Part of the book: Advances in Photonic Crystals
Nowadays, the semiconductor industry is reaching an impasse due to the scaling-down process according to Moore’s Law, initiated back in 1960s, for the Metal-Oxide-Technology in use. To overcome such issue, the semiconductor industry started to foresee novel materials that allow the development of nanodevices with a broad variety of characteristics such as high switching speed, low power consumption, robust, among others; that can overcome the inherent issues for Silicon. A few “exotic materials” appear such as Graphene, MoS2, BN-h, among others. However, the time for the novel technology to be mature is a few decades in the future. To allow the “exotic materials” to mature, the semiconductor industry requires of novel nano-structures that can overcome a few of the issues that Silicon-based technology is facing today. A key alternative is based on hybrid structures. Hybrid structures encompass two dissimilar technologies nano-electromechanical systems with the well known Metal-Oxide-Technology. The hybrid nano-structure provides a broad variety of options to be used in such as transistors, memories and sensors. These hybrid devices can give enough time for the technology based on “exotic materials” to be reliable as Silicon based is.
Part of the book: Complementary Metal Oxide Semiconductor