Descriptive statistics
\r\n\t
",isbn:"978-1-83969-657-2",printIsbn:"978-1-83969-656-5",pdfIsbn:"978-1-83969-658-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"eb6769bb88a11d0d7d681449b7e14e4a",bookSignature:"Dr. Barun Shankar Gupta",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10667.jpg",keywords:"Stoichiometry, Topology, Assembly, Entropy, Lattice Structure, Micro-Alloy, Phase Diagram, Time-Temperature-Transformation (TTT), Dispersion, Solubility and Diffusion, Interface Interactions, Ductility and Rigidity",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 8th 2021",dateEndSecondStepPublish:"April 5th 2021",dateEndThirdStepPublish:"June 4th 2021",dateEndFourthStepPublish:"August 23rd 2021",dateEndFifthStepPublish:"October 22nd 2021",remainingDaysToSecondStep:"14 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A well-known researcher in the field of surface properties investigation of polymers and composites, reviewer of several international journals on materials, member of professional bodies, and author of books.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"343769",title:"Dr.",name:"Barun Shankar",middleName:null,surname:"Gupta",slug:"barun-shankar-gupta",fullName:"Barun Shankar Gupta",profilePictureURL:"https://mts.intechopen.com/storage/users/343769/images/system/343769.jpg",biography:"Dr. Barun Shankar Gupta completed his Ph.D. from the Department of Civil & Transport Engineering, Norwegian University of Science and Technology (NTNU), Norway. Before his doctorate, he has worked as a researcher at the universities in U.S.A., France and Canada. As a technologist, he worked at the Paharpur Cooling Towers Ltd. India, which is worlds' leading process cooling equipment manufacturer. He owns a patent, a member of several scientific communities, editor of international journal, has written and presented more than twenty research articles, book, and is serving as reviewer to several international journals. Presently, he is working at the Indian Institute of Crafts and Design (IICD), an undertaking of the Department of Industry, Government of Rajasthan, India.",institutionString:"Indian Institute of Crafts & Design",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/345821/images/16410_n.",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh Shamrao",surname:"Kamble",slug:"ganesh-shamrao-kamble",fullName:"Ganesh Shamrao Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48560",title:"Assisted Cycling Therapy for Persons with Down Syndrome — Implications for Improvements in Cognitive Functioning",doi:"10.5772/60636",slug:"assisted-cycling-therapy-for-persons-with-down-syndrome-implications-for-improvements-in-cognitive-f",body:'Down syndrome (DS) is one of the most prevalent chromosomal conditions, affecting 1 in every 691 live births in the U.S.A. [1]. One of the main features of DS includes cognitive impairments. Specifically, adolescents with DS have been shown to have lower levels on executive functions including working memory, inhibition, planning and set switching than typically developing children matched for mental age [2]. These cognitive deficits can limit their abilities to perform activities of daily living. Thus, interventions to improve their capacity to perform activities independently would help to improve quality of life and reduce the costs associated with providing care for them. We are investigating the effects of physical activity interventions on the cognitive skills in persons with DS.
Executive functions are a set of higher-order control processes that take place primarily in the frontal lobe of the brain [2], which deal with the decisions to make actions, and planning how to accomplish tasks [3]. Executive function includes concept formation, task switching, inhibition, volition, planning, purposeful action, and effective performance [3]. These are necessary in order for a person to engage in tasks independently. People with deficits in executive function are often called lazy due to this lack of initiative, but executive function is necessary for a person to initiate self-care routines or work independently. Many researches have documented that people with DS have shown deficits in executive functioning (e.g., [4, 5]). Improving executive functions could in turn improve many other independent living skills. Below we have highlighted a few executive functions that we measured in response to an exercise intervention in persons with DS.
Working memory is information that people actively keep in their mind and manipulate [3, 6]. If human memory were a computer, the working memory would have been an active window where a person would have manipulated the informational contents. Working memory is limited in size, yet it is important for many other tasks from remembering words to learning new motor skills [6, 7]. Several studies have found that people with DS have significant deficits in working memory [8, 9].
Set switching is the ability to change a course of thought or action based on changing requirements [3]. In clinical settings, this is typically done with a card sorting test where children are first asked to sort the cards by shape and then by color. Children with typical development are unable to switch to the second sorting rule at three years old. By four years of age, a child can change rules with some struggle, and by five years old, a child can shift to the new rule with ease [10]. On a practical level, set switching is demonstrated while children are working on something when a parent tells them that they need to get ready to leave the house. The ease at which the children are able to transit between the two tasks reflects their capacity for set switching. Set switching also requires working memory to process the change in tasks and the ability to inhibit the first behavior pattern [11]. Set switching activates a network of cells in the frontoparietal region of the brain, including the inferior frontal gyrus, anterior cingulate cortex, and supramarginal gyrus [12]. When someone has difficulty with set switching, it can result in inflexibility and perseverative behaviors. People with DS have significant deficits in set switching in comparison to people with typical development [2, 8].
People with DS in general show deficits with language, especially with expressive vocabulary [13–15]. Typically this is tested by asking people to recall words related to a particular category or words that start with a certain letter. Neuroimaging studies have shown that letter-based verbal fluency is mediated by the frontal cortex and category-based verbal fluency by the temporal cortex; parietal lobe mediates both tasks [16]. Nash and Snowling [17] found that people with DS showed deficits in verbal fluency in comparison with peers of typical development.
As previously described, there is a vast amount of research that documents cognitive deficits in persons with DS. We believe that it is time to focus on interventions aimed at improving cognitive functions in persons with DS. Our innovative exercise intervention and results will be explained next.
Exercise is a logical intervention for effective treatment of cognitive impairments in persons with DS because the positive influence of voluntary exercise on cognition has been demonstrated in other typical populations [18, 19], including children [20, 21] and older adults [22, 23]. Furthermore, voluntary exercise has been shown to improve memory in mice models (Ts65Dn) of DS [24]. However, a recent review of the therapeutic benefits of exercise in persons with DS found that exercise was nonsignificant in improving physical and mental health outcomes in persons with DS [25]. Because persons with DS move slowly [26] due to slower reaction times [27], deficits in muscular strength [28], and reduced cardiorespiratory capacity [29], adolescents with DS typically ‘do’ not exercise at a relatively high rate, ‘thus, they miss out on the opportunity to gain’ cognitive improvements through neuroplasticity in the brain. Furthermore, approximately 61% of persons with DS have been shown to have low exercise tolerance [30] which reduces their exercise time and intensity and which seems to limit the cognitive benefits of exercise for persons with DS [25]. The
There is an emerging body of literature in healthy older adults and individuals with Alzheimer’s disease indicating that exercise results in structural and functional changes in the brain [31]. These alterations in brain structure and function suggest that CNS function can be altered via voluntary exercise in individuals with relatively normal and abnormal patterns of activation within the motor cortex. However, because persons with DS have limited motor output due to physiological and psychosocial factors, their ability to induce changes in CNS function may be compromised when engaging in voluntary exercise performed at their preferred (i.e., low) rates. They may need to have exercise augmented through mechanical assistance as proposed in our assisted exercise paradigm, coined Assissted Cycling Therapy (ACT) in 2013 [32]. Assisted exercise is an approach initially used with animals which were exercised on a motorized treadmill at a rate greater than their voluntary exercise rate. Assisted exercise has demonstrated improvements in cognitive functioning in animals [33] and most recently in patients with Parkinson’s disease [34, 35]. ACT has been suggested to improve motor and cognitive function through its neuroprotective properties as demonstrated in Figure 1, a model proposed by Alberts and colleagues [34].
Proposed model for ACT (forced exercise) (Alberts et al., 2011).
ACT is an emerging exercise paradigm especially suited for clinical populations who have limited voluntary movement output, exercise capacity, or exercise motivation. During ACT the electric motor of the bicycle is engaged which helps to increase pedaling cadence to a predetermined rate. We have used absolute cadences of approximately 80 rpm or relative cadences of 35% greater than the initial voluntary pedaling rate. The initial pedaling rates, however, may need to be increased gradually for comfort and familiarization. The ACT condition often leads to reduced power compared to voluntary pedaling as indicated in Table 1 by the lower average power contribution of our participants in the ACT condition than the voluntary cycling condition. As can be seen in Figure 2, special procedures were utilized to ensure that the feet were not positioned too far forward and that they did not slip forward, side-to-side, or backward to ensure a high degree of safety at the high pedaling rates.
Pedal-foot interface.
The length of our intervention period was eight weeks with three cycling sessions per week. Before each cycling session, the resting heart rate (HR) was obtained while the participant was sitting on the bike. A five-minute warm up at a voluntary rate was completed before the 30-minute cycling session regardless of the condition (ACT or voluntary cycling (VC)). On the first day, the average cadence from the warm-up period was multiplied by 1.35 to determine the initial ACT cadence. This step was omitted in the voluntary cycling condition. Thus, the cadence on the first day of the ACT intervention was set at a rate which was 35% faster than the voluntary cadence. A three- to five-minute cool-down at the end of the ACT or voluntary cycling session was optional. During the cool-down, the motor was not engaged. The average HR (bpm), cadence (rpm), and power (Watts) was recorded every five minutes during the cycling session (refer to Table 1 for mean values). These averages did not include the warm-up period.
To monitor Rate of Perceived Exertion (RPE), we used a modified -point RPE scale. A rating of 2 or 3 on the -point RPE scale (1, easy/not-tired; 2, a little hard/a little tired; 3, hard/tired; 4, very hard/very tired) was desired to keep the exercise intensity at a moderate level. The goal was for participants to cycle between 64 and 76% of their age-predicted maximal HR (HRmax = 210–0.56×age–31, [36]) which corresponds with a moderate exercise intensity as dictated by the American College of Sports Medicine [37]. Thus, for most participants in the ACT condition, we increased cadence from session to session by 3–5 rpm, based on tolerance, up to the maximum cadence of the motor (e.g., 95 rpm) or until 64% of age-predicted HRmax or a personal tolerance limit was reached. Participants in the ACT group took on average 13.2 cycling sessions to reach this point. Participants in the voluntary cycling group were not encouraged to pedal faster as the goal was to have them exercise at their preferred voluntary rate (refer to Table 1 for cadence values).
For this randomized control trial, participants were randomly allocated to eight weeks of ACT, eight weeks of VC, or eight weeks of no cycling (NC). The ACT and VC conditions were described in the previous section. Participants in the NC group completed only the pre- and posttesting sessions separated by eight weeks and they were instructed not to change their usual physical activity habits and therapy regiments for the eight weeks. Inclusion criteria consisted of trisomy-21 and a chronological age of 9–26 years. Exclusion criteria consisted of other genetic conditions and neurological disorders (e.g., ADHD and autism), medical contraindications to exercise, and sensory or physical impairments which preclude completion of the cycling intervention. During the pretesting sessions (first visit to the laboratory), the participants’ height, weight, vision, hearing, and mental age were recorded or assessed. Mental age was determined with the Peabody Picture Vocabulary Test (4th ed.; [38]) (refer to Table 1 for chronological andmental age values). In addition, all participants had functional hearing and vision for the purpose of the testing procedures. Then, three executive function tests were administered in random order.
\n\t\t\t | \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|||
Chronological age (years) | \n\t\t\t19.4 | \n\t\t\t4.9 | \n\t\t\t18.4 | \n\t\t\t3.4 | \n\t\t\t17.0 | \n\t\t\t4.0 | \n\t\t\t0.304 | \n\t\t|
Mental age (years) | \n\t\t\t\n\t\t\t | 6.1 | \n\t\t\t3.3 | \n\t\t\t5.2 | \n\t\t\t2.1 | \n\t\t\t6.0 | \n\t\t\t1.8 | \n\t\t\t0.687 | \n\t\t
BMI (kg/m2) | \n\t\t\t\n\t\t\t | 27.7 | \n\t\t\t7.0 | \n\t\t\t27.3 | \n\t\t\t4.2 | \n\t\t\t27.5 | \n\t\t\t9.5 | \n\t\t\t0.889 | \n\t\t
Cadence (rpm) | \n\t\t\t\n\t\t\t | 77.2 | \n\t\t\t2.2 | \n\t\t\t43.1 | \n\t\t\t8.9 | \n\t\t\t\n\t\t\t | \n\t\t\t | <0.001\'1\n\t\t\t | \n\t\t
Power (Watts) | \n\t\t\t\n\t\t\t | 22.1 | \n\t\t\t12.1 | \n\t\t\t26.6 | \n\t\t\t21.7 | \n\t\t\t\n\t\t\t | \n\t\t\t | 0.396\'1\n\t\t\t | \n\t\t
Heart rate (bpm) | \n\t\t\t\n\t\t\t | 98.7 | \n\t\t\t8.0 | \n\t\t\t100.7 | \n\t\t\t7.7 | \n\t\t\t\n\t\t\t | \n\t\t\t | 0.642\'1\n\t\t\t | \n\t\t
Descriptive statistics
1 Independent samples t-tests were used to test group differences.
The verbal fluency test consisted of four categories: animals, food and drinks, words that start with an S, and words that start with an F. The participants were given one minute per category and had to name as many words in the category as possible. The verbal fluency test was a test of verbal long term and working memory, attention, and inhibition [39, 40]. As mentioned, verbal fluency and other speech and language deficits are well documented in persons with DS [41–43]. Verbal fluency tests have been used as behavioral measures of hippocampal and prefrontal cortex function [40, 43].
A backward digit span test was administered as a behavioral measure of working memory, which requires the simultaneous storage and processing of information [6, 44]. It is considered a prefrontal function [6]. During the backward digit span test, participants had to reverse a sequence of numbers given by the investigator. The investigator was providing progressively longer sequences of numbers until the participant could no longer accurately articulate the given sequence in reverse order.
The Wisconsin Card Sorting test (modified for DS) measures set switching ability and working memory which are functions of the frontal cortex and parts of the parietal lobe [45, 46]. In this task, the participants are asked to match either shapes or colors with rule changes taking place during testing. Adolescents with DS have been found to have reduced capacity for set switching compared to typically developing adolescents [2]. These three executive function tests were repeated during posttesting.
Cohen’s
Pre- to postchange scores (postscore–prescore) in the verbal fluency test (VF), backward digit memory span test, and the Wisconsin Card Sorting test (WISC) by group. Larger, more positive change scores reflect an improvement in cognitive function.
It is clear that cycling exercise, whether it is assisted or voluntary, is more beneficial to executive function than no exercise. However, ACT seems to be more effective in improving working memory, whereas VC seems to be more effective in improving verbal long-term memory, and set switching than ACT.
Based on our results, a moderate exercise intensity, of between 64 and 76% HRmax, may not be necessary for benefits as the average HR during ACT or VC cycling sessions was just below 64% of the average age-predicted HRmax. The average chronological age of our participants in the ACT and VC group was 19.4 years and 18.4 years, respectively. This translates to minimum average target HRs (64%) of 107.6 bpm and 108.0 bpm in the ACT and VC group, respectively. In addition, their average exercising target HR of 98.7 bpm and 100.7 bpm were below the target HR range. In fact, on the first day of cycling, only 11% of ACT and 31% VC participants reached 64% of their age-predicted maximal HR. The only difference between the ACT and VC groups was the cadence at which they were cycling. We can thus conclude that the specific adaptations in terms of executive function are due to the different rates of movement.
The greater movement frequency during ACT would presumably lead to more frequent stimulation of the Golgi tendon organs and muscle spindle fibers in the lower extremity musculature and associated tendons, which in turn translates to greater afferent input to the frontal motor cortex [34]. This greater stimulus frequency in turn seems to be necessary to maximize benefits to working memory but does not seem necessary to improve long-term memory recall, attention, or set-switching ability. As can be seen in Table 1, heart rate s, and therefore cardiovascular workloads, were similar between ACT and VC, the only plausible explanation that remains for these group differences is the voluntary movement output during VC. The voluntary activation of certain areas of the motor cortex may thus be unique to voluntary exercise or greater in magnitude than the afferent stimulation resulting from ACT and thus benefit the frontal cortex in specific ways.
Differences in performance among executive function tasks, as observed in this study, have been documented [48]. Our results also suggest that different executive functions (e.g., working memory, attention, inhibition, and set-switching), though all mediated by the frontal cortex, may differentially benefit from different modes of exercise.
Our future research is to investigate whether exercise can prevent or slow the progression of Alzheimer’s disease (AD) in persons with DS. AD is a serious dysfunction of global cognitive control, and adults with DS are at three to five times the risk of early onset of AD compared to the general population [5, 49]. AD is a neurocognitive degenerative disease that causes a loss of memory, thinking, and functioning abilities. It is known that as the lifespan of adults with DS increases, the prevalence of AD will rise concomitantly. However, there is not much research in this area [50]. Research in this field can be aimed toward the development of an intervention, as well as prevention of AD in patients with DS. In order to reach that status, there must be more involvement of the DS population into clinical trials so that sufficient data can be collected and analyzed.
In addition, brain imaging is an important tool and is used in both clinical diagnosis and in the research of AD in persons with DS. In this research, many different types of imaging techniques are used to determine participant eligibility as well as to test if the imaging can accurately predict the participant’s risk of developing AD. These imaging techniques include, but are not limited to, amyloid PET scans, functional MRIs, structural MRIs, and CTs [51]. Each type of imaging will provide a view into the different mechanisms leading to the development of AD. Amyloid PET scans are a type of positron emission tomography in which amyloid plaque is targeted with radioactive tracers to be seen on the image. It is thought that an abnormal amount of these plaques predisposes the participant to developing AD. While this type of imaging is futile in the clinical setting, researchers can choose to look for participants who have this abnormal amount of amyloid plaque but show no symptoms, so that an intervention can be created for those individuals. MRIs and CTs have more impact in the clinical setting because they focus on the structure of the brain. Research has shown that abnormalities in the hippocampus as well as general atrophy of the brain can lead to dementia. Physicians are able to use these imaging tools in order to help determine the etiology of dementia. These types of imaging techniques can also be used in patients with DS in a similar manner. They can help to predict which patients are at a higher risk than others so that an intervention can be put in place earlier.
Physical activity of any kind will most likely improve cognitive functioning in persons with DS. Often physical activity that the person enjoys (e.g., dancing, gardening, and walking dog) are the types of programs that are sustained. Only 10–12% of people with DS learn to ride a bicycle and very few learn before 10 years old [52]. However, cycling does allow for fast rates of lower limb movement which is crucial because the increased movement rate may trigger the endogenous release of neurotrophic factors that facilitate the motoric and neural changes that underlie improved motor and cognitive function. To date, our stationary research bicycle is not for sale. One clinical research trial with Parkinson’s patients used a tandem bicycle in which the front rider is typical and the back rider had Parkinson’s disease. Because the pedals were yoked, the rear rider was pedaling at the same rate as the front rider. However, this may take a lot of practice to perform safely. An alternative recommendation is to be conscious of when you are physically active to try to increase the rate of movement whenever possible. For practical purposes, measure the rate of movement by counting the number of revolutions during a set time period (e.g., 10 s.) and extrapolating to one minute. Heart rate could be palpated or measured by a simple Polar HR monitor. In addition, Rate of Perceived Exertion should be monitored every five minutes especially in special populations such as DS where heart rate responses are different from those of the general population due to chronotropic incompetence [53]. The main goal is to have fun and be safe, and remember if you move faster, you may think faster!
Polypropylene (PP), once discovered, immediately has been appreciated for its remarkable and various qualities like low density (the lowest compared to all thermoplastics), excellent chemical and corrosive resistance, dimensional stability, recyclability, flexibility, good processability, and low cost. All these advantages have contributed to make it ideal for a wide range of applications and to be processed thought many converting methods [1].
Injection molding is a very common used technique to work polypropylene, so much to cover about a third of its consumption [2]. In automotive, injection molding represents the main process for realizing vehicle components and PP is one among the conventional used thermoplastic materials. In the car, polypropylene is applied in the interior trim components as pillars, glove box, console bins and console housings, or exterior parts as air inlet panels and wheelhouse liners, or again under the hood for producing a fuse block cover, radiator, and coolant reservoir [3]. Extrusion, instead, is the single most popular process for forming PP in fibers, filaments, sheets and other products, depending on the die profile [4]. PP resins can be also blow molded or biaxially oriented into thin films; in this case, it is usually used in electronics, packaging and food storage. Many products, such as printings films, magnetic films, decorations films, heat-sealing films, metal electronic deposition films are realized by biaxially oriented PP (BOPP) [5].
Moreover, polypropylene along with others thermoplastics as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), polycarbonate (PC), polyphenylene sulphide (PPS), polyphenylene oxide (PPO), has also been considered in heat exchanger applications in order to replace heavier and expensive metals strongly subjected to corrosion problems. Different models of heat exchangers have been also studied as shell and tube, plate, finned tube, and hollow fibers [6]. Yet, the overall heat transmission coefficient in polymer heat exchangers had been lower with respect to that obtained by metals and different approaches have been suggested to improve the heat transport in this field. The first was concerned with the reduction in thickness wall by requiring a new type of design; the second consisted in an increase of the thermal conductivity (TC) of the polymer resins [7].
Unfortunately, most polymers are thermally insulators and an augment of their TC represents one of the challenges of the recent scientific research for the coming benefits in the emerging heat exchangers applications, and also in the electronic and automotive technologies. In fact, plastics are one of the common materials for covering and protecting the electronic components or a better alternative to produce lighter vehicles with reduced fuel consumption. For example, in electronic assembly, miniaturization and higher power density have been experimented in order to achieve more advanced performances: a single chip has been made up of lots of transistors. This led to an intensification of power and a significant heat flow that can negatively affect the lifetime and reliability of the device, if it is not opportune dissipated away in time [8]. In the modern car engine, the electronic control unit (ECU) involves both hardware and software, required to perform the functions as mixture formation, combustion and exhaust gas treatment. In order to accommodate the more stringent standard imposed by the European Community on the emissions of pollutants from cars (Euro 6 standards), new kinds of control unit platform with high capability and reduced weight and size have been studied. Due to an inevitable increase of power density, thermal management has become an important aspect linked to the ability to easily dissipate the heat [9]. In an internal combustion engine, an elevated heat transfer affects performance, efficiency and emissions because it reduces the average combustion gas temperature and pressure, and the work per cycle transferred to the piston, for a given mass of fuel within the cylinder [10]. In automobile components, an improved TC of the constituent materials for engine cover, radiator, and coolant reservoir could be convenient to promote the faster diffusion of the heat, in order to avoid the overheating of the overall system and compromise the respective performances. In injection molding or extrusion, the greater would be the TC of the processed materials, lower would be the heating or cooling time and the operating costs of the overall processes. Moreover, during the cooling phase of these processes, sudden variation of TC could determine shrinkage, stress, delamination or voids in the final products [11].
In improving the heat conduction of the plastics different efforts have been spent in the scientific research with the addition of fillers characterized by a TC superior to the matrix [12, 13, 14].
In this work, the authors have focused the main attention on literature studies involving TC of polypropylene and the factors on which it depends as the crystallinity, testing temperature and pressure, polymer chain orientation, and molecular weight. Following, the effect of introducing fillers on the heat transport ability of the PP matrix has also been illustrated. Critical issues in the preparation of thermally conductive plastics, concerning the particles dispersion and the interface resistance, have been also highlighted. Finally, filler functionalization and hybrid materials have been presented as methods to support the heat conduction in the PP-based composite systems.
In general, heat transfer takes place through three different mechanisms: convection, conduction, irradiation.
In a solid, the main mechanism of heat transport is the conduction corresponding to the transfer of particle vibration energy to the adjacent particles without any motion of the matter but exclusively due to collision [12].
In steady state condition, Fourier’ law (Eq. (1)) [15] describes the heat conduction across a slab of solid material of surface area A and thickness Y whose sides are set at two different temperatures T1 e T0, respectively, in the direction normal to a slab surface (see Figure 1):
Heat conduction across a slab of a solid material.
In Eq. (1),
In the 1932, Debye introduced the concept of mean free path of thermal waves, simply called phonons, for explaining the thermal conduction in a dielectric crystal, in which the electrons are not free to move. In this case, the TC has been described through the following expression, also called Debye equation (Eq. (2)):
where
Usually, the thermal conduction occurs through these phenomena: (i) by charge carriers as electrons and holes,also defined as energized electron motion; (ii) by phonons, i.e., energy quanta of atomic lattice vibrations due to atom interaction and collision and (iii) by photon conductivity verifiable only in the case of high temperature. Depending on the material’s nature, the different phenomena do not always happen simultaneously, but one can dominate over the others. For example, in metals, the electronic contribution exceeds the phonon one; whereas in insulators, phonons contribution prevails over the electrons one [11, 12, 13, 14]. Polymers are thermal insulators, and due to defects, grain boundaries, and/or scattering with other phonons the mean free path of phonons (l) is very low and consequently also their TC [16]. For most of thermoplastics, the TC at 25°C falls in the range of 0.11 W/mK (for polypropylene) and 0.44 W/mK (for high density polyethylene) [17].
The classical steady state (SS) and non steady-state (NSS) methods are the two main techniques for evaluating the TC of a material. In the first case, the measurement is carried out after reaching the equilibrium state, while in the second case, the test is performed during the heating phase [18].
The SS mode allows measurements on glass, polymers, insulators, ceramics, metals, composites with an uncertainty of 2–3%; the NSS mode permits to extend the testing also of liquids, gases or powders with an uncertainty up to 10% [12]. However, the first approach is more time consuming and not suitable for shaped samples as concentric cylinder or sphere.
In the SS method, the principle of operation is based on Fourier’ law, while in the NSS method, the TC is indirectly evaluated by measuring the thermal diffusivity (
Here,
The common apparatuses for evaluating the performance in heat transport of PP and its related compounds are: the “Guarded Hot Plate Method (GHPM)” and the “Heat Flow Meter Method (HFMM)”, based on SS approach, or the “Flash Method (FM)” and the “Transient Hot Wire Method (THWM)”, instead based on NSS approach.
The differences among these techniques are found essentially in required time for testing and operation mode [19].
The GHPM (Figure 2a) is constituted by a hot plate, placed between two samples of the examining material. The outer side of each specimen is in contact with a cold surface. A known heat flow (i.e., the heating power) is applied to one side of the sample and passes through it by establishing a temperature gradient between the two opposite faces of the sample. At steady-state, the TC is evaluated by measuring the difference in temperature and applying the Eq. (1).
Schematic representation of TC measuring devices: (a) GHPM; (b) HFMM; (c) FM; (d) THWM.
The layout of the HFMM (Figure 2b) is very close to the GHPM apparatus designed for a single sample, but the first arrangement is faster and more accurate with respect to the second one [18]. The principal difference concerns the replacement of the main heater with heat flux sensor (HFT) [12].
In the FM (Figure 2c), a short but intense energy pulse is sent to one side of the sample and the temperature increase is measured on the opposed side in function of time. The thermal diffusivity can be calculated by Parker Formula (Eq. (4)) [20]:
where d is the sample’s thickness and t1/2 is the time required for the signal to reach the 50% of its maximum value.
The THWM (Figure 2d) implicates vertical or cylindrical geometry in which a wire, generally of platinum, is crossed by a constant electric current. A radial heat flow takes place around the wire that spreads in the tested sample. The TC is estimated, knowing the temperature profile on time (T(t)) and the heat output by Eq. (5) [21]:
in which ln C is the Euler’s constant, q is the applied thermal flow, r is the wire radius and T0 is the cell temperature.
Finally, also differential scanning calorimetry (DSC) has been considered as a technique for measuring the TC of solid materials. The analysis has been performed by incorporating a temperature sensor [22] or a made in-house accessory into the common apparatus [23]. It is possible also utilized the standard DSC machine, without any special modification or calibration, by setting a specific temperature-time profile and recording the dynamic response of the sample [24].
The TC of polymers is affected by several factors as crystallinity, chemical constituent, bond strength, molecular weight, side pendent groups, defects or structural faults, processing conditions and temperature [14].
Anderson [16] reported that the TC of polymers decreased as the disorder increased: imperfections, by decreasing the order of the molecular structure, caused a large phonon scattering that reduced the heat transport. Since the polymeric structure order of the amorphous is lower than of the crystalline, the related thermal behaviour of the former has been expected to be lower compared to the latter, and also TC temperature dependence has changed in different ways depending on substance state. In details, below the glass temperature, as the temperature grew up, the TC of the amorphous remained the same or increased with temperature (probably for the effect of raising chain mobility), while for crystalline the TC initially remained the same and then diminished. Probably, in this second case, a decrease or/and breakup of the crystalline portions have been promoted by higher temperatures after which the conductivity of the amorphous has been risen. These considerations were confirmed by studies of Bashirov et al. [25] and Osswald et al. [26],developed not only on PP, but also on high-density polyethylene (HDPE), low-density polyethylene (LDPE) and other polymers. On the contrary, an opposite trend of the TC of PP against temperature was found by dos Santos et al. [11]. In their work, the authors measured the TC of semi-crystalline and amorphous polymers starting from room temperature and going up to melting temperature (for semi-crystalline polymers) or glass transition (for amorphous polymers). Results showed that initially, as the temperature rose between 25 and 125°C, the TC of PP slight decreased from 0.25 to 0.15 W/mK; then, it underwent a sudden increase reaching a peak of approximately 0.47 W/mK during the melting process, and finally it decreased. In the temperature range of 2–100 K the TC of polypropylene was evaluated by Choy et al. [27]. In the case of isotropic crystalline conditions, an increasing trend that exhibited a maximum near 100 K was detected; then, when the sample was extruded and a marked anisotropy of TC was induced, the heat transport resulted in an order of magnitude increase in the extrusion direction. Finally, a nearly linear temperature dependence without any detectable plateau of the TC of PP copolymer was observed by Barucci et al. in the range of temperature from 0.1 to 4 K [28].
Most of the TC measurements of polymers have been carried out at atmospheric pressure, which is far from the operating process conditions. At regard, some measurements have been reported in order to verify the effect of pressure on TC of polymers. Dawson et al. [29] measured the thermal parameter for polypropylene at pressures of 20, 80 and 120 MPa over the temperature range from 250 to 50°C. For each pressure, the isobaric curve of TC as a function of temperature showed a “Z shaped”, probably attributed to a phase transition (crystallization during cooling). Beyond an increase encountered during this phase, the TC remained fairly constant with the temperature. At an equal temperature, an increase of TC was always verified with pressure, approximately of 20% going from 20 to 120 MPa. Andersson et al. [30] performed measurements of heat conduction of PP at 300°K by changing pressure in the range between 0 and 37 bar. They concluded that, when the pressure was exercised on the sample, a stress in the longitudinal direction was generated, greater than in the radial direction, by leading to anisotropy of the properties in the tested material. Experimental data, related both to atactic and isotactic PP, demonstrated that the TC increased strongly with pressure with a continuous change in the slope of curve until it reached an asymptotic value.
From the above, the actualizing the anisotropy in a sample has implied an influence of its thermal transport behaviour. In fact, when the orientation has been induced in the polymer, its TC became higher in the direction of a molecular orientation and lower in a direction normal to the orientation [31]. This attitude was confirmed in the case of injection molding and extrusion [32] or foaming [33] processes during which a macromolecular orientation of polymer chain was inferred.
Finally, a characterization of the heat transport directly on the melted PP has been carried out because of in a common process the material was usually in the molten state. In fact, in a solid state the TC of semi-crystalline thermoplastics was greater with respect to melt state due to an increase of density upon the solidification. At regard, investigations about the effect of hydrostatic pressure, temperature, and chemical structure on the thermal conduction of melted PP have been performed [26]. These studies confirmed that, as the hydrostatic pressure increased on melt state, also the TC of thermoplastics in general, and of PP in particular, increased for a reduction in free volume. Furthermore, the TC of PP in molten form was not significantly affected by temperature but it appeared to be a complex function of the molecular weight distribution and possible long chain branching [34]. Generally, an increment of the TC of polymers by raising the molecular weight was verified since a larger number of energy transactions took place in a substance with shorter chains [16].
In Table 1 the TC values for polypropylene are shown.
In general, the common approach for enhancing the thermal transport behaviour of plastics foresees the addition of thermally conductive particles. By balancing in the polymeric resin the filler content and type, it is possible to obtain the desired features in the final products. Yet, the use of an extremely high percentage of reinforcement (approximately more than 30% in vol.), is needed to achieve the TC values in the composites, required for the modern technologies. This quantity represents a real challenge for the processability of the material and makes difficult or impossible extrusion and injection molding processes [14]. In the last few decades, great attention has been devoted to polymeric nanomaterials, born from the introduction into the matrix of filler having at least one dimension in the order of 1–100 nm. Based on the geometric characteristics, three groups of nanosize particles are distinguished: one-dimensional (nanotubes and nanofibres), two-dimensional (layered minerals), three-dimensional (spherical particles). Small size and large surface area (for a given volume) of nanofiller are considered the key factors for the development of exceptional and unexpected properties with respect to macroworld as in the fields of mechanical properties, barrier resistance, flame retardancy, scratch/wear resistance, as well as optical, magnetic, TC and electrical properties [17]. Thermally conductive fillers can be divided into three categories: metallic powders, ceramic particles and carbon-based materials, and have been chosen depending on the needs to act both on the heat and current transport. For example, by adding carbon-based or metallic particles, the final compounds earned not only in terms of the thermal conduction but also in terms of the electric one; yet, metallic particles, having high specific gravities, could not be applied in the case of the lightweight target and carbon-based reinforcements have been preferred. Conversely, the introduction of ceramic fillers allowed acting on heat transfer of the neat matrix without compromising the electrical insulation of the starting material [39].
The thermal and electrical behaviour of PP matrix filled with two of copper particles (in micron dimensions), was investigated by Boudenne et al. [40]. Results, compared in terms of fillers size and volume fraction, highlighted the stronger heat transport ability of the formulations including the smaller particles.
A similar study was conducted by Cheewawuttipong et al. [41] by adding into PP two types of boron nitride (BN) with different particle size in micron. The mechanical features (storage and loss modulus) and thermal ones (thermal conductivity, melting and crystallization temperature) were analyzed. They found that the TC increased, according to the BN content and the larger size of the filler.
The application of conductive polymer composites (CPC) in manufacturing a tubular heat exchanger for fluid heating was presented by Glouannec et al. [42]. The materials of the extruded tubes were obtained by blending the insulating thermoplastic polymer (PP) with conductive filler like carbon black (CB) or carbon fibers (CF). The experimental testing showed that the heat conduction of the CPC heat exchanger was improved by a factor of 2 for the filler volume fraction of 25%. For similar applications, Qin et al. [43] realized graphite (GP) enhanced PP hollow fiber heat exchanger. Results showed that the addition of GP fairly improved the crystalline, thermal stability and conductivity of the PP. The overall heat transfer coefficient for a filler content of 15.0 wt% became five times bigger than that of pure PP-based one.
Among the carbonaceous fillers, given the extremely high intrinsic TC, the carbon nanotubes (CNTs) have been also considered [44]. The TC of the PP-based nanocomposites grew up with the CNTs content in particular above 160°C, but the rising trend not seemed to be dramatic as the increase in electric conductivity.
However the advantages of using minerals in many polyolefin applications should not be overlooked. It has been successfully demonstrated that talc, calcium carbonate, and magnetite led to an improvement of the productivity and of physical properties, and to a reduction of costs since a portion of the polymer has been replaced by lower-cost material [45, 46]. Moreover, due to a higher TC of minerals with respect to the matrix, their addition also brought an increase of heat transport in the ultimate compounds. The introduction of calcium carbonate (CaCO3) nanoparticles in isotactic PP was studied by Vakili et al. [47], verifying the particle effect on crystallization and heat transport behaviour of the ultimate compounds. The TC was increased from pure PP by 64% for the sample containing the highest filler loading (15 phr). The authors stated that their results were better than that obtained with carbon nanofiber (CNF) in the PP matrix [48], for which at 0.08 volume fraction this increase has been almost 45%. Weidenfeller et al. [49] added different micro-size particle of magnetite in various proportions to a standard polypropylene copolymer. The TC increased from 0.22 to o.93 W/mK for a filler content of 44% in vol. of magnetite, nearly independent of the particle size and distribution; whereas the electrical resistivity decreased more than seven orders of magnitude. Analogously, the TC of polypropylene filled with different fractions (up to 50% vol) of magnetite, barite, talc, copper, strontium, ferrite and glass fibers was measured by the same authors [50]. Despite the highest intrinsic TC of copper, surprisingly, the best result was obtained with talc. Using the model conductivities, according to Schilling and Partzsch, the interconnectivity of the conducting phase has been evaluated. Calculations showed that the interconnectivity for talc was particularly greater than that of copper probably due to the alignment of the talc lamellas in the polymeric resin into the flow direction during injection molding; for copper no contact among particles has been found. The authors concluded that the thermal transport could not be explained solely by the difference in the property of the materials but taking into account also the microstructure.
A list of the used fillers to increase the thermal transport behaviour of PP and their intrinsic TC are given in Table 2. These particles are added in the hosting matrix by prevalently melt blending: one among the classical processes for compounding, particularly preferred in an industrial context.
Fillers | Category | Typical shape | TC (W/mK) |
---|---|---|---|
Allumium nitride (AlN) | Ceramics | Roughly spherical | 320 [30] |
Alluminium oxide (Al2O3) | Ceramics | Spherical or platelets | 42 [8] |
Barium titanate (BaTiO3) | Ceramics | Grains | 6.2 [8] |
Boron nitride (BN) | Ceramics | Hexagonal platelets | 3 (through plane) 300 (in plane) [41] |
Zinc oxide (ZnO) | Ceramics | Pseudo-spherical | 60 [8] |
Carbon black (CB) | Carbon-based | Pseudo-spherical | 6-174 [39] |
Carbon nanotubes (CNTs) | Carbon-based | Cylindrical shells | 2000–6000 (on axis) [39] |
Carbon fiber (CF) | Carbon-based | Elongated | 600 [48] |
Graphene (GN) | Carbon-based | Sheets | 5000–6000 [39] |
Graphite (GP) | Carbon-based | Platelets | 100–400 (on plane) [40] |
Copper (Cu) | Metals | Pseudo-spherical | 389 [40] |
Calcium carbonate (CaCO3) | Mineral | Pseudo-spherical | 4.5 [47] |
Magnetite | Minerals | Grains | 9.7 [49] |
Talc | Minerals | Lamellar | 1.76 (through plane) 10.69 (in plane) [50] |
TC values of common fillers added into polypropylene.
According to the rule of mixture (Eq. (6)), each phase contributes to final compounds properties proportionally to its volume fraction:
where
However, the experimental evidences confirmed that the values of the TC in the designed composites were lower than those evaluated by applying the simple rule of mixing model and the intrinsic TC of each constituent. This meant that nanoscale unique properties could not be reproduced easily on the macroscale probably for non-continuum effects at filler-polymer interfaces [51].
In fact, besides the filler type and its content, particles shape and size, their orientation and dispersion in polymeric matrix, the adhesion between the filler and the matrix and the thermal properties at the interface symbolized the acting parameters to optimize the desired feature [12].
The interfacial resistance is also known as “
In addition to Kapitza resistance, in a composite a further resistance to the heat transport, involving the solid-solid interface, i.e., particle-particle interface has to be considered. Two solid bodies, which are apparently in contact, actually touch together only in a few points due to their roughness and geometrical defects. In this case, when heat flows normally from a hotter body to colder one, interstitial spaces between contact points limit the thermal conduction that takes place only between effective connections. The physical consequence is a constriction of flux lines, responsible of the heat resistance best known as “thermal contact resistance” [54].
In many previous works, it has been reported that two essential components for an optimal effect of the reinforcement in a composite are filler dispersion and orientation. A homogeneous filler dispersion in the resin led to a consistent load transfer from the matrix to particle and in the realization of a conductive network for electrical and thermal energy. Furthermore, if the particles were oriented in the direction of applied force or heat, their full potential could be achieved both in terms of load and energy transport. However, an efficient dispersion or/and a perfect alignment of the inorganic filler, particularly for nano-sized, in the matrix represented a real challenge during the process due to van deer Waals interactions between individual particles that push to the aggregation and randomly disposition [55]. Yet, in the case of heat transport, the enhancing the filler dispersion not always implied exceptional thermal performance of respective composites, because an increase in the matrix filler interfaces, and consequently in the phonon scattering, could be promoted. In particular for nanocomposites, the large surface area of nano-size particles, by maximizing the touching between particle and polymer, could increase exactly the interfacial resistance. Thus, particles perfectly dispersed in the matrix with a minimized interfacial resistance would not seem anyway the best solution in the perspective of an advantageous heat transport because in this situation the particles would exchange heat only with the matrix and not among themselves. Since the mean phonon free path of the polymer is less than that of the particle, the efficiency of the thermal conduction would not be satisfactorily achieved except by a network of interconnected particles that carry heat among themselves [14].
Additionally, in the composites the conductive pathway can be build also by particle agglomerates if a sufficiently reduced “
In conclusion, in order to successfully employ the thermal conductive particles in composites for heat management applications, the realization of a conductive pathway through the particles (shown in Figure 3) has to be attained through optimal filler dispersion, good interfacial adhesion between filler-matrix and properly contact between particles.
Schematic of the heat conduction along particles forming a percolated network.
The functionalization, i.e., the introduction of functional groups on filler surface, obtained by covalent or non-covalent means, is a common approach widely adopted for changing the chemistry of inert inorganic particles. This approach is considered a successful tool for improving the compatibility and wettability between the two phases of the composite system, and affecting positively the dispersion and the interfacial resistance. Although few works are carried out on this way, it is not excluded that between functional groups may arise interactions, stronger than van deer Waals forces, which, binding more particles between them, also promote a reduction in the contact resistance.
Patti et al. [56] studied the effect of filler functionalization on dispersion and TC of PP-based composites by adding, in the same resin grade, three different chemically treated surfaces (amino-and carboxyl-functionalized, and pristine one) CNTs. A cubic polynomial trend of the TC as a function of the filler concentration was found, for all three families of nanocomposites. This behaviour was attributed to the occurrence of competitive dispersion/agglomeration phenomena which, affecting the mutual distance among filler aggregates/agglomerates (MID), influenced the formation of thermal paths.
CNTs, aluminum flakes (Al-flakes), and a commercially available Al-CNT powder (embedded CNTs within Al-flakes), were used to prepared PP-based composites. The characterization of these compounds in terms of mechanical and thermal tests indicated that the crystallization and decomposition temperature as well as the TC and tensile modulus of PP/Al-CNT were over than to the PP/CNTs and PP/Al-flakes composites. It was hypothesized that free CNTs, produced during the preparation of PP/Al-CNT systems, played an important role in forming a conductive bridge among Al-CNT particles and in generating synergistic effects [57].
Muratov et al. introduced two different types of surface treated BN into the PP matrix: pristine and covered with silane coupling agent (−3-amino-propyl-3-ethoxy-silane-APTES). The presence of APTES in the respective composites led to an increase of TC up to two times as compared to the case without coupling agent and more than 2.5–4 times as compared to pure PP [58].
Thus, if the first method for improving the compatibility filler-matrix is the modification of the filler surface by using functional groups or coupling agents, the other method consists in the modification of the matrix by grafting reactions of different chemical groups. For example, in the case of polyolefins, maleic anhydride is commonly grafted to polypropylene for improving the filler-matrix interface through both physical and chemical interactions, as covalent linkages and hydrogen bonds [59]. Che et al. [60] functionalized the surfaces of micrometric BN with a thin layer of polydopamine coatings (f-BN). Then, maleic anhydride grafted PP (PP-g-MA) was also employed as the compatibilizer in the compounds for helping the covalent bonds with polydopamine. The highest value of the TC was recorded for the prepared mixtures containing the compatibilizer and functionalized filler. On the contrary, the formulations containing pristine BN possessed a higher TC with respect to that prepared with modified one. Probably, the coating of polydopamine layers increased the polarity and hydrophilicity of fillers, which would be less compatible with the non-polar and hydrophobic PP matrix, resulting in voids at the interface and filler aggregation, and inducing a strong interruption of the thermal paths. Szentes et al. [61] utilized novel types of coupling agents (olefin-maleic anhydride copolymer-based) as a compatibilizer in CNTs/PP systems. They found that neither the chemical structure of coupling agent nor the application methods (masterbatch and impregnation) have been conclusive on the heat conduction of prepared compositions.
Although the experimental evidences seem to be lesser and to be explored in greater detail, it should be emphasized that the increasing the compatibility between filler and matrix not always a positive effect on heat transport has been verified. Compatibilized samples sometimes display slightly lower TC with respect to non-compatibilized systems, probably due to a polymeric wrapping around particles that hinders the direct contact among themselves and, as a consequence, the thermal transmission [62]. Patti et al. [63] found that the addition of PP-g-MA significantly reduced the contribution of included CNTs to the ultimate thermal transport properties of the corresponded mixtures, from +42.2 to +19.6% in presence of neat CNTs and from +47.7 to +11.7% for systems containing amino functionalized CNTs.
Nowadays, recent scientific attention has been devoted to hybrid material defined as “a combination of two or more materials in a predetermined geometry and scale, optimally serving a specific engineering purpose”. A hybrid has been conceived as a mixture of two or more raw materials with own intrinsic properties and different shape and size (“A + B + shape + scale”) to enhance or diminish physical, mechanical, thermal and electrical properties, as stiffness or strength, and also to manipulate the percolation limit [64]. In fact, the difference in dimension and geometry allows to maximize the packing density and to favor a greater connection among the various particles. The final properties of hybrids could be a combination between the features of the individual constituents or a result of synergism, intended as a total effect greater than the sum of each component, due to a joint action between fillers, supplied by distinct geometry of shape, aspect ratio as well distribution [65].
King et al. [66] analyzed the effect of single carbonaceous fillers (CB, GP, CNTs) and their combination on the TC of PP in the light of a potential market of fuel cell bipolar plates. The association of these fillers in the matrix appeared always more effective in improving the tested feature compared to the potential of each single species. In the case of hybrid formulations, the best result was obtained by mixing together the three particles, probably for the formation of linkages among them. In the case of composites including an individual filler, the highest TC value (28 W/mK) was achieved with 80% in wt. of GP and was anyway higher than the desired TC required for bipolar plates (20 W/mK). Krause and Potschke [67] investigated another useful combination of carbon-based fillers (CNTs, CF, graphite nanoplatlets-GNP) in PP by analyzing both the thermal and the electrical conduction of melt blended compounds. Ren et al. [68] obtained the simultaneous enhancement on thermal and mechanical properties of PP composites by adding graphite platelets (GPs) and graphene sheets (GSs). Yao et al. [69] reported the enhancement on the TC and dielectric properties of PP composites due to the synergistic effect of the introduced nano-sized aluminum oxide (Al2O3) and micro-sized barium titanate (BaTiO3). At a maximum of filler content (50% in vol.) the BaTiO3/PP and Al2O3/PP composites exhibited the same increment in TC approximately equal to 100%, while for BaTiO3/Al2O3/PP systems an abnormal heat-conducting properties (of an order of magnitude higher compared to the pristine PP) was recorded. Cheewawuttipong et al. [70] added BN and vapor-grown carbon fiber (VGCF) into the PP resin. They found that by increasing the content, the distance between fillers could be reduced and the development of conductive structure was attained. VGCF/BN hybrids possessed a better heat transport behaviour than of composites incorporating BN single size, since VGCF contributed to generate a conductive bridge by dispersing between BN and PP.
Finally, the development of carbon-based thermally conductive composites with low electrical conductivity was actualized by PP-based ternary formulations, combining CNTs (a thermal and electrical conductive filler) with additional thermally conductive, but electrically insulating, particles (ZnO,CaCO3, BN, and Talc) having different sizes and shapes [71]. Results showed that, in ternary formulations, an increase of TC was always verified for all kinds of secondary particles, in particular through the union of CNTs with BN. Significant reduction of electrical conductivity was achieved, despite the presence of CNTs, with the addition of smaller secondary species (BN and ZnO), while a further increment of the same feature was obtained with larger ones (CaCO3 and Talc).
Table 3 shows some values of TC reached in the PP-based composites, according to the filler type, its size and added content.
Materials | TC of PP (W/mK) | Filler content | Filler size | TC measurement method | TC of PP-composites (W/mK) | |
---|---|---|---|---|---|---|
Boudenne et al. [40] | PP/Cu | 0.25 | 35 vol% | Micron | Periodical method in [72] | 2.20 |
Cheewawuttipong et al. [41] | PP/BN | 0.25 | 30 vol% | Micron | THWM | 2.00 |
Vakili et al. [47] | PP/CaCO3 | 0.21 | 15 phr | Nano | GHPM | 0.36 |
Frormann et al. [48] | PP/CNF | 0.125 | 8 vol% | Nano | GHPM | 0.181 |
Weidenfeller et al. [49] | PP/magnetite | 0.22 | 44 vol% | Micron | FM | 0.93 |
Weidenfeller et al. [50] | PP/talc | 0.27 | 30 vol% | Micron | FM | 2.50 |
Patti et al. [56] | PP/MWNT | 0.09 | 5 vol% | Nano | HFMM | 0.20 |
HeonKanget al. [57] | PP/Al-CNT | 0.20 | 50 vol% | Micron | FM | 0.70 |
Chen et al. [60] | PP/PP-g-MA/f-BN | 0.22 | 25 wt% | Micron | FM | 0.60 |
King et al. [66] | PP/GP/CB/CNT | 0.2 | 53.2 vol% | Micro-GP Nano-CB Nano CNT | HFMM | 5.80 |
Krause et al. [67] | PP/GNP/CNT | 0.26 | 7.5 vo% | Nano-CNT Micro-GNP | FM | 0.50 |
Ren et al. [68] | PP/GS/GP | 0.28 | 23 wt% | Nano-GP micron GS | FM | 1.72 |
Yao et al. [69] | PP/Al2O3/BaTiO3 | 0.17 | 50 vol%. | Sub-micron Al2O3 micron BaTiO3 | THWM | 0.90 |
Cheewawuttipong et al. [70] | PP/VGCF/BN | 0.23 | 53 wt% | Micron BN nano VGCF | THWM | 2.90 |
Russo et al. [71] | PP/CNT/BN | 0.09 | 11.5 vol% | Nano-CNT Micro-n BN | HFMM | 0.25 |
Comparison among TC enhancement in some PP-based formulations due to the effect of different introduced nano-sized and/or micro-sized fillers into the matrix.
An effective comparison of reported TC values has not been possible due to differences in the filler loadings in each study. Yet, higher TC measurements were verified in the presence of microparticles, in particular with layered shape (talc); the same results have never been reached by adding nanoparticles. The highest improvement of heat transport in PP was recorded with the introduction of two combined carbonaceous nano- and micro-particles.
This review was devoted to summarizing the main literature studies about TC of polypropylene and the recent developments of heat transport ability in PP based compounds.
The TC of polypropylene has been measured in the range approximately between 0.1 and 0.2 W/mK, but different parameters as polymer cristallinity, chain structure and orientation, processing conditions and methods, temperature and pressure have played a positive or negative role on its thermal transport behaviour. In details, for the examined semi-crystalline polymer, starting from room temperature and going up to melting point, an opposite trend of TC have been reported. The TC remained almost the same as the temperature increase until it decreased during melting due to a possible breakup of crystalline regions. On the contrary, opposite results showed a strong increase of TC really at melting point. Finally, below 100 K, a growing tendency of TC against temperature has been verified. The effect of acting pressure on TC of polypropylene seemed to be always positive, probably for the induced stress in a longitudinal direction that led to anisotropy of the tested feature. For the same reason, processes like extrusion, injection molding and foaming, by causing an orientation of the polymeric molecular chains, could determine an increase of TC in the same direction of the inferred one. In the molten state, the TC of polypropylene appeared to be a complex function of molecular weight and chain branching; it continued to increase by pressure but resulted almost unaffected by temperature.
The devices, adopted for measuring the TC of PP and of its composites have been prevalently the Guarded Hot Plate Method and the Heat Flow Meter Method, based on a steady state approach, or the Flash Method and the Transient Hot Wire Method, based on transient approach.
Different efforts have been spent in literature in the improvement the heat conduction of PP, by the addition of inorganic fillers (metallics, carbon-based, ceramics and minerals) in micro- or nano-size, one-, two- or three-dimensional, with a higher thermal transmission compared to the pristine resin. By increasing filler loading, positive but not always satisfactory increases of TC in the respective compounds have been achieved. The size and shape of particles, their orientation and distribution in the polymer, the interfacial interaction between filler and matrix and between filler and filler, have been identified as crucial aspects in the optimization of final heat transport in the polymeric composites. All these factors contributed to realize effective thermally conductive pathways in the composites, actualized among particles with an advanced dispersion, good interfacial adhesion with the pristine material (lower interfacial resistance) and the proper contact among themselves (lower contact resistance).
The filler functionalization (i.e., the introduction of functional group on filler surface) and the addition of compatibilizer in polymer/particles mixtures, have been considered a useful approach for developing the compatibility between the two phases, and consequently for improving the dispersion and the interfacial interaction. Another approach has been the combination of two or more fillers, having different size and shape, to optimize the filler packing and their distribution in the matrix, so to realize and support an effective thermal conductive network.
By comparing data on PP-based compounds, despite the difference in filler loading, the greater efficiency in improving the TC of the matrix seemed to be realized in the case of combined micro- and nano-sized carbonaceous particles in the resin.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-12
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-12
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15933}],offset:12,limit:12,total:10546},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"10748",title:"Fishery",subtitle:null,isOpenForSubmission:!0,hash:"ecde44e36545a02e9bed47333869ca6f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10748.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10834",title:"Invertebrate Neurophysiology",subtitle:null,isOpenForSubmission:!0,hash:"d3831987f0552c07015057f170cab45c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez and Dr. Alfonso Clemente",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9261926500acb26c4ae5a29eee78f0db",slug:null,bookSignature:"Prof. Ayzin B. Küden and Dr. Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:null,editors:[{id:"200365",title:"Prof.",name:"Ayzin",surname:"Küden",slug:"ayzin-kuden",fullName:"Ayzin Küden"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10776",title:"Cellulose",subtitle:null,isOpenForSubmission:!0,hash:"947660259ce1915c3cac58bf7d990424",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Sangita Banga",coverURL:"https://cdn.intechopen.com/books/images_new/10776.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:50},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:30},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"194",title:"Pediatrics",slug:"pediatrics",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:17,numberOfAuthorsAndEditors:282,numberOfWosCitations:91,numberOfCrossrefCitations:41,numberOfDimensionsCitations:161,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pediatrics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9805",title:"Infant Feeding",subtitle:"Breast versus Formula",isOpenForSubmission:!1,hash:"7d1570fa9b5653287eaa25fe171b404a",slug:"infant-feeding-breast-versus-formula",bookSignature:"Isam Jaber Al-Zwaini, Zaid Rasheed Al-Ani and Walter Hurley",coverURL:"https://cdn.intechopen.com/books/images_new/9805.jpg",editedByType:"Edited by",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8728",title:"Update on Critical Issues on Infant and Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"52c4dbe7c0deb54899657dc4323238d6",slug:"update-on-critical-issues-on-infant-and-neonatal-care",bookSignature:"René Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/8728.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6508",title:"The Role of Transcranial Doppler Sonography in the Management of Pediatric Hydrocephalus",subtitle:null,isOpenForSubmission:!1,hash:"4fc5fd6bba9da6cb5271faac79e55df9",slug:"the-role-of-transcranial-doppler-sonography-in-the-management-of-pediatric-hydrocephalus",bookSignature:"Branislav Kolarovszki",coverURL:"https://cdn.intechopen.com/books/images_new/6508.jpg",editedByType:"Authored by",editors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7527",title:"Neonatal Medicine",subtitle:null,isOpenForSubmission:!1,hash:"777de6ff63e03a7b9c8e443d8f06828c",slug:"neonatal-medicine",bookSignature:"Antonina I. Chubarova",coverURL:"https://cdn.intechopen.com/books/images_new/7527.jpg",editedByType:"Edited by",editors:[{id:"244610",title:"Prof.",name:"Antonina",middleName:"I.",surname:"Chubarova",slug:"antonina-chubarova",fullName:"Antonina Chubarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7084",title:"Contemporary Pediatric Hematology and Oncology",subtitle:null,isOpenForSubmission:!1,hash:"21ab490c2debd2992b2a0b45f778b785",slug:"contemporary-pediatric-hematology-and-oncology",bookSignature:"Marwa Zakaria and Tamer Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/7084.jpg",editedByType:"Edited by",editors:[{id:"187545",title:"Prof.",name:"Marwa",middleName:null,surname:"Zakaria",slug:"marwa-zakaria",fullName:"Marwa Zakaria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5821",title:"Selected Topics in Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"711594f833d5470b73524758472f4d96",slug:"selected-topics-in-neonatal-care",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/5821.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5542",title:"Pediatric Cancer Survivors",subtitle:null,isOpenForSubmission:!1,hash:"dfd9d9e58bf08bc44679a030148793e5",slug:"pediatric-cancer-survivors",bookSignature:"Karen Wonders and Brittany Stout",coverURL:"https://cdn.intechopen.com/books/images_new/5542.jpg",editedByType:"Edited by",editors:[{id:"52860",title:"Dr.",name:"Karen",middleName:null,surname:"Wonders",slug:"karen-wonders",fullName:"Karen Wonders"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5473",title:"Pediatric and Neonatal Surgery",subtitle:null,isOpenForSubmission:!1,hash:"cecf75716957606b6bbbb3999e80cfcf",slug:"pediatric-and-neonatal-surgery",bookSignature:"Joanne Baerg",coverURL:"https://cdn.intechopen.com/books/images_new/5473.jpg",editedByType:"Edited by",editors:[{id:"178844",title:"Dr.",name:"Joanne",middleName:null,surname:"Baerg",slug:"joanne-baerg",fullName:"Joanne Baerg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4480",title:"Pediatric Nursing, Psychiatric and Surgical Issues",subtitle:null,isOpenForSubmission:!1,hash:"350881cf5fc1cdb8a99316e3a98de842",slug:"pediatric-nursing-psychiatric-and-surgical-issues",bookSignature:"Oner Ozdemir",coverURL:"https://cdn.intechopen.com/books/images_new/4480.jpg",editedByType:"Edited by",editors:[{id:"62921",title:"Dr.",name:"Öner",middleName:null,surname:"Özdemir",slug:"oner-ozdemir",fullName:"Öner Özdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2990",title:"Neonatal Bacterial Infection",subtitle:null,isOpenForSubmission:!1,hash:"093e4b7e0964b0fe0229a4b4cafef28c",slug:"neonatal-bacterial-infection",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/2990.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"741",title:"Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"b0edbdb5d5b8c322337668b98822eb79",slug:"neonatal-care",bookSignature:"Deborah Raines and Zoe Iliodromiti",coverURL:"https://cdn.intechopen.com/books/images_new/741.jpg",editedByType:"Edited by",editors:[{id:"165631",title:"Dr.",name:"Zoe",middleName:null,surname:"Iliodromiti",slug:"zoe-iliodromiti",fullName:"Zoe Iliodromiti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:17,mostCitedChapters:[{id:"30834",doi:"10.5772/33532",title:"Comparisons of Bully and Unwanted Sexual Experiences Online and Offline Among a National Sample of Youth",slug:"comparisons-of-bully-and-unwanted-sexual-experiences-online-and-offline-among-a-national-sample-of-y",totalDownloads:1725,totalCrossrefCites:2,totalDimensionsCites:23,book:{slug:"complementary-pediatrics",title:"Complementary Pediatrics",fullTitle:"Complementary Pediatrics"},signatures:"Michele L. Ybarra, Kimberly J. Mitchell and Dorothy L. Espelage",authors:[{id:"96025",title:"Dr.",name:"Michele",middleName:null,surname:"Ybarra",slug:"michele-ybarra",fullName:"Michele Ybarra"}]},{id:"37453",doi:"10.5772/45749",title:"Neonatal Mortality: Incidence, Correlates and Improvement Strategies",slug:"neonatal-mortality",totalDownloads:4462,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Sajjad ur Rahman and Walid El Ansari",authors:[{id:"84941",title:"Prof.",name:"Sajjad",middleName:"Ur",surname:"Rahman",slug:"sajjad-rahman",fullName:"Sajjad Rahman"}]},{id:"30833",doi:"10.5772/33907",title:"Adolescent Psychosocial Development and Evaluation: Global Perspectives",slug:"adolescent-psychosocial-development-and-evaluation-global-perspectives",totalDownloads:3300,totalCrossrefCites:0,totalDimensionsCites:7,book:{slug:"complementary-pediatrics",title:"Complementary Pediatrics",fullTitle:"Complementary Pediatrics"},signatures:"Fadia AlBuhairan, Rosawan Areemit, Abigail Harrison and Miriam Kaufman",authors:[{id:"97692",title:"Dr.",name:"Fadia",middleName:null,surname:"AlBuhairan",slug:"fadia-albuhairan",fullName:"Fadia AlBuhairan"},{id:"100992",title:"Dr.",name:"Rosawan",middleName:null,surname:"Areemit",slug:"rosawan-areemit",fullName:"Rosawan Areemit"},{id:"100995",title:"Dr.",name:"Abigail",middleName:null,surname:"Harrison",slug:"abigail-harrison",fullName:"Abigail Harrison"},{id:"100997",title:"Dr.",name:"Miriam",middleName:null,surname:"Kaufman",slug:"miriam-kaufman",fullName:"Miriam Kaufman"}]}],mostDownloadedChaptersLast30Days:[{id:"53583",title:"Anesthetic Management of the Newborn Surgical Patient",slug:"anesthetic-management-of-the-newborn-surgical-patient",totalDownloads:1781,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pediatric-and-neonatal-surgery",title:"Pediatric and Neonatal Surgery",fullTitle:"Pediatric and Neonatal Surgery"},signatures:"Marissa Vadi, Chelan Nour, Patrick Leiter and Harmony Carter",authors:[{id:"194664",title:"Dr.",name:"Marissa",middleName:null,surname:"Vadi",slug:"marissa-vadi",fullName:"Marissa Vadi"},{id:"194746",title:"Dr.",name:"Chelan",middleName:null,surname:"Nour",slug:"chelan-nour",fullName:"Chelan Nour"},{id:"194747",title:"Dr.",name:"Harmony",middleName:null,surname:"Carter",slug:"harmony-carter",fullName:"Harmony Carter"},{id:"199887",title:"Dr.",name:"Patrick",middleName:null,surname:"Leiter",slug:"patrick-leiter",fullName:"Patrick Leiter"}]},{id:"55979",title:"Neonatal Hypoglycemia",slug:"neonatal-hypoglycemia",totalDownloads:1406,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"selected-topics-in-neonatal-care",title:"Selected Topics in Neonatal Care",fullTitle:"Selected Topics in Neonatal Care"},signatures:"Adauto Dutra Moraes Barbosa, Israel Figueiredo Júnior and Gláucia\nMacedo de Lima",authors:[{id:"197328",title:"Prof.",name:"Adauto",middleName:"Dutra",surname:"Barbosa",slug:"adauto-barbosa",fullName:"Adauto Barbosa"},{id:"199146",title:"Prof.",name:"Israel",middleName:null,surname:"Figueiredo Jr",slug:"israel-figueiredo-jr",fullName:"Israel Figueiredo Jr"},{id:"199147",title:"Prof.",name:"Glaucia",middleName:null,surname:"Lima",slug:"glaucia-lima",fullName:"Glaucia Lima"}]},{id:"53683",title:"Pre and Postoperative Management of Pediatric Patients with Congenital Heart Diseases",slug:"pre-and-postoperative-management-of-pediatric-patients-with-congenital-heart-diseases",totalDownloads:3942,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"pediatric-and-neonatal-surgery",title:"Pediatric and Neonatal Surgery",fullTitle:"Pediatric and Neonatal Surgery"},signatures:"Eva Miranda Marwali, Beatrice Heineking and Nikolaus A. Haas",authors:[{id:"191397",title:"Dr.",name:"Eva",middleName:"Miranda",surname:"Marwali",slug:"eva-marwali",fullName:"Eva Marwali"},{id:"191414",title:"Prof.",name:"Nikolaus",middleName:null,surname:"Haas",slug:"nikolaus-haas",fullName:"Nikolaus Haas"},{id:"202373",title:"Dr.",name:"Beatrice",middleName:null,surname:"Heineking",slug:"beatrice-heineking",fullName:"Beatrice Heineking"}]},{id:"47546",title:"The Psychological Problems Seen in the Children of Divorced Parents and the Nursing Approach Concerning These Problems",slug:"the-psychological-problems-seen-in-the-children-of-divorced-parents-and-the-nursing-approach-concern",totalDownloads:1514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"pediatric-nursing-psychiatric-and-surgical-issues",title:"Pediatric Nursing, Psychiatric and Surgical Issues",fullTitle:"Pediatric Nursing, Psychiatric and Surgical Issues"},signatures:"Şenay Çetinkaya and Emine Erçin",authors:[{id:"99669",title:"Associate Prof.",name:"Şenay",middleName:"(Ok)",surname:"Çetinkaya",slug:"senay-cetinkaya",fullName:"Şenay Çetinkaya"},{id:"171256",title:"Ms.",name:"Emine",middleName:null,surname:"Erçin",slug:"emine-ercin",fullName:"Emine Erçin"}]},{id:"66650",title:"Necrotizing Enterocolitis",slug:"necrotizing-enterocolitis",totalDownloads:902,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",fullTitle:"Pediatric Surgery, Flowcharts and Clinical Algorithms"},signatures:"Rita Prasad Verma and Archana Kota",authors:[{id:"278358",title:"Dr.",name:"Rita",middleName:"P",surname:"Verma",slug:"rita-verma",fullName:"Rita Verma"},{id:"296230",title:"Dr.",name:"Archana",middleName:null,surname:"Kota",slug:"archana-kota",fullName:"Archana Kota"}]},{id:"44446",title:"Neonatal Pneumonia",slug:"neonatal-pneumonia",totalDownloads:13870,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"neonatal-bacterial-infection",title:"Neonatal Bacterial Infection",fullTitle:"Neonatal Bacterial Infection"},signatures:"Friedrich Reiterer",authors:[{id:"152025",title:"Prof.",name:"Friedrich",middleName:null,surname:"Reiterer",slug:"friedrich-reiterer",fullName:"Friedrich Reiterer"}]},{id:"54269",title:"Spinal Anaesthetic Management in Paediatric Surgery",slug:"spinal-anaesthetic-management-in-paediatric-surgery",totalDownloads:1690,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pediatric-and-neonatal-surgery",title:"Pediatric and Neonatal Surgery",fullTitle:"Pediatric and Neonatal Surgery"},signatures:"Esra Caliskan",authors:[{id:"183347",title:"Associate Prof.",name:"Esra",middleName:null,surname:"Caliskan",slug:"esra-caliskan",fullName:"Esra Caliskan"}]},{id:"37832",title:"Congenital Diaphragmatic Hernia and Associated Anomalies",slug:"congenital-diaphragmatic-hernia-and-associated-anomalies",totalDownloads:6565,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"congenital-diaphragmatic-hernia-prenatal-to-childhood-management-and-outcomes",title:"Congenital Diaphragmatic Hernia",fullTitle:"Congenital Diaphragmatic Hernia - Prenatal to Childhood Management and Outcomes"},signatures:"Milind Joshi, Sharad Khandelwal, Priti Zade and Ram Milan Prajapati",authors:[{id:"94672",title:"Dr.",name:"Milind",middleName:null,surname:"Joshi",slug:"milind-joshi",fullName:"Milind Joshi"}]},{id:"33668",title:"Sexual Abuse of Live-In Care Workers in Taiwan",slug:"sexual-abuse-of-live-in-care-workers-in-taiwan",totalDownloads:2174,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"sexual-abuse-breaking-the-silence",title:"Sexual Abuse",fullTitle:"Sexual Abuse - Breaking the Silence"},signatures:"Shu-Man Pan and Jung-Tsung Yang",authors:[{id:"67721",title:"Prof.",name:"Shu-Man",middleName:null,surname:"Pan",slug:"shu-man-pan",fullName:"Shu-Man Pan"},{id:"139346",title:"Dr.",name:"Jung-Tsung",middleName:null,surname:"Yang",slug:"jung-tsung-yang",fullName:"Jung-Tsung Yang"}]},{id:"53839",title:"Perioperative Care of the Neonate",slug:"perioperative-care-of-the-neonate",totalDownloads:2316,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"pediatric-and-neonatal-surgery",title:"Pediatric and Neonatal Surgery",fullTitle:"Pediatric and Neonatal Surgery"},signatures:"Shelly Haug, Sara Farooqi, Anamika Banerji and Andrew Hopper",authors:[{id:"180310",title:"Dr.",name:"Andrew",middleName:null,surname:"Hopper",slug:"andrew-hopper",fullName:"Andrew Hopper"},{id:"194732",title:"Dr.",name:"Shelly",middleName:null,surname:"Haug",slug:"shelly-haug",fullName:"Shelly Haug"},{id:"200188",title:"Dr.",name:"Anamika",middleName:null,surname:"Banerji",slug:"anamika-banerji",fullName:"Anamika Banerji"},{id:"200189",title:"Dr.",name:"Sara",middleName:null,surname:"Farooqi",slug:"sara-farooqi",fullName:"Sara Farooqi"}]}],onlineFirstChaptersFilter:{topicSlug:"pediatrics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/165585/leah-jappe",hash:"",query:{},params:{id:"165585",slug:"leah-jappe"},fullPath:"/profiles/165585/leah-jappe",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()