically in the context of medication alerting. Principles that directly relate to right information (first of the Five Rights) include: display relevant data within medication alerts that support the decision-making process, make actionable suggestions based on evidence but do not actively enforce those actions, and provide evidence to support the alerting system (e.g., clinical evidence, patient context, imaging) [30]. The majority of CDS systems assume the diagnostic process is completed accurately and do not provide features beyond general alerts, reminders, summary dashboards, and automated information retrieval. These solutions are not, in fact, decision support. DDI alerts are frequently used CDS alerts that are created to guide appropriate medication management in patients. DDI alerts are highly disregarded by physicians with 49–96% of safety alerts overridden [31] by the physician, which could possibly be due to alert fatigue. Alert fatigue occurs due to a variety of reasons, with patient specificity playing a role. DDI alerts that do not incorporate patient specific context hold varying levels of significance. “An interaction of little relevance to one patient may be of great relevance to another.” In an ideal alert, specific patient context would be used to tailor the specific presentation of these DDI alerts based on age, comorbidities, or medication history [32].
Future innovative approaches will enhance CDS to quantify uncertainty in diagnostic problem solving and present the clinician with additional information regarding probability and likelihood of a diagnosis in the context of diagnoses with similar presentations. Diagnostic suggestions and guidelines are integrated as CDS rules that are extracted, rendered, and then delivered through CDS systems to provide clinicians with just-in-time information, for single disease states, assuming the diagnostic process is completed accurately. When the diagnosis is not immediately obvious, clinicians can use differential diagnosis support tools as an aid to rapidly identify diagnostic possibilities, but this method is highly subject to provider bias and requires manual input. More powerful and accurate analytic layers embedded into EHRs might mitigate both the cause and likelihood of errors (e.g., misdiagnosis) and could allow for more rapid, accurate diagnosis. Analytics-driven CDS can highlight areas prone to poor clinical decision making, increase our knowledge about conditions that are vulnerable to being missed and help prioritize diagnostic errors. The ultimate goal is to integrate clinical research, design, and systems engineering to develop optimized CDS systems – satisfying the information needs of clinicians as they formulate, debate, and discuss next steps in the diagnosis and clinical management of patients.
To the right person (second of the Five Rights) involves providing CDS interventions to the appropriate parties that have the capabilities to take appropriate action. Possibilities of “the right person” include: care team members, clinicians & care providers, patients & patient caretakers [16, 17].
Usability design principles related to the right person include displaying alerts to primary clinicians, as well as clinicians who do not have primary responsibility to serve as a second check. This is done by indicating to all professionals involved in the patient’s care that there is information available, as well as informing the relevant care team as to how previous alerts were handled, if documented. Additional strategies include system-level alerts like the Rothman Index “quilt view” for alerting [33]. The Rothman Index is a comprehensive rating of overall patient condition in the hospital setting. The index is used at many medical centers and calculated based on vital signs, laboratory values, and nursing assessments in the EHR. In addition to patient-specific CDS, the “quilt view” assigns a risk color to each patient, providing an overall indicator of a unit’s condition, available for viewing by both clinicians with primary responsibility of the patient and unit leadership (e.g., a unit’s charge nurse).
Providing correct information is not limited to only clinicians but can be extended to the patient. Patient decision support interventions are attempts to use CDS to translate medical knowledge to patients. Patient facing CDS assist patients in gaining a better understanding and comprehension of medical decisions. Patient facing CDS shows great promise in assisting shared decision making between physician and provider, but there are still obstacles to overcome regarding implementation. A recent systematic review of literature related to implementation of patient decision support interventions have shown that there are administrative and clinical challenges in implementation of these patients facing CDS [34].
There is a significant push toward providing the important and informative information to the appropriate users in the clinical settings in a consistent and usable manner. The Agency for Healthcare Research and Quality (AHRQ) funded demonstration projects that yielded important knowledge about translating narrative guidelines into formats that can be used by EHRs, and about implementing CDS in clinical settings [35]. AHRQ also acknowledge a range of important research questions still to be answered in the areas of guideline translation, local CDS implementation, clinician and patient factors that affect success, and policy and sustainability issues. Rather than replicate the technical advances that have been made in the field, future research will focus on translating a CDS tool into a framework oriented towards streamlining creation, implementation, and dissemination. Most of the “work” performed by everyday clinicians for patients is highly individualized. Thus, a deep understanding of the local, highly personal context is required to get CDS “right.” Moreover, getting CDS “wrong” will not be the equivalent of not providing any CDS. Rather, there is a real risk of inefficiency (e.g., interruption and distraction, leading the clinician to forget what they were thinking about before the CDS) and patient harm (e.g., acceptance of CDS that is inappropriate given the specific patient’s clinical situation).
Alert and warning complexity are especially prevalent in health information technology. Despite this issue, there is little consensus on how alerts should be generated and displayed to the user [36] as well as what level of interaction is appropriate. CDS may be implemented in various formats (e.g. alerts, order sets, protocols, patient monitoring systems, info buttons). Consequently, it becomes important for implementers to identify the issues and problems they are trying to solve and choose the best format to resolve the problem at hand (third of the Five Rights). Furthermore, when developing a CDS program, implementers should create an inventory of current systems to determine which CDS tools are available, which tools need to be developed in-house, and which tools need to be purchased through a vendor. Specifically, there is a lack of knowledge regarding the most effective ways to differentiate alerts, highlighting important pieces of information without adding noise, to create a universal standard [37]. While underlying models and algorithms of CDS have been intensively studied, there remains a lack of evidence-based guidelines in terms of functional and design requirements of the system.
The purpose of an alert is to prompt an operator action. Poor alert system design has been a contributing cause of adverse events in numerous healthcare systems worldwide. The appeal of access to a large amount of clinical data must be balanced against the real possibility of information overload. Research demonstrates that medical displays are often incompatible with practitioners’ workflow and unnecessarily fragment patient information [38]. Information is often spread across multiple tabs and locations that require piecemeal information search and acquisition. This may confound practitioners’ ability to detect evolving changes, make it more difficult to attain a holistic view of a patient’s health state, lead to care inefficiencies, and frustrate clinicians. Recognizing limits on human working memory, clinicians need external automated information systems to support early detection of patient deterioration and improve timeliness of therapeutic response. The design of alerts must improve the process of information display, reducing cognitive load on the working memory of the provider and improving the usual process that is often characterized by fragmented, non-directed information gathering.
In the absence of evidence-based guidelines specific to EHR alerting, effective alert design can be informed by several guidelines for design, implementation, and reengineering that help providers take the correct action at the correct time in response to recognition of the patient’s condition [39]. In a narrative review to inform EHR alert optimization and clinical practice workflow, 42 unique recommendations were included and classified as interface, information, and interaction features [39]. The recommendations identified are described to help optimize design, organization, management, presentation, and utilization of information through presentation, content, and function. Alarm systems should be designed for and driven by human factors rather than technical capabilities. Easterby suggests seven psychological processes to be considered in display design that determine the limits of display formats: [1] detection – determining the presence of an alarm; [2] discrimination – defining the differences between one alarm and another; [3] identification – attributing a name of meaning to an alarm; [4] classification – group the alarms with a similar purpose of function; [5] recognition – knowing what an alarm purports to mean; [6] scaling – assigning values to alarms; [7] ordering and sequencing – determining the relative order and priority of alarms [40].
Not only must a CDS provide information to the correct information to the appropriate audience in a usable format, the CDS must provide the information via the most effective and efficient channel (fourth of the Five Rights). CDS interventions can be delivered through an EHR, PHR, computerized physician order entry, an app running on a smartphone, and—if necessary—in paper form via flow-sheets, forms, and labels. Typically, organizations deploying CDS will focus very heavily on interruptive alerts—especially to physicians via computerized physician order entry (CPOE). Although alerts can be a powerful CDS intervention, they tend to be used excessively and inappropriately, resulting in commonly reported CDS problems such as alert overrides, physician frustration, and backlash. If the physician is the right person, then the EHR may be the best platform for delivering the alert. However, if a significant other is the right person, then the right platform may be a text messaging app running on a smartphone.
Emerging trends include the use of mobile technology and patient portals as CDS channels. Healthcare systems are gradually moving toward new models of care based on integrated care processes shared by various care givers and on an empowered role of the patient. Good communication between patients, their providers and caregivers improve patient satisfaction and are central to optimal outcomes. The explosion of mobile technologies and healthcare applications represents a growing opportunity to optimize care delivery. Availability of medical information through internet-enabled smartphones and tablets has increased significantly. These applications provide medical providers with recommendations for treatment, disposition, and prescriptions conforming to the most up-to-date evidence-based guidelines; allow instant access to journals and information sources at the click of a button; and deliver a plethora of CDS tools. Patients are also using the technology to communicate with their providers, research medical conditions, and become more active participants in their care. Mobile applications illustrating complex medical conditions and processes and online resources are being recommended by physicians to aid the patient in this role.
The clinical space is polluted with alerts that are unheeded. Despite the theoretical promise of CDS systems, their development and successful implementation is poorly managed [41]. Right workflow (fifth of Five Rights) is defined as making sure information is presented at the right time and is available when needed. For example, passive alerts can appear in a prominent place in the EHR – a decision based on the results of a workflow analysis – and can be processed once the physician completes the physical examination. An alternative method would be when the physician closes the patient record they are given a prompt informing them there are outstanding patient alerts that need to be processed. The application of human factors in determining the right workflow includes but is not limited to ethnographic research include workflow analysis and usability testing.
Workflow analysis is a process in which researchers examine the progression of workflows to improve efficiency. Ethnographic research is a qualitative method where researchers observe and/or interact with system users in their real-life environment. Observation is a systematic data collection approach by which information is gathered by watching behavior, events, and people in natural settings and naturally occurring situations. User observation is unique in that it combines the researcher’s participation in the lives of the people and processes under study while also maintaining a professional distance [42]. According to Angrosino, “Observation is the act of perceiving the activities and interrelationships of people in the field setting” [43]. The demand for usability testing is becoming increasingly important as healthcare moves toward a commitment to the Triple Aim: improving the experience of care, improving the health of populations, and reducing per capita costs of healthcare. Usability testing is a critical step in informing and helping define the standard of care for healthcare system, promoting safe, high-quality care for patients. It provides the opportunity to assess user behavior, interaction, and performance data to measure how the design of medical devices, equipment, practices, and protocols affect performance, quality, workflow (cognitive and clinical), and patient safety [44, 45]. The goal is to provide evidence to support the selection and implementation of safe and user-friendly CDS, inform decision-making, and develop better solutions that update, unify, and generally improve the usability of healthcare providers’ tools and systems related to optimal diagnosis and clinical management.
Recent literature supports that using the Five Rights of CDS framework as a foundation for CDS design, development, and implementation can have positive impacts on CDS acceptance as well as positive outward reaching effects on clinician workflow, improved patient care, and increased patient safety.
To provide a useful, standardized, and evidence-based diagnostic aid, Kharbanda et al. developed a CDS tool to aid in the evaluation and management of treatment care for pediatric patients with suspected appendicitis in the emergency department (ED). The CDS took a three-component approach, combining: a standardized abdominal pain medication order set; a web-based stratification tool used to classify the pediatric patient as low, medium, or low-risk for appendicitis; and a “time of ordering” alert with steps for treatment and imaging guidance (e.g., medication and imaging options) for the identified level of risk [46]. The implementation of an evidenced based CDS reduced the number of costly computed tomography (CT) imaging, potentially reducing the number of unnecessary radiation exposure to developing children.
Using a Bluetooth enabled blood glucose (BG) meter in conjunction with a cloud-based clinical decision support system (CDSS), clinicians were able to increase efficiency and efficacy of glucose monitoring in diabetic patients [47]. The appropriate technology enabled patients to increase self-monitoring. Clinicians were able to more closely monitor patient’s BG readings and suggest insulin dose and titration changes between appointments, as applicable, using the patient’s BG meter, text message, or phone call. Use of the CDSS aided the patient’s care team to increase efficiency in their workflow and provide improved patient care regarding getting patients within target glucose ranges.
In addressing the deficiencies of appropriate medication ordered for patients with impaired renal function and the lack of re-assessment of medication appropriateness as patients’ symptoms change, Awdishu et al. developed a dynamic CDS tool within an EHR that provides renal medication dosing suggestions and alternative therapies suggestions at the initial time of medication prescription (“prospective alert”) and temporal alerts during continuous monitoring of patients’ renal function (“look-back alerts”) [48]. All alerts only fired during the order entry workflow (i.e., at the point of placing and/or updating a medication order). Study results indicate the alerts had a significant impact on the selection of appropriate drug prescription during medication initiation, in addition to significant improvements for appropriate medication adjustments.
Exploring additional channels for CDS, Burgess et al. evaluated the impact of an online care processing models (CPM), on the quality of care for patients with lower extremity cellulitis (LEC). When the CPM was utilized, there was an increasing trend in appropriate drug prescription during medication initiation and at patient discharge [49].
Despite continued growth and successful implementation of CDS tools, CDS has not reached its full potential in driving health care transformation [25]. Opportunities to optimize each of the five rights continue to be highlighted by challenges and barriers such as gaining full acceptance from users from various disciplines, cultures, and use settings; continually maturing technology standards that restrict cohesive integration; and the growing resource requirements needed to keep customized solutions up to date [50].
Human factors approach underpins patient safety and quality improvement science, offering an integrated, evidence-based, coherent approach to improving the science behind health care delivery. Improvements in display management have commenced, but there is great need for further progress. As demands on healthcare providers increase (the result of increasing availability and complexity of medical devices and delivery processes, higher patient illness acuity, higher costs for process interruptions), the potential for problems are increasing. Safety-critical interactions with the EHR are especially common, challenging, and important. In safety critical environments (such as hospitals), the importance of well-designed, usable interfaces is increased precisely because of the potential for catastrophic outcomes. Time pressure, competing demands, and ambiguous alert design reduce a user’s opportunity to detect signals in the face of noise and may lead to inadvertent confirmation bias. The importance of and need for appropriate user interface design is increasingly evident in such environments.
The efficiency of alert design depends on several guidelines for design, implementation, and reengineering that help providers to take the correct action at the correct time in response to recognition of the patient’s condition. Hollifield proposed the following six guidelines for alert development: [1] alarms are properly chosen and implemented; [2] alerts are relevant, clear, and easy to understand; [3] operators can rapidly assess the relative importance of alerts; [4] operators can process alert information during high frequency events; [5] priority determination; and [6] alert management enhances the operator’s ability to make a judgment based on experience and skill [51]. Stanton and Stammer place importance on alert prioritization and organization, which impact early detection of critical alerts [52]. Information must be presented so it is compatible with human capabilities and limitations, so that the system remains usable for the provider in all situations [21]. We considered aspects of display design in relation to taxonomy of provider psychological process that illustrate the different nature of the two types of enhanced visual display models developed for this research.
CDS can be utilized across a variety of conditions and circumstances to promote optimal care. CDS has ultimately improved adherence to recommended care standards and may result in lasting improvements in the clinical setting [53, 54]. However, the accuracy and acceptance of CDS can be limited by numerous factors, including poor usability and too many false positive alerts. There is growing evidence that health information technology interventions ultimately improve patient outcomes through early diagnosis and recommendations of evidence-based protocols [55]. The world of cognitive support is promising due the innovation and growth in this area of study.
The authors declare no conflict of interest.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"721",title:"Fuzzy Control Systems",slug:"fuzzy-control-systems",parent:{title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:3,numberOfAuthorsAndEditors:60,numberOfWosCitations:17,numberOfCrossrefCitations:20,numberOfDimensionsCitations:31,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"fuzzy-control-systems",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7485",title:"Applied Modern Control",subtitle:null,isOpenForSubmission:!1,hash:"c7a7be73f7232e08867ed81bdf9850c6",slug:"applied-modern-control",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/7485.jpg",editedByType:"Edited by",editors:[{id:"180550",title:"Dr.",name:"Le",middleName:null,surname:"Anh Tuan",slug:"le-anh-tuan",fullName:"Le Anh Tuan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6806",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"fedf4479b910cbcee3025e391f073417",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",bookSignature:"Ali Sadollah",coverURL:"https://cdn.intechopen.com/books/images_new/6806.jpg",editedByType:"Edited by",editors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"39",title:"Fuzzy Controllers",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"fuzzy-controllers-theory-and-applications",bookSignature:"Lucian Grigorie",coverURL:"https://cdn.intechopen.com/books/images_new/39.jpg",editedByType:"Edited by",editors:[{id:"18103",title:"Dr.",name:"Teodor Lucian",middleName:null,surname:"Grigorie",slug:"teodor-lucian-grigorie",fullName:"Teodor Lucian Grigorie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"62600",doi:"10.5772/intechopen.79552",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1057,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"13968",doi:"10.5772/13466",title:"Extended Kalman Filter for the Estimation and Fuzzy Optimal Control of Takagi-Sugeno Model",slug:"extended-kalman-filter-for-the-estimation-and-fuzzy-optimal-control-of-takagi-sugeno-model",totalDownloads:2189,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Agustín Jiménez, Basil M.Al-Hadithi and Fernando Matía",authors:[{id:"6013",title:"Dr.",name:"Basil M.",middleName:null,surname:"Al Hadithi",slug:"basil-m.-al-hadithi",fullName:"Basil M. Al Hadithi"},{id:"16314",title:"Prof.",name:"Agustin",middleName:null,surname:"Jimenez",slug:"agustin-jimenez",fullName:"Agustin Jimenez"},{id:"16315",title:"Prof.",name:"Fernando",middleName:null,surname:"Matia",slug:"fernando-matia",fullName:"Fernando Matia"}]},{id:"13973",doi:"10.5772/13879",title:"Fuzzy Maximum Power Point Tracking Techniques Applied to a Grid-Connected Photovoltaic System",slug:"fuzzy-maximum-power-point-tracking-techniques-applied-to-a-grid-connected-photovoltaic-system",totalDownloads:3568,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Neson Diaz, Johann Hernández and Oscar Duarte",authors:[{id:"16158",title:"BSc.",name:"Nelson",middleName:null,surname:"Diaz",slug:"nelson-diaz",fullName:"Nelson Diaz"},{id:"18354",title:"PhD.",name:"Oscar",middleName:null,surname:"Duarte",slug:"oscar-duarte",fullName:"Oscar Duarte"},{id:"18355",title:"MSc.",name:"Johann",middleName:null,surname:"Hernandez",slug:"johann-hernandez",fullName:"Johann Hernandez"}]}],mostDownloadedChaptersLast30Days:[{id:"63931",title:"Modeling and Attitude Control of Satellites in Elliptical Orbits",slug:"modeling-and-attitude-control-of-satellites-in-elliptical-orbits",totalDownloads:756,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Espen Oland",authors:[{id:"248599",title:"Associate Prof.",name:"Espen",middleName:null,surname:"Oland",slug:"espen-oland",fullName:"Espen Oland"}]},{id:"63072",title:"Fuzzy Controller-Based MPPT of PV Power System",slug:"fuzzy-controller-based-mppt-of-pv-power-system",totalDownloads:1139,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"M. Venkateshkumar",authors:[{id:"243101",title:"Dr.",name:"M",middleName:null,surname:"Venkateshkumar",slug:"m-venkateshkumar",fullName:"M Venkateshkumar"}]},{id:"63709",title:"Energy Efficient Speed Control of Interior Permanent Magnet Synchronous Motor",slug:"energy-efficient-speed-control-of-interior-permanent-magnet-synchronous-motor",totalDownloads:673,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Olga Tolochko",authors:[{id:"249845",title:"Dr.",name:"Tolochko",middleName:null,surname:"Olga",slug:"tolochko-olga",fullName:"Tolochko Olga"}]},{id:"62600",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1057,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"63882",title:"An Integrated Multicriteria and Fuzzy Logic Approach for Municipal Solid Waste Landfill Siting",slug:"an-integrated-multicriteria-and-fuzzy-logic-approach-for-municipal-solid-waste-landfill-siting",totalDownloads:474,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Abdelwaheb Aydi",authors:[{id:"25247",title:"Dr.",name:"Abdelwaheb",middleName:null,surname:"Aydi",slug:"abdelwaheb-aydi",fullName:"Abdelwaheb Aydi"}]},{id:"62654",title:"Fuzzy Information Measures with Multiple Parameters",slug:"fuzzy-information-measures-with-multiple-parameters",totalDownloads:414,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Anjali Munde",authors:[{id:"254393",title:"Dr.",name:"Anjali",middleName:null,surname:"Munde",slug:"anjali-munde",fullName:"Anjali Munde"}]},{id:"13973",title:"Fuzzy Maximum Power Point Tracking Techniques Applied to a Grid-Connected Photovoltaic System",slug:"fuzzy-maximum-power-point-tracking-techniques-applied-to-a-grid-connected-photovoltaic-system",totalDownloads:3568,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Neson Diaz, Johann Hernández and Oscar Duarte",authors:[{id:"16158",title:"BSc.",name:"Nelson",middleName:null,surname:"Diaz",slug:"nelson-diaz",fullName:"Nelson Diaz"},{id:"18354",title:"PhD.",name:"Oscar",middleName:null,surname:"Duarte",slug:"oscar-duarte",fullName:"Oscar Duarte"},{id:"18355",title:"MSc.",name:"Johann",middleName:null,surname:"Hernandez",slug:"johann-hernandez",fullName:"Johann Hernandez"}]},{id:"13981",title:"Fuzzy Logic Deadzone Compensation for a Mobile Robot",slug:"fuzzy-logic-deadzone-compensation-for-a-mobile-robot",totalDownloads:1728,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Jun Oh Jang",authors:[{id:"15582",title:"Dr.",name:"Jun Oh",middleName:null,surname:"Jang",slug:"jun-oh-jang",fullName:"Jun Oh Jang"}]},{id:"13980",title:"Acquisition and Chaos-Entropy Analysis of Individuality and Proficiency of Human Operator’s Skill Using a Fuzzy Controller",slug:"acquisition-and-chaos-entropy-analysis-of-individuality-and-proficiency-of-human-operator-s-skill-us",totalDownloads:1473,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-controllers-theory-and-applications",title:"Fuzzy Controllers",fullTitle:"Fuzzy Controllers, Theory and Applications"},signatures:"Yoshihiko Kawazoe",authors:[{id:"15211",title:"Prof.",name:"Yoshihiko",middleName:null,surname:"Kawazoe",slug:"yoshihiko-kawazoe",fullName:"Yoshihiko Kawazoe"}]},{id:"63378",title:"Convexity, Majorization and Time Optimal Control of Coupled Spin Dynamics",slug:"convexity-majorization-and-time-optimal-control-of-coupled-spin-dynamics",totalDownloads:353,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applied-modern-control",title:"Applied Modern Control",fullTitle:"Applied Modern Control"},signatures:"Navin Khaneja",authors:[{id:"249371",title:"Prof.",name:"Navin",middleName:null,surname:"Khaneja",slug:"navin-khaneja",fullName:"Navin Khaneja"}]}],onlineFirstChaptersFilter:{topicSlug:"fuzzy-control-systems",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/169932/ng-tham-fatt",hash:"",query:{},params:{id:"169932",slug:"ng-tham-fatt"},fullPath:"/profiles/169932/ng-tham-fatt",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()