Operating experience from HEAF events reported to INES and IRS (from Berg & Forell et al., 2009)
\r\n\tIn this book, the authors will present the highlights of basic research of biomechanical and biochemical pathways of bone homeostasis and the developing clinical methods for treatment of bone loss, either following trauma or systemic disease.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"a67783226e0c4e1343d82c3a811ba1b3",bookSignature:"Dr. Nahum Rosenberg",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8442.jpg",keywords:"Bone Homeostasis, Osteoblast, Bone Matrix, Inorganic Component, Organic Componet, Bone Resorption, Cellular Mechanotransduction, Hormonal Regulation, Autografts, Allografts, Distraction Osteogenesis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 11th 2019",dateEndSecondStepPublish:"September 20th 2019",dateEndThirdStepPublish:"November 19th 2019",dateEndFourthStepPublish:"February 7th 2020",dateEndFifthStepPublish:"April 7th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",middleName:null,surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/68911/images/system/68911.png",biography:"Nahum Rosenberg MD, MOrthop (magna cum laude), FRCS\n(England), MBA is an orthopedic surgeon with an MD degree\nfrom Technion – ITT in 1990. He completed his residency in Orthopedic Surgery at the Rambam Medical Center, Haifa between\n1990-97. He received his MOrthop with honors from the Tel Aviv\nUniversity in 1996 and was a Nuffield Fellow (Orthopedic Surgery) in Oxford University in 1998-9. Dr. Nahum was a Fellow\nin Orthopedic Surgery at the University of Nottingham in 2002. He completed his\nMBA from the College of Management Academic Studies, Israel in 2018. Dr. Nahum\nis a senior orthopedic surgeon at the Rambam Health Care Campus since 2003. He\nhas been an Assistant Clinical Professor in the Faculty of Medicine, Technion -ITT,\nHaifa since 2007. He is also a Professor in the Department of Traumatology, Orthopedic Surgery and Disaster Medicine in IM Sechenov First Moscow State Medical\nUniversity 2018-19. Dr. Nahum is a member of the editorial boards in 8 scientific\njournals, as well as a member of the Shoulder Committee of ISAKOS (International Society of Arthroscopy, Knee Surgery and Orthopedic Sports Medicine). He is\nthe author of 80 peer review scientific publications, and the editor of 7 books. His\nresearch interests include: shoulder surgery, the outcome of orthopedic procedures,\nbone biology, bone regeneration, human biomechanics.",institutionString:"Israel Institute of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tel Aviv Sourasky Medical Center",institutionURL:null,country:{name:"Israel"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8676",title:"Hip Surgeries",subtitle:null,isOpenForSubmission:!1,hash:"35280afd3082f1a6b3c10bdc0ae447f6",slug:"hip-surgeries",bookSignature:"Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/8676.jpg",editedByType:"Edited by",editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17971",title:"Investigation of High Energy Arcing Fault Events in Nuclear Power Plants",doi:"10.5772/20497",slug:"investigation-of-high-energy-arcing-fault-events-in-nuclear-power-plants",body:'Operating experience from different industries has shown a considerable number of reportable events with non-chemical explosions and rapid fires resulting from high energy arcing faults (HEAF) in high voltage equipment such as circuit breakers and switchgears.
High energy arcing faults can occur in an electrical system or component through an arc path to ground or lower voltage, if sufficiently high voltage is present at a conductor with the capacity to release a high amount of energy in an extremely short time. High energy arcing faults may lead to the sudden release of electrical energy through the air.
The significant energy released in the arcing fault of a high voltage component rapidly vaporizes the metal conductors involved and can destroy the equipment involved. The intense radiant heat produced by the arc can cause significant damage or even destructions of equipment and can injure people. However, this problem has been underestimated in the past (Owen, 2011a and 2011b).
Arcing events are not limited to the nuclear industry. Examples for such events could be found, among others, in chemical plants, waste incineration plants, and in conventional as well as in nuclear power plants underlining that high-energetic arcing faults are one of the main root causes of fires in rooms with electrical equipment (HDI-Gerling, 2009).
An evaluation of several loss incidents in different types of industrial plants has shown that causes for the generation of arcing faults are mainly due to (HDI-Gerling, 2009):
contact faults at the screw-type or clamp connections of contactors, switches and other components due to, e.g., material fatigue, metal flow at pressure points, faulty or soiled clamp connections,
Creeping current due to humidity, dust, oil, coalification (creeping distances, arcing spots),
Mechanical damage due to shocks, vibration stress and rodent attack,
Insulation faults due to ageing (brittleness), introduction of foreign matter and external influences.
Investigations of HEAF events have also indicated failures of fire barriers and their elements as well as of fire protection features due to pressure build-up in electric cabinets, transformers and/or compartments, which could lead to physical explosions and fire. These events often occur during routine maintenance.
HEAF have been noted to occur from poor physical connections between the equipment and the bus bars, environmental conditions and failure of the internal insulation (Brown et al., 2009).
The interest in fire events initiated by high energy arcing faults has grown in nuclear industry due to more recent events having occurred at several nuclear installations.
In the ongoing discussion on an international level it appeared necessary to find a common understanding about the definition of high energy arcing faults.
Currently, high energy arcing faults are seen as high energy, energetic or explosive electrical equipment faults resulting in a rapid release of electrical energy in the form of heat, vaporized metal (e.g. copper), and pressure increase due to high current arcs created between energized electrical conductors or between an energized electrical conductor and neutral or ground.
Components that may be affected include specific high-energy electrical devices, such as switchgears, load centres, bus bars/ducts, transformers, cables, etc., operating mainly on voltage levels of more than 380 V (OECD/NEA, 2009a).
The energetic fault scenario consists of two distinct phases, each with its own damage characteristics and detection/suppression response and effectiveness:
First phase: Short, rapid release of electrical energy which may result in projectiles (from damaged electrical components or housing) and/or fire(s) involving the electrical device itself, as well as any external exposed combustibles, such as overhead exposed cable trays or nearby panels, that may be ignited during the energetic phase.
Second phase, i.e., the ensuing fire(s): this fire is treated similar to other postulated fires within the zone of influence.
However, a common definition of high energy arcing faults is expected as one result of a comprehensive international activity of the OECD on high energy arcing faults in the member states of the Nuclear Energy Agency (NEA) (see below).
A variety of fire protection features may be affected in case of high energy arcing faults events by the rapid pressure increase and/or pressure waves (e.g. fire barriers such as walls and ceilings and their active elements, e.g. fire doors, fire dampers, penetration seals, etc.).
The safety significance of such events with high energy arcing faults is non-negligible. Furthermore, these events may have the potential of event sequences strongly affecting the core damage frequency calculated in the frame of a probabilistic fire risk assessment.
Although only the technical consequences for nuclear power plants and other nuclear installations in case of a HEAF event are discussed in the following in detail, another important hazard resulting from arcing faults should not be ignored. This is the possible injury of workers.
Based on previous statistics it is expected that solely in the U.S. more than 2,000 workers will be seriously burnt by the explosive energy released during arcing faults within one year (Lang, 2005). The magnitude of this problem is far reaching, and the following statistics are staggering (Burkhart, 2009):
44,363 electricity-related injuries occurred between 1992 and 2001,
27,262 nonfatal electrical shock injuries,
17,101 burn injuries,
2,000 workers admitted annually to burn centres for extended arc flash injury treatment.
Three main consequences for workers result from a high energy arcing fault: blinding light, intense heat and thermo-acoustic effects.
Blinding light: As the arc is first established, an extremely bright flash of light occurs. Although it diminishes as the arcing continues, the intensity of the light can cause immediate vision damage and increases the probability for future vision problems.
Intense heat: The electrical current flowing through the ionized air creates tremendously high levels of heat energy. This heat is transferred to the developing plasma, which rapidly expands away from the source of supply. Tests have shown that heat densities at typical working distances can exceed 40 cal/cm². Even at much lower levels, conventional clothing ignites, causing severe, often fatal, burns. At typical arc fault durations a heat density of only 1.2 cal/cm² on exposed flash is enough to cause the onset of a second-degree burn.
Thermo-acoustic effects: As the conductive element that caused the arc is vaporized, the power delivered to the arc fault rises rapidly. Rapid heating of the arc and surrounding air corresponds to a rapid rise in surrounding pressure. The resultant shock wave can create impulse very high sound levels. Forces from the pressure wave can rupture eardrums, collapse lungs and cause fatal injuries.
Most of these people will neither have been properly warned of the hazards associated with arc flash nor will they have been adequately trained in how to protect themselves.
While the potential for arc flash does exist for as long as plants have been powered by electricity several factors have pushed arc flash prevention and protection to the forefront.
The first is a greater understanding of arc flash hazards and the risk they pose to personnel. Research has started since a few years for quantifying energy and forces unleashed by arc flash events. This has resulted in the development of standards to better protect workers.
Arc-flash hazard analysis is important in determining the personal protective equipment required to keep personnel safe when working with energized equipment. Contact with energized equipment is a commonly known risk; however exposure to incident energy from an electrical arc is sometimes overlooked. On that background approach boundaries have been determined to improve the arc flash hazard protection (Lane, 2004)
There is much discussion regarding how thorough an arc-flash hazard assessment must be. A complete examination of the system would require assessment at each and every possible work location, a task that is unrealistic to complete. Even if this task was undertaken, some of the accepted analysis methods pose some concerns as to whether the assessment considers the ΄most likely΄ fault scenarios.
The fundamentals of arc-flash hazard analysis are discussed in (Avendt, 2008 and Lane, 2004). The methodology used in the arc-flash hazard analysis is recommended in (IEEE, 2002) where techniques for designers and facility operators are provided to determine the arc flash boundary and arc flash incident energy. How to use this IEEE standard is described in (Lippert et al., 2005).
First and foremost, when considering arc-flash hazards four primary factors have to be mentioned which determine the hazard category:
System voltage.
Bolted fault current – calculated at the location/equipment to be assessed and subsequently used to calculate the theoretical arcing fault current.
Working distance – as measured from the personnel´s head/torso to the location of the arc source.
Fault clearing time.
Two of the four primary factors determining the arc-flash hazard category have a larger impact than the others: working distance and fault clearing time.
In (Avendt, 2008) it is underlined that fault clearing time plays the largest role in the arc-flash hazard category. A time-current curve is frequently used to show the relationship between current (amps) and response time (seconds). Most protective devices have an inverse characteristic: as current increase, time decreases. Examples of such curves are given in (Avendt, 2008).
In order to fulfil the obligation to protect workers, several standards and guidelines are currently updated or under development.
For example, the Electricity Engineers Association has developed a discussion paper on the issue of arc flash (EEA, 2010) that will enable the subsequent preparation of a guide which will provide best practice advice for employers and asset owners needing to determine the probability of an arc flash occurring, its severity, means of mitigation and relevant personnel protection equipment.
An overview of various arc flash standards for arc flash protection and arc flash hazard incident energy calculations are presented in (Prasad, 2010).
In order to confirm these indications by feedback from national and world-wide operating experience, the national German database on reportable events occurring at nuclear power plants as well as international databases, such as IRS (Incident Reporting System) and INES (International Nuclear Event Scale), both provided by the International Atomic Energy Agency (IAEA), or the OECD FIRE Database (cf. OECD/NEA, 2009) have been analysed with respect to high energy arcing faults events which resulted in a fire and high energy arcing faults events with only the potential of deteriorating fire safety.
That systematic query underlined that a non-negligible number of reportable events with electrically induced explosions and extremely fast fire sequences resulting from high energy arcing faults partly lead to significant consequences to the environment of impacted components exceeding typical fire effects.
All results of the international and national databases are presented in Tables 1, 2 and 3 in the same manner, containing in particular the current plant operational state in case of the event, the information in which component the cause of the event was identified, the voltage level, if only the impacted component was damaged, and information if fire barriers being available had been deteriorated.
Due to the high safety significance and importance to nuclear regulators OECD/NEA/CSNI (Committee on the Safety of Nuclear Installations) has initiated an international activity on “High Energy Arcing Faults (HEAF)” in 2009 (OECD/NEA, 2009a) to investigate these phenomena in nuclear power plants in more detail as an important part of better understanding fire risk at a nuclear power plants which is better accomplished by an international group to pool international knowledge and research means. In this task it is stated:
“The main objectives of this common international activity are to define in technical terms a HEAF event which is likely to occur on components such as breakers, transformers, etc., to share between experts from OECD/NEA member states HEAF events, experiences, research and potential mitigation strategies. In addition, the physical and chemical phenomena of a HEAF event shall be investigated and characterized from a fire dynamics perspective. In this context, a simple model and/or deterministic correlation is intended to be developed to reasonably and quickly predict the potential damage areas associated with a HEAF.
Furthermore, generally acceptable input criteria and boundary conditions for CFD (computerized fluid dynamics) models shall be defined being likely to be accepted by industry and regulatory agencies. In a last step, the needs for possible experiments and testing to develop input data and boundary conditions for HEAF events to support the development of HEAF models shall be identified and the correlations and models developed be validated and verified.”
The working group with members e.g. from Canada, France, Germany, Korea, and the United States decided during the Kick-Off Meeting at OECD/NEA in Paris in May 2009 that the goals of the task are to develop deterministic correlations to predict damage and establish a set of input data and boundary conditions for more detailed modelling which can be agreed to by the international community.
The output of the OECD activity may directly support development of improved methods in fire probabilistic risk assessment for nuclear power plant applications. The task may also result in the definition of experimental needs to be addressed later in a project structure (OECD/NEA, 2009a).
First information from the international operating experience collected within the IRS database - for more severe reportable incidents at nuclear power plants - and INES, both provided by IAEA, is given in Table 1.
In addition, applications of the OECD FIRE Database (cf. OECD/NEA, 2009) have indicated that a non-negligible contribution of approx. 6 % of the in total 343 fire events collected in the database up to the end of 2008 (cf. Berg & Forell et al., 2009) are high energy arcing faults induced fire events. Details can be found in Table 2.
At the time being, the existing data base on high energy arcing faults events in nuclear installations is still too small for a meaningful statistical evaluation.
However, the first rough analysis of the available international operating experience gives some indications on the safety significance of this type of events, which potentially will also result in relevant contributions to the overall core damage frequency.
Up to the end of 2009, thirty-eight high energy arcing faults events have been identified in the OECD FIRE Database. Details on these events are provided in the following paragraphs.
The database query was started in Germany. One application of the OECD FIRE Database selected by the German experts was an analysis of events associated with explosions. A query in this database on the potential combinations of fire and explosion events (cf. Berg & Forell et al., 2009) indicated a significant number of explosion induced fires. Most of such event combinations occurred at transformers on-site, but outside of the nuclear power plant buildings or in compartments with electrical equipment.
Year of Occurrence | Reactor Type | Plant State | Component | Voltage Level | Damage Limited to Component | Barrier Deteriorated | Fire / Explosion |
2006 | PWR | FP | transformer busbar | 20 kV | yes | no | F |
2006 | BWR | FP | switchgear station | 400 kV | yes | no | - |
2001 | PHWR | LP/SD | circuit breaker cables | not indicated | no | no | F |
2001 | PWR | FP | power switch | not indicated | no | no | E / F |
2001 | PWR | FP | circuit breaker | not indicated | no | yes | F |
2000 | PWR | FP | circuit breaker | 6 kV | yes | yes | F |
2000 | PWR | FP | circuit breaker | 12 kV | yes | no | F |
1996 | PWR | FP | power switch | not indicated | no | yes | E / F |
1996 | PWR | FP | lightning arrester | not indicated | no | no | F |
1995 | PWR | FP | circuit breaker | 6 kV | no | no | E / F |
1992 | PWR | FP | switchgear room | 6 kV | yes | no | F |
1991 | PWR | FP | control cabinet | 6 kV | yes | no | F |
1991 | PWR | FP | busbar | 0.4 kV | yes | no | F |
1990 | PWR | LP/SD | switchgear station | 400 V | yes | no | - |
1990 | PWR | FP | busbar | 6 kV | yes | no | - |
1990 | LGR | FP | busbar | 6 kV | no | no | F |
1989 | PWR | FP | distribution | 6.9 kV | no | no | E / F |
1988 | PWR | FP | distribution | 13.8 kV | yes | no | E / F |
1984 | BWR | FP | main transformer | not indicated | no | yes | E / F |
1983 | GCR | LP/SD | control panel | 5.5 kV | no | yes | E / F |
Operating experience from HEAF events reported to INES and IRS (from Berg & Forell et al., 2009)
Year of Occurrence | Reactor Type | Plant State | Component | Voltage Level | Damage Limited to Component | Barrier Deteriorated | Fire / Explosion |
2007 | PWR | FP | high voltage transformer | not indicated / 345 kV | yes | no | E / F |
2006 | PWR | FP | electrically driven pump | 12 kV | yes | no | E / F |
2006 | PWR | FP | high voltage transformer | 6 kV / 20 kV | no | yes | E / F |
2006 | PWR | LP/SD | medium and low voltage transformer - oil filled | not indicated / 400 kV | no | no | E / F |
2005 | BWR | FP | high voltage transformer | not indicated | yes | no | E / F |
2005 | PHWR | FP | high voltage transformer | not indicated / 500 kV | yes | no | E / F |
2003 | GCR | FP | high voltage transformer | 6.6 kV / 400 kV | no | no | E / F |
2002 | BWR | LP/SD | high voltage transformer | not indicated | yes | no | E / F |
2002 | PWR | FP | high voltage breaker | 34.5 kV | yes | no | E / F |
2001 | PWR | LP/SD | high or medium voltage electrical cabinet | 6.6 kV | no | yes | E / F |
2001 | PWR | not indicated | high or medium voltage electrical cabinet | 6.6 kV | no | no | E / F |
1999 | PWR | FP | high voltage transformer | 20 kV / 161 kV | yes | no | E / F |
1995 | PWR | FP | medium and low voltage transformer – dry | not indicated / 130 kV | yes | no | E / F |
1994 | PWR | FP | high voltage transformer | not indicated / 400 kV | yes | no | E / F |
1990 | PWR | FP | high or medium voltage electrical cabinet | 6.6 kV | yes | no | E / F |
1988 | PWR | LP/SD | high voltage transformer | 20 kV / 400 kV | yes | no | E / F |
1988 | PWR | FP | high voltage transformer | 20 kV / 400 kV | yes | no | E / F |
1988 | PWR | FP | high voltage transformer | 20 kV / 400 kV | yes | no | E / F |
Table 2. Operating experience from fire events with HEAF included in the OECD FIRE Database (from Berg & Forell et al., 2009)
Approximately 50 % of the fires in the database were extinguished in the early (incipient) fire phase before the fire had fully developed.
As there is no specific coded field in the database to indicate explosions, the main source of information is provided by the event description field. The following terms were used as search filters:
search for *explo* (explosion, exploded, etc.): 26 events
search for *defla* (deflagration, deflagrated, etc.): no events
search for *deto* (detonation, detonated, etc.): no events
In three of the in total 26 cases no explosion occurred according to the event description but the term “explo” was used in another meaning.
In case of one event, the explosive release of ‘INERGEN’ gas from a gas cylinder occurred. The 22 reported explosions amount to 6.4 % of the 373 events reported up to date. Some details of the explosions are listed in (Berg & Forell et. al., 2009).
Concerning the process of explosion distinction should be made between an explosion as a process of rapid combustion (chemical explosion) and an explosion as a physical process resulting from a sudden gas pressure rise by a high energy arcing fault.
A chemical explosion was found for only three events (solvent vapour, diesel fuel, hydrogen). In the other 18 cases, high energy arcing faults events obviously took place at the same time indicating a physical explosion.
In some of these cases the electric fault might have caused a fuel pyrolysis/spread and acted as an ignition source for a chemical explosion, thus a high energy arcing fault event and a chemical explosion may have taken place simultaneously. In one event, a fire led to the explosion of diesel fuel vapour while in another event a fire and an explosion occurred independently from each other in parallel. In all other cases explosions induced the fire.
The buildings/locations where the events took place are also listed in (Berg et al., 2009). It was found that 13 (59 %) events took place outside buildings, 3 inside electrical buildings. A majority of 59 % of the reported explosions (again 13 events) started at transformers.
The other nine events took place at electrical cabinets, other electrical equipment, or process equipment (three each representing 14 %).
External fire brigades were needed in 4 of 22 cases (18 %). The 22 events were also evaluated concerning the fire duration with the following results:
Fire duration between 0 and less than 15 min: 11 events
Fire duration between 15 and less than 30 min: 3 events
Fire duration between 30 and 60 min: 3 events
Fire duration longer than 60 min: 3 events
For the remaining two events no information on the fire duration is provided. This result is in good agreement with the fire durations recorded in the database for all events, where for approx. 55 % of the events (i.e. 128 out of 233 events with fire duration provided) afire duration of less than 15 min could be found.
The German national operating experience from reportable events at nuclear power plants is summarized in Table 3. As one can see from this table different components were impacted, in particular – as expected – switchgears. In many cases the voltage level could not be identified. The damage was in most cases limited to the component where the HEAF occurred, only in one case a barrier was deteriorated. One third of these events were correlated with a fire.
Year of Occurrence | Reactor Type | Plant State | Component | Voltage Level | Damage Limited to Component | Barrier Deteriorated | Fire / Explosion |
2007 | BWR | FP | transformer | 380 kV | yes | no | E / F |
2007 | PWR | FP | transformer | 380 kV | yes | no | - |
2006 | BWR | LP/SD | auxiliary service pump | not indicated | yes | no | - |
2006 | PWR | FP | switchgear drawer | not indicated | yes | no | - |
2006 | BWR | FP | switchgear drawer | not indicated | yes | no | - |
2005 | BWR | FP | Switch | not indicated | yes | no | - |
2004 | PWR | LP/SD | emergency power feed line | not indicated | yes | no | - |
2004 | BWR | FP | diesel generator | 6 kV | no | no | F |
2004 | BWR | FP | cable connection | not indicated | yes | no | F |
2004 | PWR | LP/SD | diesel generator. exciter | 6 kV | yes | no | - |
2003 | BWR | FP | diesel generator. exciter | 6 kV | yes | no | - |
2003 | PWR | FP | emergency power feed line | 500 V | yes | no | F |
2002 | BWR | FP | emergency power busbar | 500 V | no | no | F |
2001 | PWR | FP | generator transformer switch | not indicated | yes | no | - |
2001 | BWR | FP | emergency power distribution | 660 V | yes | no | - |
1999 | PWR | FP | ventilation exhaust | not indicated | yes | yes | - |
1998 | PWR | FP | emergency power distribution | 660 V | no | no | - |
1996 | BWR | FP | switch drawer | 500 V | yes | no | F |
1995 | BWR | FP | switchgear drawer | not indicated | yes | no | - |
1993 | PWR | FP | currency converter | 380 V | yes | no | - |
1992 | PWR | LP/SD | emergency power generator | not indicated | yes | no | F |
1991 | BWR | FP | emergency power busbar | 10 kV | yes | no | - |
1989 | PWR | FP | switchgear feed cell | 10 kV | no | no | F |
1989 | PWR | LP/SD | switchgear feed area | 380 V? | no | no | F |
1988 | PWR | LP/SD | switchgear | 220 kV | no | no | E / F |
1987 | BWR | FP | emergency diesel generator | not indicated | yes | no | - |
1987 | PWR | FP | auxiliary service water system | not indicated | yes | no | - |
1986 | PWR | LP/SD | busbar | 380 V | no | no | F |
1984 | BWR | LP/SD | auxiliary power supply | not indicated | yes | no | - |
1981 | PWR | FP | safety injection pump motor | not indicated | yes | no | - |
1979 | BWR | LP/SD | switchgear | 400 V | yes | no | - |
1979 | PWR | LP/SD | control rod distribution | not indicated | yes | no | F |
1978 | PWR | FP | switchgear | 220 kV | yes | no | - |
1977 | PWR | LP/SD | switchgear | 350 V | yes | no | - |
1977 | BWR | LP/SD | emergency switchgear | not indicated | yes | no | - |
Operating experience concerning reportable HEAF events from German NPP (from Berg & Forell et al., 2009)
In all three tables the following abbreviations are used:
PWR: pressurized water reactorBWR: boiling water reactor
PHWR: pressurized heavy water reactorGCR: gas cooled reactor
FP: full powerLP/SD: low power / shutdown
E: explosionF: fire
As a result of the evaluation of the above mentioned international databases IRS and INES, a questionnaire has been developed by German experts providing a list of questions, which mainly shall be answered by the licensees (see Röwekamp & Klindt, 2007 and Röwekamp et al., 2007).
The answers to this questionnaire shall provide further insights on the basic phenomena regarding high energy arcing faults and may allow the evaluation of such events as well as the identification of effective preventive measures to be taken in nuclear installations in the future.
This questionnaire has been discussed nationally and in an international experts group. The results of the international discussions as well as a first pilot completion of this questionnaire in a German nuclear power plant resulted in enhancing the questionnaire and its sub-division into two parts depending on the availability of experiences with this type of events in the plants under consideration.
The questions concerning events which occurred at the nuclear power plant cover the operating experience in the respective plant, consequences and effects of the events, fire suppression measures (if needed), event causes and resulting corrective actions.
Questions without plant-specific observations from events deal with preventive measures in the plant and assessment activities performed without direct observations from the events (Röwekamp & Berg, 2008 and Röwekamp et al., 2009). The complete list of elaborated questions is provided in the following.
Part I: Questions concerning events occurred at nuclear power plants
Operating experience
Does the operating experience of the nuclear power plant (including grid connection) reveal either reportable or minor, non-reportable events interconnected to a high energy electric (i.e. arcing) failure of electric components and equipment with > 6 kV?
What was the damage? What was the damage zone? Was there damage by the high energy release (explosion pressure wave, etc.), or by fire or by both?
In which buildings / compartments / plant areas did the event occur?
At what type of component was the fault initiated (e.g., switchgear, motor control centre, transformer (oil filled or dry ones), breakers, cables etc.)?
What voltage level did the component operate at? What was the nominal current load available to the component?
If known, what was the estimated overload current observed during the arcing fault?
How was the HEAF observed or detected? Directly by fire detectors, visual or auditory detection in the location where the fault occurred or indirectly by faulty/spurious signals indirect fire alarms, etc.? (An as far as feasible detailed and exhaustive description of the event is needed.) What were the observations and findings?
What was the arcing duration in case of arcing being the cause? How did the arcing stop? (Note: Due to expert judgment from international experts there may be a correlation between arcing duration and damage consequences/extent)
Consequences / Effects
Which consequences/effects including secondary ones (e.g. pressure waves, impact by missiles, i.e. induced high frequent voltage, etc.) to adjacent/nearby components (including cables) and compartments / plant areas have been observed besides the typical fire effects? Did, as a consequence, protective equipment fail or become ineffective?
Was the damage limited to one fire compartment and or one redundant safety train or were further compartments / trains affected?
Which functions of fire protection features (fire barriers and their elements as well as active means) have been impaired by the effects of high energy arcing faults, in particular by pressure waves and missiles?
Fire suppression (if needed)
Was fire extinguishing performed?
If yes, which extinguishing means were applied? Which were successful?
What was (rough estimate) the total fire duration?
Event causes
Was it possible to find out the causes of the high energy impacts observed? If yes, what were the potential causes?
Were the initial causes (root causes) man-induced (mal-operation, errors), or purely technical ones, administrative causes, or combinations of different causes? Have the root causes been found? (Please list all the root causes.)
Corrective actions
What are the corrective actions after the event for prevention of recurrence?
Part II: Questions without observations from events at nuclear power plants
Preventive measures
In which compartments / plant areas are components and equipment with the potential of HEAF installed? Are there safety significant / safety related components available in these compartments / plant areas and/or adjacent ones? If yes, which ones? What are the preventive (structural) measures there against such events?
Which measures are foreseen (originally in the design as well as improved ones after the event) to limit the consequences of such high energy arcing faults failures?
Is it possible to practically exclude by the preventive measures that safety significant equipment is impaired?
Are further measures intended for prevention of these faults (continuous controls, in-service inspections, etc.), and if yes, which ones?
Assessment without direct observations from the events
In how far are such high energy arcing fault events and their potential effects considered in the frame of periodic safety reviews (deterministic safety status analysis as well as probabilistic safety assessment)?
This German questionnaire could be the basis for gaining plant-specific information also from nuclear power plants in other countries.
In the following, typical examples of high energy arcing fault events which occurred in different nuclear power plants in the last thirty years are provided.
A high energy arcing faults event from a spontaneous short circuit with a longer time duration took place in a German nuclear power plant.
This event, which occurred in a 10 kV cable at a BWR type plant, has been analyzed in detail by the responsible expert organization on behalf of the regulator in charge (Berg & Katzer et al., 2009). Details on the electric circuit are provided in Figure 1.
The affected cable was routed from the station service transformer together with various other cables through an underground cable channel to the switchgear building.
Due to the conditions in the ground, cables were partly imbedded in so-called ‘cable cylinder blocks’ manufactured from concrete (see Figure 2).
The short circuit with a duration of some seconds occurred in a single 10 kV cable inside one of the cylinder blocks. Neighboring cables were not affected. During this time period, the PVC insulated cable including the copper conductor evaporated completely on a length of approx. 1 m (see photos in Figure 3).
The pyrolysis and/or evaporation of the PVC cable insulations caused a strong smoke release inside the cable channel.
The automatic fire detectors directly gave an alarm. Due to the typically high air humidity inside the channel, a smoke exhaust system was installed for the cable channel, which removed the smoke rapidly after actuation by the fire detectors.
The overpressure arising from the high voltage short circuit was relieved via open cable conduits to the transformer and leakages.
Scheme of the electric circuit affected
Cross section of the cable tray inside the cable cylinder blocks inside ground between the buildings
Photos of the cable damage; left: location of the damaged cable, right: damage by the cable fire/evaporation
Cables with protection by intumescent coating; left: photo of the cable channel, right: photo of the coating
Unfortunately, the pressure value having really occurred during the event could not been determined. Damage to fire doors, dampers, or fire stop seals were not observed. The high energy short circuit did not result in any fire propagation; the combustion was limited to the location where the short circuit occurred. The fire self-extinguished directly after the electric current had been switched off. The fire duration was only a few seconds, however, the smoke release was high.
It has to be mentioned that all cables inside the cable channel were protected by intumescent coating (see Figure 4 above). This coating ensured the prevention of fire spreading on the cables.
The detailed analysis led to the definite result that the event was mainly caused by ageing of the 10 kV cables. The ageing process was accelerated by the insufficient heat release inside the cable cylinder blocks.
As a corrective action, all high voltage (mainly 10 kV) cables with PVC shielding being older than 30 years were replaced by new ones.
Another effect of the event was the smoke propagation to an adjacent cable channels via a drainage sump. As a preventive measure, after the event each cable channel was supplied by its own drainage system. Moreover, all the channels were separated by fire barriers with a resistance rating of 90 min.
This event occurred at a German nuclear power plant in 1987.
Photographs: a) view into the exciter cabinet, in the foreground location where the screw loosened and b) view into the cabinet
Photographs of the damaged fire door from outside the room
Performing a load test during a regular in-service inspection (usually at an interval of four weeks) of the emergency diesel generator, an arcing fault with a short-to-ground took place in the electrical cabinet of the exciter system of the emergency diesel generator (cf. Figure 5 above).
The ground fault is assumed to be caused by a loose screw. The ionization of air by the arc developed to a short circuit within approximately four seconds.
The coupler breakers between the emergency power bus bar and the auxiliary bus bar opened 0.1 s after the occurrence of the short circuit, due to the signal “overload during parallel operation”.
1.5 s later the diesel generator breaker opened due to the signal "voltage < min” at the emergency power bus bar. Another 0.5 s later the emergency power bus bar was connected automatically to the offsite power bus bar.
The smouldering fire is believed to be caused by the short circuit of the emergency diesel generator.
Due to the high energy electric arcing fault a sudden pressure rise occurred in the room (room dimensions are approximately 3.6 m x 5.5 m x 5 m) that damaged the double-winged fire door.
Photographs of the damaged fire door from outside the room are shown in Figure 6 above.
This event occurred at a German nuclear power plant in June 2007. A short circuit resulted in a fire in one of the two main transformers. The short circuit was recognized by the differential protection of the main transformer. Due to this, the circuit breaker between the 380 kV grid connection and the affected generator transformer (AC01) as well as the 27 kV generator circuit breaker of the unaffected transformer (AC02) were opened.
At the same time, de-excitation of the generator was actuated. The short circuit was thereby isolated. In addition, two of the four station service supply bus bars (3BC and 4BD) were switched to the 110 kV standby grid (VE). A simplified diagram is given in Figure 7 (Berg & Fritze, 2011).
Within 0.5 s, the generator protection system (initiating \'generator distance relay\' by remaining current during de-excitation of the generator which still feeds the shot circuit) caused the second circuit breaker between the 380 kV grid connection and the intact generator transformer (AC02) to open. Subsequently the two other station service supply bus bars (2BB and 1BA) were also switched to the standby grid. After approx. 1.7 s, station service supply was re-established by the standby grid.
Due to the short low voltage signalization on station service supply bus bars the reactor protection system triggered a reactor trip.
As soon as the switch to the standby grid had taken place, feed water pump 2 was started automatically. After about 4 s the pump stopped injecting into the reactor pressure vessel and subsequently was switched off again. This caused the coolant level in the reactor pressure vessel to drop so that after about 10 min the reactor protection system actuated steam line isolation as well as the start-up of the reactor core isolation cooling system. About 4 min after the actuation of steam line isolation, two safety and relief valves were opened manually for about 4 min. This caused the pressure in the reactor to drop from 65 bar to approx.. 20 bar. As a result of the flow of steam into the pressure suppression pool, the coolant level in the reactor pressure vessel dropped further.
Simplified diagram of the station service supply and the grid connection of the nuclear power plant
After closing the safety and relief valves the level of reactor coolant decreased further because of the collapse of steam bubbles inside the reactor pressure vessel. Thereby the limit for starting the high-pressure coolant injection system with 50 % feed rate was reached and the system was started up by the reactor protection system. Subsequently, the coolant level in the reactor pressure vessel increases to 14.07 m within 6 min. The reactor core isolation cooling system was then automatically switched off, followed by the automatic switch-over of the high-pressure coolant injection system to minimum flow operation. Subsequent reactor pressure vessel feeding was carried out by means of the control rod flushing water and the seal water.
Due to the damage caused by the fire in the transformer, the plant was shut down. The fire of the transformer showed the normal behaviour of a big oil-filled transformer housing, the fire lacks combustion air and produces a large amount of smoke (see Figure 8).
A detailed root cause analysis regarding the different deviations from the expected event sequence was carried out. The cause of the fire was a short circuit in the windings of the generator transformer. Due to the damages to the transformer it was not possible to resolve the failure mechanisms in all details.
To end the short circuit, the differential protection system of the generator transformer caused to open the circuit breaker between the 380 kV grid connection and the affected generator transformer as well as the generator circuit breaker to the unaffected transformer.
The generator circuit breaker to the affected transformer did not open since the generator circuit breakers are not able to interrupt the currents flowing during a short circuit. The opening of the circuit breaker between the second 380 kV grid connection and the remaining intact generator transformer is caused by the remaining current after de-exciting the generator which initiates the distance relay of the generator protection system.
The loss of the operational feed water supply was caused by the time margins in between the opening of the two 380 kV circuit breakers. The logical sequence in the re-starting program of the feed water pumps could not cope with the specific situation of the delayed low voltage signals during the incident.
The further drop in the reactor pressure vessel level following the actuation of steam line isolation and the reactor core isolation cooling system was caused by the manual opening of the two safety and relief valves for 4 min. The manual opening of safety and relief valves was not needed in the case of this event sequence and at that point in time. The reason for the manual opening of two safety and relief valves will be part of a detailed human factor analysis which is not completed.
As a consequence of these indications, improvements concerning the fire protection of transformers are intended in Germany (Berg et al., 2010).
Flame and smoke occurring at the generator transformer; the photo on the right hand shows the fire extinguishing activities
A phase-to-phase electrical fault, that lasted four to eight seconds, occurred in a 12 kV electrical bus duct at the Diablo Canyon nuclear power plant in May 2000 (Brown et al., 2009). This bus supplied the reactor coolant and water circulating pumps, thus resulting in a turbine trip and consequently in a reactor trip.
The fault in the 12 kV bus occurred below a separate 4 kV bus from the start-up transformer, and smoke resulting from the HEAF caused an additional failure.
When the circuit breaker tripped, there was a loss of power to all 4 kV vital and non-vital buses and a 480 V power supply to a switchyard control building, which caused a loss of power to the charger for the switchyard batteries. After 33 hours, plant personnel were able to energize the 4 kV and 480 V non-vital buses.
This event was initiated due to the centre bus overheating causing the polyvinyl chloride (PVC) insulation to smoke, which lead to a failure of the adjacent bus insulation. Having only a thin layer of silver plating on the electrodes, noticeably flaking off in areas not directly affected by the arc, contributed to the high-energetic arcing fault event.
Other factors that caused the failure were heavy bus loading and splice joint configurations, torque relaxation, and undetected damage from a 1995 transformer explosion. Two photos of this failure are shown in Figure 9. More photos are provided in (Brown et al, 2009).
Photographs of the damages at the Diablo Canyon nuclear power plant (from Brown et al., 2009)
This event occurs at a Ukrainian plant which was at that time under construction when work on dismounting of the lifting crane was fulfilled (IAEA, 2004).
The crane was located near the 330/6 kV emergency auxiliary transformers TP4 and TP5 which are designed for transformation 330 kV voltage to 6 kV for power supply of the 6kV AC house distribution system of the unit 4 and the emergency power supply system 6 kV for unit 3. They are located outside at a distance 50 m from the turbine hall of the unit 4. There are two metal clad switchgear rooms (with 26 cabinets and 8 switchers) about four meters from the emergency auxiliary transformers.
The supply of the sub-distribution buses building from the power centre rooms (see Figure 10), was ensured by a trestle with cable trays consisting of power, control and instrumentation cables for the units 3 and 4.
All trays were provided with the cut-off fire barriers. The transformer rooms were supplied by an automatic fire extinguishing system, which actuated when the gas and differential protection actuated.
The event started when the jib of the crane fell on the trestle with the cables passed from 330/6 kV transformer TP 4 and TP 5 to unit 4 and broke them. The cables fell on the ground. The diagram of the situation after the event is provided in Figure 10 (IAEA, 2004).
Damages of all cable trays lead to loss of instrumentation cables for relay protection of the transformers and the trunk line 6 kV.
As a result the earth fault of the cables 6kV could not be disconnected rapidly. The emergency relay protection of the transformers during earth fault 6 kV from the side 330 kV with the executive current from the storage buttery for open-type distribution substation 330 kV was not designed.
To remove this earth fault the plant was cut off from outside high-voltage transmission lines 330 kV by electrical protection actuation and the voltage on the power supply bus was decreased.
There was a loss of normal and emergency auxiliary power supply which resulted in a decrease of the frequency of ´the power supply buses of the main coolant pumps. The emergency protection was actuated and the reactors of units 2 and 3 were scrammed.
The long-term exposure of this earth fault (1 min and 36´sec.) caused a high earth fault currents which burn the cables. This lead to a fire spread to the 6 kV supply distribution buses and 6 kV metal clad switchgear rooms resulting inside these rooms in high temperature and release of the toxic substance. Also the equipment of the transformers TP 4 and TP 5 was damaged.
Diagram of the situation after the event (from IAEA, 2004)
The earth fault has to be disconnected with differential protection of the line 330 kV but it was actuated with the output relays of the TP 4 and TP 5 which was damaged.
The fire was detected by the security guard, the on-site fire brigade was informed, including the outside agency. The automatic fire extinguishing system was activated but stopped working right away because of fire pump’s power supply loss. There was no water in the fire mains.
Then the fire brigade laid fire-fighting hoses and provided water with a mobile pump unit. Then the fire brigade waited for the permission from the shift leader.
In compliance with a written procedure, after elimination of the short circuit and restoration of the house distribution power supply the fire brigades could start fire fighting and extinguished the fire about one hour and thirty minutes after detection.
In December 1975, a safety significant fire occurred in unit 1 of a nuclear power plant in the former Eastern Germany (see, e.g., Röwekamp & Liemersdorf, 1993and NEA, 2000). At that time, two units were under operation. Unit 1 was a PWR of the VVER-440-V230 type. The reactor had 6 loops and 2 turbine generators of 220 MWe each.
An electrician caused a triple-pole short-circuit at the grounding switch between one of the exits of the stand-by transformer and the 6 kV bus bar of the 6 kV back-up distribution that was not required during power operation. The circuit-breaker on the 220 kV side was defective at that time. Therefore, a short circuit current occurred for about 7.5 minutes until the circuit-breaker was actuated manually. The over current heated the 6 kV cable which caught fire over a long stretch in the main cable duct in the turbine building.
The reactor building is connected to the turbine building via an intermediate building, as typical in the VVER plants. The 6 kV distribution is located in this building and the main feed water and emergency feed water pumps all are located in the adjacent turbine building.
In the main cable routes nearly all types of cables for power supply, instrumentation and control were located near each other without any spatial separations or fire resistant coatings. In the cable route that caught fire there were, e.g., control cables of the three diesel generators.
Due to the fire in the 6 kV cable, most of those cables failed. The cable failures caused a trip of the main coolant pumps leading to a reactor scram and the unavailability of all feed water and emergency feed water pumps. The heat removal from the reactor was only possible via the secondary side by steam release. Due to the total loss of feed water, the temperature and pressure in the primary circuit increased until the pressuriser safety valves opened. This heating was slow, about 5 h, due to the large water volumes of the six steam generators, 45 m3 in each. In this situation one of the pressuriser safety valves was stuck open. Then the primary pressure decreased and a medium pressure level was obtained so that it was possible to feed the reactor by boron injection pumps. Due to cable faults, the instrumentation for the primary circuit was defective (temperature, pressuriser level). Only one emergency diesel could be started due to the burned control cables. The primary circuit could be filled up again with the aid of this one emergency diesel and one of six big boron injection pumps. With this extraordinary method it was possible to ensure the residual heat removal for hours.
The Soviet construction team personnel incidentally at the site then installed temporarily a cable leading to unit 2. With this cable one of the emergency feed water pumps could be started and it was possible to fill the steam generator secondary side to cool down the primary circuit to cold shutdown conditions. Fortunately, no core damages occurred.
Regarding the weak points with respect to fire safety, first of all, the cause for the fire has to be mentioned. This fire could only occur because there was no selective fusing of power cables.
Another very important reason for the wide fire spreading concerning all kinds of cables was the cable installation. Nearly all cables for the emergency power supply of the different redundancies as well as auxiliary cables were installed in the same cable duct, some of them on the same cable tray.
All the fire barriers were not efficient because the ignition was not locally limited but there were several locations of fire along the cable.
In the common turbine building for the units 1 to 4 of the Greifswald plant with its total length of about 1.000 m there were no fire detectors nor automatic fire fighting systems installed. Therefore, the stationary fire fighting system which could only be actuated manually was not efficient. The design as well as the capacity of the fire fighting system were not sufficient.
Although there were enough well trained fire fighting people, the fire-brigade had problems with manual fire fighting due to the high smoke density as there were no possibilities for an efficient smoke removal in the turbine hall.
In December 1996, in a PWR in Belgium the following event occurred. The operator starts a circulating pump (used for cooling of a condenser with river water). This is the first start-up of the pump since the unit was shut down.
About eight seconds later, an explosion occurs in a non safety related circuit breaker room (located two floors below the control room), followed by a limited fire in the PVC control cables inside the cubicles. Due to some delay in the reaction time of the protection relays, normal (380 kV) and auxiliary (150 kV) power supply of train 1 are made unavailable. Safety related equipment of train 1 are supplied by the diesel generating set 1. Normal power supply of train 2 is still available.
The internal emergency plan is activated and the internal fire brigade is constituted. The fire is rapidly extinguished by the internal fire brigade.
As a direct consequence of the explosion five people were injured during the accident, one of them died ten days later.
The fire door at the room entrance was open at the moment of the explosion; this door opens on a small hall giving access to the stairs and to other rooms (containing safety and non safety related supply boards) at the same level; all the fire doors of these rooms were closed at the moment of the explosion and were burst in by the explosion blast. Three other fire doors were damaged (one of these is located on the lower floor); some smoke exhaust dampers did not open due to the explosion (direct destruction of the dampers, bending of the actuating mechanism). One wall collapsed, another one was displaced.
The explosion did not destroy the cubicle of the circulating pump circuit breaker; the supply board and the bus bar were not damaged, except for the effects of the small fire on the control cables; other supply boards located in the same room were not damaged. In the room situated in front of the room where the explosion occurred, the fire door felt down on a safety related supply board, causing slight damages to one cubicle (but this supply board remained available except for the voltage measurement).
A comprehensive root cause analysis has been performed and has shown that the explosion occurred due to the failure of the circuit breaker. The failure occurred probably when the protection relay was spuriously actuated 0.12 seconds after the start up of the pump (over current protection) and led to an inadvertently opening of the circuit.
Based on an investigation of the failing circuit breaker, it was concluded that two phases of a low oil content 6 kV circuit breaker did not open correctly and the next upstream protection device did not interrupt the faulting device. This has led to the formation of long duration high energy arcing faults inside the housing and to the production of intense heat release. This resulted in an overpressure with subsequent opening of the relief valve located at the upper part of the circuit breaker presumably introducing ionised gases and dispersed oil into the air of the cubicle/room. This mixture in combination with the arcs is supposed to be at the origin of the explosion. Indications of arcing between the three phases of the circuit breaker have been observed, resulting in a breach of the housing on two phases. Many investigations were conducted to identify the root cause of the circuit breaker failure (dielectric oil analyses, normal and penalising conditions tests, mechanical control valuations) but no clear explanation could be found. Moreover, the circuit breaker maintenance procedure was compared with the constructor recommendations and the practice in France. No significant difference was noticed.
Although the explosion occurred in a non safety related supply boards room, the event was of general importance, because the same types of circuit breakers were also installed in safety related areas. Therefore, this event was reported to IAEA and included in the IRS database.
Due to the safety significance of this type of events and the potential relevance for long-term operation of nuclear power stations there is a strong interest in these phenomena in various countries with nuclear energy. Investigations on high energy arcing faults are ongoing in several OECD/NEA member states.
The licensees of German nuclear power plants are principally willing and able to answer the questionnaire concerning HEAF events as far as possible and information being available. In particular, experts from nuclear power plants in Northern Germany have already answered this questionnaire. The licensees intend to use the feedback from the operational experience provided by the answers to the survey and by conclusions and recommendations from the analysis for potential improvements of fire protection features in this respect in their nuclear power plants.
The evaluation of the answers of the remaining licensees to the questionnaire is ongoing and is planned to be completed by the end of 2011.
Due to the most recent experience from German nuclear power plants, it is necessary from the regulatory point of view to investigate high energy arcing fault events. Moreover, it might be helpful to investigate precursors to such events in more detail.
Table 3 gives indications that more than 40 % of the reportable events in Germany related to high energy arcing faults have been reported since 2001. This underlines the increasing relevance of this type of events.
Moreover, nearly half of those events, for which information regarding voltage level is not available, are among the most recent events whereas usually specific information is more difficult to collect for events in the far past. All these different activities and explanations of the current state-of-the-art should be supported by the evaluation of the answers to the German questionnaire.
Concerning high energy arcing fault events, short circuit failure of high voltage cables (typically 10 kV) in cable rooms and cable ducts (channels, tunnels, etc.) is not assumed for German nuclear power plants at the time being. Moreover, a failure of high voltage switchgears (10 kV or more) and the resulting pressure increase are presumed to occur and to be controlled.
Specific investigations with respect to such scenarios have resulted in additional measures for pressure relief inside switchgear buildings of German nuclear power plants.
According to international fire testing standards (EN, 2009) fire barrier elements are designed predominantly against the thermal impact of fires given by the standard fire curve according ISO 834. The pressure build-up due to a HEAF is not considered as fire barrier design load. In the course of several events fire barrier elements such as fire doors were opened or deformed by a HEAF. One example is described in 5.7.
As soon as the questionnaire has been answered by the German nuclear power station licensees, the answers will be statistically examined and interpreted. In particular, potential consequences of events with this failure mechanism on equipment adjacent to that where the high-energetic arcing faults occurred (particularly safety related equipment including cables, fire protection features) as well as HEAF events in plant areas exceeding the typical fire effects (smoke, soot, heat, etc.) shall be identified. The major goal of this task is to provide first, still rough estimates on the contribution of high energy arcing faults events to the core damage frequency.
The results of the German survey may reveal additional findings on the event causes, possible measures either for event prevention or for limiting the consequences of such faults such that nuclear safety is not impaired. In this context, additional generic results from the OECD HEAF activity are expected.
A review of secondary effects of fires in nuclear power plants (Forell & Einarsson, 2010) based to the OECD FIRE database showed that HEAFs did not only initiated fire event but were also secondary effect of a fire. In two events included in the database, fire generated smoke propagated to an adjacent electrical cabinet, which was ignited by a HEAF. This can be interpreted as a special phenomenon of fire spread. In one case smoke from an intended brush fire spread between the near 230 kV lines and caused a phase-to-phase arc.
As soon as the answers to the questionnaire have been analyzed in detail and the results from the operation feedback are known, a discussion between licensees, reviewers and regulators can be started on the general conclusions and potential back fitting measures and improvements inside the nuclear installations.
Based on the international operating experience, state-of-the-art information and data on high energy arcing faults of electric components and equipment shall be collected and assessed with respect to the phenomena involved. In particular, potential consequences of events with this failure mechanism on adjacent equipment (particularly safety related equipment, fire protection features) and high energy arcing faults events in plant areas exceeding the typical fire effects (smoke, soot, heat, etc.) shall be identified. Based on the collected information and data a more comprehensive and traceable assessment can be performed.
The high energy arcing fault assessment approach developed in (USNRC, 2005) primarily represents an empirical model. As such, it depicts observations mainly based on a single event and characterizes a damaging zone affected this event. To capture variations in current and voltage level, insulation type and cabinet design a mechanistic model has been developed (Hyslop et al., 2008).
Some recent studies have further developed the understanding of the high energy arcing faults phenomena through experimentation and re-evaluation of previous theories.
Damage to cables and equipment by high energy impulses from arcing faults has been shown to be different from that caused by fires alone. Specific components, such as transformers, overhead power lines, and switchgears, have been identified as vulnerable to arc events. However, when looking at the dynamic nature of high energy arcing faults, there are still many factors being not well understood.
Computational fluid dynamics models have also been used to measure the pressure and temperature increase (e.g. in switchgear rooms) and present reasonable results on arc events (Friberg & Pietsch, 1999). However, fires were not evaluated.
The existing research is mainly limited in scope and has not yet addressed all factors important to perform a full-scope probabilistic fire risk assessment including high energy arcing faults. In general, high energy arcing faults events have been minimally explored but improvements in the early quantitative results have been made. In particular, fire PSA needs to assess the event behaviour beyond the initial arc-fault event itself (as past research has focussed) so as to encompass the issues related to the enduring fire. Issues that go beyond the initial arc fault event include the characterization of the potential for ignition of secondary combustibles, characterization of the fire growth and intensity following the enduring fire, and the effectiveness and timing of fire suppression efforts.
In order to improve the probabilistic fire safety assessment approach, further research including experimental studies with respect to the arc mechanisms and phenomena as well as to the damage criteria of the relevant equipment affected by high energy arcing faults is needed. To better address the needs of probabilistic fire safety assessment, the scope of the testing will need to be expanded as compared to past studies. These research activities will be started in the U.S. in the near future (Hyslop et al., 2008), partially together with other countries interested in high energy arcing faults and their significance.
An arc flash fault typically results in an enormous and nearly instantaneous increase in light intensity in the vicinity of the fault. Light intensity levels often rise to several thousand times normal ambient lighting levels. For this reason most, if not all, arc flash detecting relays rely on optical sensors to detect this rapid increase in light intensity. For security reasons, the optical sensing logic is typically further supervised by instantaneous over current elements operating as a fault detector. Arc flash detection relays are capable of issuing a trip signal in as little as 2.5 ms after initiation of the arcing fault (Inshaw & Wilson, 2004).
Arc flash relaying compliments existing conventional relaying. The arc flash detection relay requires a rapid increase in light intensity to operate and is designed with the single purpose of detecting very dangerous explosive-like conditions resulting from an arc flash fault. It operates independently and does not need to be coordinated with existing relaying schemes.
Once the arc flash fault has been detected, there are at least two design options. One option involves directly tripping the upstream bus breakers. Since the arc flash detection time is so short, overall clearing time is essentially reduced to the operating time of the upstream breaker. A second option involves creating an intentional three-phase bus fault by energizing a high speed grounding switch. This approach shunts the arcing energy through the high-speed grounding switch and both faults are then cleared by conventional upstream bus protection. Because the grounding switch typically closes faster than the upstream breaker opens, this approach will result in lower incident energy levels than the first approach. However, it also introduces a second three-phase bolted fault on the system and it requires that a separate high speed grounding switch be installed and operational (Inshaw & Wilson, 2004).
To prevent or alleviate HEAF effects, manufacturers have been working to develop arc arrestors and arc detection methods and to improve composite materials in the switchgear interior. The experiments conducted (see e.g. Jones et al., 2000) indicated that research and testing are required to determine the voltage level, insulation type, and construction where bus insulation may help extinguish or sustain arc once established. The use of such devices would likely impact estimates of fire ignition frequency for such events, but no methods currently exist to account for the presence, or absence, of such equipment.
In recent years, technological advances in the field of echocardiography have allowed for a faster acquisition of images with an improved spatial and temporal resolution. As part of these advances, the advent of speckle tracking imaging has resulted in an explosion of investigations into myocardial deformation, as evidenced by more than 5000 articles on PubMed, increasing exponentially since 2005 (
During contraction of the heart, deformation of the whole muscle occurs in four quantifiable dimensions. In general, these have been identified as: longitudinal shortening (=longitudinal strain, %), circumferential shortening (circumferential strain, %), radial lengthening (=radial strain, %) and rotation (apical − basal rotation = net twist angle, degrees), as well as the diastolic reversal of all of these indices. In addition, the rate of systolic shortening and diastolic lengthening can be measured, which is referred to as strain rate, twisting rate, and untwisting rate. An important distinction must be made between myocardial deformation and pure “velocities”, which do not consider the relative shortening (contraction) or lengthening (relaxation) of heart muscle itself but only consider the linear displacement of single myocardial points. Although myocardial velocities can also be measured, they are not representative of the contraction and relaxation of heart muscle. For these reasons, parameters such as E’ (“E prime”), which typically represent myocardial velocities in a single location on the mitral annulus, are not discussed in this chapter.
The conventional categorizations of deformation into strain and twist are logical from a biophysics and bioengineering perspective, since deformation of the heart can indeed be detected in these distinct 2-dimensional echocardiographic imaging planes. However, as will be reviewed in the following section on the anatomy and electrical conductance, the structure of the heart is far from symmetrical and—to achieve the final coordination of all components with each heartbeat—important functional differences in the various regions within the heart are present. These intricate deformational patterns can be conceptually simplified by considering the region-specific deformation in a 2-dimensional plane, allowing for easier evaluation of cardiac mechanics in both the laboratory and the clinic. However, one must consider the 3D deformation of the heart muscle, where the deformation of the four imaging planes occur simultaneously and with many of these aspects anatomically and functionally interwoven. This anatomical complexity is the focus of the next section.
Historical reviews have often credited Leonardo da Vinci’s observations in the 15th century as some of the first to describe the gross anatomy of the heart and his speculations about the resulting function. In his drawings1, da Vinci refers to the importance of vortices, which necessitate the presence of helical structures and/or motions that were apparent as “clockwise and counterclockwise spirals within the aorta as the outlet of the left ventricle” [1]. More than a century after da Vinci’s death, William Harvey published his seminal book Exercitatio Anatomica De Motu Cordis Et Sanguinis In Animalibus (An Anatomical Study on the Motion of the Heart and Blood in Living Beings, 1628 [2]), in which he established the circulation—including the anatomy and motion of the heart—as we mostly know it today, thereby also popularizing the previous work by Ibn al-Nafis [3]. In 1669, Richard Lower provided remarkable detail on the anatomy of the heart in his publication of Tractatus de Corde… (Treatise on the Heart. … [4]). Despite these early discoveries, it wasn’t until the contributions by McCallum and then Mall in the early twentieth century that there were new advancements in this field [5, 6]. During the second World War, Robb & Robb provided an exceptionally detailed overview of the accumulated knowledge that covered five centuries of discoveries [7]. Then, 27 years later, in 1969, Streeter et al. published the much-cited myocardial fiber distribution of the left ventricle (LV) in dogs, and Greenbaum et al. confirmed the observations in human cadavers [8, 9].
Today, after centuries of observations, there is still debate on the exact origins and arrangements of the heart [10]. However, general consensus exists that the mammalian LV consists of oblique fibers in the endocardium that gradually change into circumferential fibers in the midwall and continue to oblique fibers in the subepicardium, orientated in the opposite direction to those in the endocardium, thus creating what is often referred to as a helical arrangement [11, 12, 13, 14]. Noteworthy insight has also been provided by the description of sheets and laminae, which may not only impact the effect of individual myofibres but also the electrical propagation across the myocardium [15, 16]. With regard to the latter, the coordinated sequence of electrical propagation and activation of the LV occurs in a specific apex-to-base and endocardial-to-epicardial order during systole [17]. Due to these different electrical activation times, each part of the heart muscle is activated for different durations, therefore shortening and lengthening velocities (or systolic and diastolic “strain rates”) vary significantly in the different regions of the LV and are not associated with the overall heart rate [18]. A significant addition to the longstanding knowledge on oblique and circumferential fibers was provided by Lunkenheimer et al., who provided evidence for the existence of transmural myofibres that may be of fundamental relevance to the regulation of forces associated with normal myocardial contraction and relaxation [19]. Finally, there is important structural diversity on the myocyte level that contributes to the overall elasticity of the cardiomyocyte, as revealed by different isoforms of the giant protein titin, which may influence myocardial deformation in systole and diastole, not least during exercise [20, 21]. Collectively, the current knowledge indicates a non-uniform, complex mesh of diverse cardiac myofibre arrangements which may be grouped in sheets and laminae, influencing the electrical activation sequence of the heterogeneously distributed autonomic nerves in the heart (Figure 1, [22]). In comparison to the LV, the macro-structure of the right ventricle (RV) is not cone-shaped but resembles that of a crescent, almost wrapping around the LV. Yet, the underlying micro-structure is similar to the LV, albeit with some key differences. Like the LV, the epicardial and endocardial fibers are arranged helically, but with a smaller range of oblique angles [23]. The main difference to the LV seems to be in the myofiber arrangement of the midwall. Here, “the circumferentially arranged middle fibres are confined to the LV and septum” [8] and “without such beneficial architectural remodeling […] seem unsuited structurally to sustain a permanent increase in afterload” [23]. It is probably because of the overall crescent shape (that makes echocardiographic image acquisition in any plane other than the longitudinal challenging), and the lack of an obvious torsional motion, that the assessment of right ventricular deformation has largely focused on longitudinal strain.
LV anatomy, strain and twist. (A) Although the detailed anatomy of the heart is still a matter of debate, the most comprehensive, evidence-based model includes a mesh of oblique, circumferential and transmural fibers (1–5). (B) LV strain is typically assessed in three planes, the longitudinal plane (from the apex to the base, L), the circumferential plane, C, and the radial plane (from the endocardium to epicardium, R). Owing to the specific anatomy, contraction of the LV results in a twisting motion around the long-axis, with an opposing rotational movement at the base compared with the apex that is rapidly released in diastole. Resultant twist and twist velocity curves produce a clear signal for peak LV twist and early diastolic untwisting rate (red arrows). Please see further details and the original figures in Refs. [14, 24].
Because of the increasing number of studies focused on myocardial deformation mentioned in the introduction to this chapter, it has been inevitable that some inconsistencies exist regarding the nomenclature in the literature. Here, a summary of the most common definitions is provided and the reader is also referred to previous review articles for further details on the terminology [24, 25, 26].
With regard to the LV, three strain components have been established: longitudinal, circumferential and radial strain [25]. Systolic strain rate was once thought to reflect contractility; however, these hopes have not been sustained. Furthermore, the anatomy of the heart does not support the measurement of radial strain since there are no radial fibers in the LV or RV. Although the transmural fibers may somewhat relate to this type of strain, they maximally constitute ~20% to overall deformation and do not seem to run strictly in the radial direction. Second, the classification of twist or torsion as a “shear strain” or fourth dimension of deformation does not fit the underlying anatomy of the heart either. There is currently no empirical evidence for the existence of a meaningful number of longitudinal fibers that could determine longitudinal deformation of the ventricles. Instead, the oblique fibers that make up most of the fibers within the left ventricular walls are likely responsible for deformation in the longitudinal direction. Consequently, it does not seem appropriate to calculate twist or torsion from the longitudinal and circumferential shear angle, also because this approach does not capture the potential regional differences that exist between the base and apex in both the LV and RV. Despite these drawbacks to the radial and longitudinal parameters, it must be acknowledged that longitudinal strain has become the most established measure as a clinical marker with diagnostic potential [27]. For these reasons, in the context of this chapter, it seems appropriate to ignore LV radial strain but include LV longitudinal and circumferential strain as well as twist and untwisting rate. Since no clear circumferential fibers or twisting motion have been detected in the RV, the focus for that chamber will be exclusively on longitudinal strainFigure 2.
RV strain. The measurement of RV strain at rest (left) and during exercise (right) in a patient with hypertrophic cardiomyopathy. Because of the anatomical arrangement of the RV, longitudinal strain is the most commonly investigated parameter, although further clarity is required whether to always include or exclude the septum [28]. From a functional perspective, there is strong evidence that the septal deformation is more similar to that of the LV than the RV free wall, as supported by evidence of a shared morphology [29, 30]. Please see further details and the original figure in: Wu et al. [31].
Parameter (unit) | Description |
---|---|
Circumferential strain (%) | Percentage shortening of the circumference |
Global longitudinal strain (%) | Typically, the average strain of multiple walls obtained from different echocardiographic windows (4-chamber, 2-chamber, 3-chamber) |
Longitudinal strain (%) | Shortening along the long-axis of the ventricles in a single 2-dimensional imaging plane (for example a 4-chamber view) |
Shear strain | The strain resulting from two different normal strains, for example “longitudinal-circumferential shear strain” |
Strain (rate) imaging | Generic term that can refer to strain data obtained with either tissue Doppler or speckle tracking echocardiography |
Strain rate (/s) | The rate of shortening (strain) or lengthening (strain) of each strain |
Tissue Doppler strain (%) | Strain obtained with tissue Doppler echocardiography, which is more angle-dependent than speckle tracking echocardiography |
Tissue velocity imaging (%) | Echocardiographic imaging based upon Doppler modality, often synonymous with tissue Doppler strain |
Twist (degrees) | Also called the net twist angle, obtained from the net difference in rotation between the left ventricular base and apex. Not to be confused with torsion or rotation, the latter referring to the local angular deformation at the base and apex |
Untwisting rate (°/s) | The maximal early diastolic rate of reversal of twist |
Deformation parameters.
Even if all humans were elite athletes, we would spend most of the time in a day in a biological state of rest—or certainly in a state of low physical activity that only constitutes a fraction of the total capacity of our cardiovascular system. Accordingly, the routine clinical practice of examining cardiac function at rest is a good representation of the condition we find ourselves in most of the time. However, when a person requires an echocardiographic examination, it is typically for clinical reasons initiated by the presence of negative symptoms, often presenting as “exertional dyspnea” or angina. If an echocardiographic examination then detects structural and functional abnormalities of the heart that are congruent with the individual’s symptoms, the diagnosis of heart disease is likely. However, resting assessment of cardiac function often fails to recapitulate conditions of exertional dyspnea, and thus can sometimes lead to misdiagnosis. Equally, waiting until the emergence of symptoms postpones clinical treatment. For this reason, “stress testing” has been suggested to offer the opportunity of a “window into the future”. By taking the person out of their typical state of rest or low physical activity and stressing the full range of their cardiovascular system until maximum effort, underlying abnormalities may be detected that remain otherwise unknown. Examples for the benefit of exercise testing have been presented in relation to “unmasking masked hypertension” [32, 33]. Similarly, in pregnancy it has been proposed that the cardiovascular responses to exercise tests prior to conception may be indicators of the presence or absence of complications during future pregnancies [34, 35, 36, 37]. Furthermore, the complex etiology of heart failure has justified detailed exercise testing to identify the most important contributors out of the numerous cardiac or peripheral factors that may be involved in the development and/or the state of heart failure [38, 39, 40].
It is now recognized among clinical practitioners that the investigation of myocardial deformation during exercise can provide additive value, since previous research studies have revealed new (and sometimes surprising) insight into the behavior of the heart during exercise. As will be discussed in detail in Section 3.3, these findings have informed our basic understanding of cardiac function and sometimes guided future clinical investigation. Since myocardial function, including parameters of myocardial deformation, are influenced by the general loading state of the heart, any exercise responses must be seen in the context of general cardiovascular responses, as discussed in the next section.
In the context of myocardial deformation, the most relevant cardiovascular and cardiopulmonary responses to a standardized exercise test pertain to stroke volume, cardiac output, end-diastolic volume, blood pressure, arterial resistance, lactate, and maximal oxygen consumption (VO2max). In healthy individuals, a clear change in these parameters can be expected at the onset of low intensity dynamic exercise that should continue to change linearly up to moderate intensities. Importantly, dynamic exercise tests cause a disproportionate peripheral vasodilation in relation to the increase in cardiac output, and hence total peripheral resistance drops sharply at the onset of exercise and then remains constant across moderate and high exercise intensities [41]. From a diastolic perspective, end-diastolic volume has been shown to increase in some studies while others have not observed any change with exercise. This is not trivial since an acute increase in end-diastolic volume has been associated with an increased stroke volume, an effect also known as the Frank-Starling mechanism [42]. However, the overall contribution of end-diastolic volume to stroke volume is still relatively low because most of the increase in stroke volume has been attributed to the enhanced contractility that reduces the end-systolic volume.
At workloads above moderate intensity, several important physiological changes occur in healthy individuals. Blood lactate concentrations increase exponentially and CO2 production rises above O2 consumption, both reflecting the greater contribution of anaerobic metabolic pathways to overall energy utilization and causing a strong stimulus for vasodilation not least in the cerebral circulation. During the highest effort, stroke volume and VO2 have been reported to plateau and even decrease, but the exact pattern and the underlying mechanisms to this response remain a matter of debate [43]. Fortunately, this does not seem to impact the interpretation of cardiovascular responses to exercise in patients, since the sub-maximal data are currently thought to be of sufficient clinical value to determine whether exercise performance is normal or impaired [44].
One important distinction between the LV and RV responses to exercise is the potential for a “disproportionate load” on the RV [45], which is perhaps explained by both a greater relative rise in pulmonary blood pressure compared with that in the aorta, and differences in RV intrinsic factors such as force development. The differences between the LV and RV responses to exercise highlight the specific impact exercise has on the cardiovascular system. Consequently, determining the true origin of exercise limitations is challenging because many components of the cardiovascular system may be affected. For example, studies have shown that an exaggerated rise in blood pressure during exercise may be associated with negative outcomes, but whether this is caused by the heart or the periphery may be more difficult to determine [46, 47, 48]. Even in heart failure, the reduced exercise tolerance has been suggested to be a result of both central and non-cardiac limitations [38, 39, 40, 49]. Consequently, assessing myocardial deformation in relation to conventional exercise responses is essential for the quantification of the contributions of the heart muscle itself.
Whatever myocardial parameter one chooses to examine during exercise, the interpretation of the responses can be tricky. For example, an increase in myocardial deformation with sub-maximal cycle exercise along with a typical drop in arterial resistance and concomitant reductions in end-systolic volume, in the presence of no adverse structural remodeling would be reflective of a “healthy” response. Equally, it is theoretically possible that the absence of a clear increase in myocardial deformation—which could be interpreted to represent myocardial dysfunction—may be a normal response if the increase in blood pressure and peripheral resistance were excessively high (or the exercise test did in fact create a condition of increased afterload). In this case, it is conceivable that the origin of the exercise limitation may not be cardiac despite the attenuated deformation, but perhaps peripheral in nature causing an exercise failure before the cardiac reserve is fully used [39]. Therefore, this section provides an overview of the general trend of myocardial deformation during exercise, but the reader is alerted that a qualitative interpretation must be performed after consideration of the wider physiology. Articles in this section were included if the studies had obtained data with echocardiography during exercise (tissue Doppler and tissue velocity imaging data were mostly excluded because both techniques are angle-dependent and typically represent only data from a single segment within the mitral annulus). Although a promising and exciting alternative to echocardiography, myocardial deformation during exercise obtained using MRI is not the focus of this chapter [50, 51]. Studies were also excluded if they obtained data immediately following exercise effort, as discussed in more detail in the section on methodological considerations. Finally, the avid reader is referred to some excellent review articles that cover more of the literature than this book chapter can accommodate [52, 53, 54, 55].
The physiology of myocardial deformation during exercise in healthy people is the fundamental basis upon which to interpret the responses in patient populations. Although many clinical research studies also include a healthy control group, sometimes these are matched to the patient groups in their demographics and, therefore, may not represent truly “healthy” individuals. Wherever possible, the data presented here will be from populations purposefully recruited as young healthy reference groups. To date, studies have revealed a variety of new perspectives that may be of great importance for the interpretation of clinical populations.
A decade ago, two studies revealed the strain and twist responses during incremental exercise. First, Doucende et al. showed that left ventricular twist and circumferential strain increased linearly up to moderate exercise intensities, while longitudinal strain increased initially but then plateaued at low exercise efforts [56]. This study also highlighted the interdependence of systolic and diastolic deformation, the role of untwisting rate in LV filling during exercise and the contribution of the LV apex to the overall myocardial response. Second, it was shown that LV twist and untwisting rate increased linearly up to near-maximal efforts, correlating with stroke volume and, thus, perhaps contributing to maximal exercise capacity in humans [57]. The importance of regional LV deformation, at the LV apex, was again highlighted. Several other studies have revealed similar patterns of LV twist during exercise in pre- and postmenopausal women, in athletes and of humans ascending to high altitude [58, 59, 60, 61, 62]. Consequently, it is now generally accepted that an increase in LV twist with exercise up to moderate intensities can be expected as a normal response (Figure 3). Surprisingly few studies dedicated to healthy individuals have measured LV strain during exercise, but they agree in general that longitudinal strain also increases with exercise [56, 61, 62, 63, 64]. Because of the risk of potential confounders, it is not possible to directly compare the response in LV twist and strain obtained in different studies. But in general, it is of great importance to note that the patters of the responses to exercise are not always the same for the two parameters, reminding us that they do not represent the same myocardial deformation. In agreement with the general physiological response to incremental exercise, LV twist increases linearly while longitudinal strain seems to plateau at low exercise efforts. This was more recently confirmed by Williams et al., who reported the same disparity between parameters in young healthy men [62]. Interestingly, in the same study, women seemed to have more of a linear response in longitudinal strain akin to LV twist. The disparity between LV twist and longitudinal strain has also been noted in studies on aging where LV twist consistently increases, but longitudinal strain does not change or decreases. Considering the well-established progression of aortic stiffness with aging [65], longitudinal strain appears to be at odds again with general physiology. Future studies should not only examine the parameters in relation to their sensitivity as a clinical marker but also consider the fit with general physiology.
Myocardial deformation to incremental exercise. LV twist curves during incremental exercise, revealing a linear increase up to 70–80% of maximal individual exercise effort for both peak systolic LV twist (highest value in black lines top row) and peak diastolic untwisting rate (lowest value within black lines bottom row). Red lines represent myocardial deformation at the LV apex, blue lines at the LV base. Black lines are the composite of apical and basal data. Please see further details and the original figure in Ref. [57].
Studying the acute effects of exercise on myocardial deformation may be influenced by the chronic remodeling that humans have experienced. In this regard, Burns et al. showed that aging seems to be associated with a reduced LV twist reserve during exercise in a population of 60-year old individuals [66]. Similarly, “female aging”, as represented by the menopause, seems to impact the myocardial response to exercise, which may be further altered by exercise training [58]. One of the more surprising observations has been that of Cooke et al. who proposed that endurance trained athletes with enlarged “athlete’s heart” and a greater stroke volume had a similar systolic LV function, including LV twist, during submaximal exercise compared to untrained humans with smaller stroke volume [67]. Similar to the results presented by Doucende and Williams discussed above [56, 62], this particular exercise response strongly suggests that the mechanical2 systolic function of the heart may not be strictly associated with its output (stroke volume). Some mathematical calculations support the potentially poor linear association between systolic LV mechanical function and ejection fraction while others suggest a strong relationship [68]. In any case, the previous findings suggest that future investigations into the interaction between systolic deformation and ejection, and diastolic deformation and filling are needed to clarify the current uncertainty. One reason for the existing disagreement between mechanical function and associated hemodynamics may be the technical limitations causing restricted views from a 2D echocardiographic window. In the case of exercise responses, this may be particularly evident at the LV apex, since the apex has been proposed as an important contributor to exercise responses (in particular in diastolic function) [56, 57, 69]. However, in the echocardiographic images relevant for the measurement of global longitudinal strain, the representation of the apical segments is proportionately small and their contribution to longitudinal strain and strain rate may be underestimated compared with short-axis views [18]. Thus, some of the insight provided by myocardial deformation during exercise in healthy people relates to our more general understanding of cardiac function.
Compared with LV strain, RV longitudinal strain seems to be ~10 percentage points higher in healthy young humans at rest, likely reflecting the different anatomy combined with a lower pulmonary resistance compared with the aorta. Most studies reporting RV strain in healthy individuals during exercise have done so by including healthy controls as comparators to cardiac patients. From those studies, some patterns have emerged that suggest a consistently increased RV longitudinal strain during submaximal exercise in healthy individuals [28, 31, 70]. The mechanisms for this are probably similar to those of the LV, where an increased sympathetic state increases contractility while peripheral (pulmonary) vasodilation decreases downstream resistance [71]. However, during intense exercise, it seems that right ventricular myocardial deformation increases perhaps less than the LV, and it has even been shown to decrease. Given that both ventricles should produce approximately the same stroke volume under stable conditions, the lower RV strain during exercise is another indicator that the interaction between the mechanical function of the ventricles and the circulation may depend as much on the local arterial resistance as it may depend on the muscular performance (and therefore health) of the ventricles, and thus fitting the long-standing concept of a greater afterload-sensitivity of the RV. Recent studies in advanced heart failure patients who were surgically implanted with left ventricular assist devices (LVAD) may support this, since the mechanical pumps “unload” the LV and shift blood volume to the rest of the circulation, maybe creating “A Different Kind of Stress Test for the RV” [72, 73]. The accurate measurement of pulmonary and aortic resistance beyond the measurement or estimation of blood pressure is certainly going to elucidate the differential exposure and performance of the two ventricles [74]. At present, it seems that exercise does indeed cause a greater afterload challenge for the RV compared with the LV. In fact, it is worth noting that the exercise modalities used in the studies presented so far in this section have mostly employed “dynamic” exercise (see Section 3.4). In this context, it is essential to point out that this type of exercise increases sympathetic activation of the myocardium and reduces arterial resistance compared with the resting state, therefore creating an environment for the LV (and at low intensities for the RV) that is characterized by reduced afterload. During higher exercise intensities, pulmonary resistance can increase during dynamic exercise and create an augmented afterload challenge [45]. Strength exercise, also called resistance exercise, and isometric handgrip exercise are two other modalities that can provide an afterload challenge for the LV [75]. Interestingly, studies employing these exercise modalities in a number of different populations have consistently shown that the reduced systolic deformation is in part compensated for by an increase in heart rate, but can also be uncoupled from diastolic function [76, 77, 78, 79]. Given that resistance exercise produces a very different challenge to dynamic exercise, and that strength training is an important addition to rehabilitation, future research should consider incorporating responses during high resistive efforts [80, 81].
In a seminal study, Notomi et al. provided mechanistic insight into the complex interdependence between systolic and diastolic function in hypertrophic cardiomyopathy [20]. Although the study used Tissue Doppler Imaging, it is a landmark study that has provided new insight and has popularized the use of exercise testing for both basic science and new insight into cardiac performance in patients. The study revealed that LV twist during exercise was significantly reduced in patients with hypertrophic cardiomyopathy. Similarly, two other studies concluded that systolic deformation reserve is reduced in patients with hypertrophic cardiomyopathy [82, 83]. However, one challenge in patient populations is that the change in heart rate is often different compared with control groups, and therefore it is possible that the groups experienced different physiological stimuli. This is a recurring problem in exercise studies that currently reduces the confidence in some conclusions. Equally, sometimes the matching of the change in heart rate between groups may lead to unequal workloads or changes in blood pressure, highlighting again the need to interpret myocardial deformation during exercise in the context of general physiological responses. Notwithstanding, the overall trend is that LV myocardial deformation in patients is reduced in response to an acute exercise challenge, including in cardiac amyloidosis, hypertension, cancer, coronary artery disease, as well as in patients with valve disease before and after surgical correction [84, 85, 86, 87, 88, 89]. Some subtle observations, however, are worthy of discussion. For example, in patients with microvascular angina, only the subendocardial strain was reduced, and diastolic function during exercise was more severely affected than systolic reserve [90]. Similarly, myocardial regions can respond differently during exercise in coronary artery disease patients, as shown by differential basal vs. apical rotational mechanics [89]. In an elegant study in patients with hypertrophic cardiomyopathy, Soullier et al. showed that there was significant heterogeneity in the response of the different deformation parameters to exercise, and that resting twist was even increased in patients while diastolic untwisting rate was less affected [83]. In patients with a prior heart transplant, the age of the recipients and donors seem to influence the longitudinal and circumferential strain response to exercise [91, 92]. All these observations highlight the very subtle changes that can occur between parameters, and between systolic and diastolic function. To determine the full significance of such differences should be the focus of future investigations. Furthermore, it will be essential to relate myocardial deformation more often to parameters like cardiac output, to enable the meaningful interpretation of deformation indices and their contribution to the overall capacity of the heart. When this was done in previous studies, the myocardial deformation during exercise provided a clear advancement of our general understanding of the etiology and/or progression of cardiac disease [93].
Because of the prevalence and importance of pulmonary hypertension, and the exercise limitations of heart failure patients, myocardial deformation of the RV during exercise has received heightened attention [94]. Similar to the LV response, the expected increase in RV myocardial deformation during exercise is generally blunted, not just in pulmonary hypertension but also in tetralogy of Fallot, systemic sclerosis, and hypertrophic cardiomyopathy [31, 95, 96, 97]. Most often, there is clear evidence that pulmonary artery pressures increased disproportionately in the groups that had a blunted increase in RV longitudinal strain during exercise. Importantly, these patients often have normal pulmonary artery pressures at rest, which not only emphasizes the diagnostic value of exercise testing, it also highlights the possibility that patients with suspected LV pathology should be tested for the RV myocardial response to exercise.
Any echocardiographic examination consists of two main parts: (1) the acquisition of standardized echocardiographic images, and (2) the analysis of images for the quantification of relevant parameters [98, 99]. When conducting echocardiography during exercise, both parts require modified approaches to ensure that the conclusions drawn remain valid. Here, based upon our extensive practical experience, we present some “take-home-messages” that we consider essential for the echocardiographic assessment of myocardial deformation during exercises.
Typically, exercise tests are performed in a stepwise (constant intensity for some minutes, then increasing) or incremental (gradually increasing intensity with every second) manner. Because different protocols provoke different physiological responses, the correct protocol must be selected carefully.
Exercise responses depend on the relative workload of an individual. Therefore, exercise intensities should be adjusted to an individual’s anticipated capacity and patients’ myocardial deformation interpreted in relation to the relative workload [100].
The individual adjustment of workload increments during the test should also acknowledge fitness, age, sex, medical history, and acute or chronic injuries.
For the assessment of myocardial deformation during exercise, running or cycling modalities are the most common. For the reason of improved image quality and because it is relatively safe/feasible, the preferred choice for exercise echocardiography may be supine cycling.
While it is generally accepted that gentle end-expiratory breath holds can be performed to obtain images, it is preferable to obtain echocardiographic cine loops during free breathing and average some cardiac cycles during inspiration and expiration.
It is important to distinguish between the physiological demands of different exercise modalities, categorized as: dynamic, static, and impact [101]. Consequently, certain types of exercise can be considered more as an “afterload challenge” than others, and the responses of myocardial deformation may vary greatly between these types of exercise. In this context, the reader is reminded that exercise training interventions for health will need to consider the same complexities, as evidenced by the potential for differential effects of moderate continuous exercise training versus high-intensity interval training in some cardiac patients [102].
One concern with regard to exercise testing is the risk of triggering adverse events. Although this will depend on the specific individual being tested and must be decided by qualified personnel on a case-by-case basis, as evidenced by a comprehensive study performed by Rognmo et al. [103], the overall risk for serious adverse events seems to be relatively low. Particular health and safety precautions should be taken in patients with overt or suspected arrhythmia and the decision “not allowed to perform an exercise test” may have to be taken.
Standardization of echocardiographic data acquisition during exercise is absolutely necessary. Sonographers should minimize the sector width and depth, maximize imaging frame rates, only use one focal point and position this in the optimal location, and optimize the overall image to maximize the visibility of the endocardial border for speckle tracking analysis. Although 3D echocardiography may solve some of the limitations of 2D echocardiography, at present the frame rates are too low to obtain the necessary temporal resolution for quantification of myocardial deformation during exercise, although this is expected to change in the near future.
During exercise, when respiration and heart are increased, the quick location of the optimal echocardiographic window is necessary. Marking up the location on the chest after the resting assessment serves as a “quick help” during exercise. The sonographer must, however, still optimize the image and perhaps move the transducer slightly during exercise.
Since heart rate increases during exercise but imaging frame rates are already maximized, the effective frame rate (data points per cardiac cycle) decreases. Although this cannot be fully corrected, it seems advisable to perform cubic spline interpolation to attenuate some of these limitations [104]. Note that cubic spline interpolation will not only add points in time (for example for the more confident assessment of dyssynchrony), it also slightly adjusts the peak values.
Data acquisition immediately following exercise is not the same as “during” exercise. With the cessation of exercise, especially after a strenuous effort with strong muscular contractions, instant changes in whole-body hemodynamics set in [105]. Hence, these data do not reflect an exercise challenge but a “exercise recovery” state.
For the acquisition of LV twist, apical data must be obtained by moving the transducer close to the point of obtaining a 4-chamber view, otherwise severely misrepresentative data will be collected [24].
The assessment of LV and RV myocardial deformation during exercise is feasible and has contributed unique insight into cardiac physiology in health and disease. Inherent methodological challenges require appropriate training and a careful approach to image acquisition, analysis and interpretation. However, ongoing technological advancements and an increasing knowledge suggest that the echocardiographic assessment of myocardial deformation during exercise will play an ever-increasing role in future research and the clinical examination of the cardiac patient.
The authors express their sincere gratitude to the publisher, IntechOpen, for their very kind and generous financial support of this chapter.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"802",title:"Operations Management",slug:"industrial-engineering-and-management-operations-management",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:2,numberOfCrossrefCitations:7,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-operations-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3723",title:"Management and Services",subtitle:null,isOpenForSubmission:!1,hash:"fd3d170b6b6bfc78a9568d26c89ca435",slug:"management-and-services",bookSignature:"Mamun Habib",coverURL:"https://cdn.intechopen.com/books/images_new/3723.jpg",editedByType:"Edited by",editors:[{id:"12501",title:"Prof.",name:"Dr. Md. Mamun",middleName:null,surname:"Habib",slug:"dr.-md.-mamun-habib",fullName:"Dr. Md. Mamun Habib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"11653",doi:"10.5772/9950",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3047,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11655",doi:"10.5772/9952",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",doi:"10.5772/9951",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null}],mostDownloadedChaptersLast30Days:[{id:"11653",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3046,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11657",title:"Realization of Lowpass and Bandpass Leapfrog Filters Using OAs and CCCIIs",slug:"realization-of-lowpass-and-bandpass-leapfrog-filters-using-oas-and-ccciis",totalDownloads:3632,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Yanhui Xi and Hui Peng",authors:null},{id:"11655",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null},{id:"11656",title:"Constructing Geo-Information Sharing GRID Architecture",slug:"constructing-geo-information-sharing-grid-architecture",totalDownloads:1561,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Qiang Liu and Boyan Cheng",authors:null}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-operations-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/165268/antonino-d.-romano",hash:"",query:{},params:{id:"165268",slug:"antonino-d.-romano"},fullPath:"/profiles/165268/antonino-d.-romano",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()