Hereditary adrenocortical tumor syndromes.
\r\n\tWe accept scientific papers which can be presented as original research papers and review papers. The required length of the full chapters is 10-20 pages and the chapters should be original works (not republished).
\r\n\tAs a self-contained collection of scholarly papers, the book will target an audience of practicing researchers, academics, Ph.D. students and other scientists. Since it will be published as an Open Access publication, it will allow unrestricted online access to chapters with no reading or subscription fees.
Adrenal gland consists of an outer cortex and inner medulla; the cortex is further subdivided into three distinct zones: the zona glomerulosa, the zona fasciculata, and the zona reticularis. Mineralocorticoids (aldosterone) secreted from the zona glomerulosa are essential for fluid and electrolyte balance and the renin-angiotensin-aldosterone system. The fasciculata secretes glucocorticoids (mainly cortisol). The zona reticularis produces steroid sex hormones called androgens. These hormones play an important role in maintaining the normal homeostasis of the body [1, 2, 3]. However, it is quite common to encounter disorders related to the hormones of these three layers. These disorders could be possibly due to adrenal cortical masses secondary to cortical hyperplasia. It is very infrequent to encounter metastatic lesions in the adrenal glands.
\nThis chapter mainly focuses on the pathology related to adrenal cortex which includes various forms of adrenocortical hyperplasia and benign and malignant neoplasms of the adrenal gland which lead to various hormonal imbalances encountered in clinical practice. Hormonal deficiency is due to inherited glandular or enzymatic disorder, destruction of pituitary gland by autoimmune disorders, infection, infarction, or others [4, 5]. The major disorders of the adrenal cortex are characterized by excessive or deficient secretion of each type of adrenocortical hormone.
\nThe lesions of the adrenal cortex could be functional as well as nonfunctional, which means that patients with these lesions may exhibit clinical symptoms that are due to hypersecretion of hormones released. Usually cortical hyperplasia and adenomas are nonfunctioning. The functional syndromes associated with pathology of adrenal cortex are hypercortisolism (Cushing’s syndrome), adrenal insufficiency (Addison’s disease), hyperaldosteronism, and androgen excess (adrenogenital syndrome) [4, 5, 6, 7, 8, 9].
\nAdrenal hyperplasia is characterized as a smooth, diffuse, bilateral enlargement of the adrenal glands, wherein the glands retain their adreniform shape. Hyperplasia can be either macronodular or micronodular. They are commonly unilateral; however bilateral cases are also observed [7, 8]. Broadly adrenal cortical hyperplasia can be grouped into three main categories: ACTH-dependent (adrenocorticotropic hormone), ACTH-independent, and congenital adrenal hyperplasia (CAH). Cushing’s syndrome is one of the common functional manifestations of adrenal gland hyperplasia and therefore is discussed first [8, 10, 11].
\nIt is a syndrome which encompasses various clinical features due to chronic excess of glucocorticoids. The incidence is nearly 1–2 per 100,000 population per year. Harvey Cushing was the first to observe pituitary adenomas associated with hypercortisolism in 1932 [10, 11, 12, 13]. Cushing’s syndrome, caused by prolonged exposure of tissues to high levels of cortisol, presents as constellation of symptoms including central obesity, muscle fatigue/atrophy, hirsutism, infertility, osteoporosis, moon facies, dorsocervical and supraclavicular fat pads, and wide purple striae [8, 10, 12]. The syndrome may be ACTH-dependent or ACTH-independent. A fair number of cases attributed to iatrogenic causes are also identified. Most of the cases of Cushing’s syndrome are due to ACTH hypersecretion from the anterior pituitary and are associated with pituitary cortical adenoma. Majority of the cases, about 80–90%, show diffuse hyperplasia of the adrenal cortex [9, 10]. Nearly 15% of cases do present with ectopic ACTH secretion associated with small cell lung carcinoma or bronchial carcinoid. Thymic carcinoids, pancreatic islet cell tumor, pheochromocytomas, and medullary carcinoma of thyroid form minor group of tumors associated with ectopic ACTH secretion [12]. In a study by Ejaz et al., lung tumors constituted 44.4% of all cases of neoplasm-related ectopic ACTH secretion causing Cushing’s syndrome [14]. Clinically patients with Cushing’s syndrome present with diastolic hypertension, hypokalemia, and edema. Hypogonadism and amenorrhea can also be seen in these patients which are attributed to suppression of gonadotropin secretion secondary to excess glucocorticoid secretion [10, 11, 12, 13, 14].
\nCushing disease, resulting from a pituitary corticotropic adenoma, and rarely carcinoma, makes up to 80–85% of endogenous Cushing’s syndrome cases [8, 10, 15].
\nA two-stage test is usually recommended in a patient to rule out Cushing’s syndrome [8, 10, 15, 16, 17]:
The first group of tests are to screen for the evidence of hypercortisolism. These comprise urine cortisol excretion and low-dose dexamethasone suppression test.
The second group of tests comprise of the diagnostic tests which help to determine the cause of excessive production of cortisol. These are:
Plasma ACTH measurement: Low plasma ACTH level suggests an adrenal cause of the disease; however normal/high [ACTH] level suggests ectopic ACTH secretion or hypersecretion of ACTH from pituitary (Cushing’s disease).
High-dose dexamethasone suppression test: In this test the patient is administered with 2 mg of dexamethasone, 6 hourly for 48 h, following which plasma cortisol levels are measured. In the case of ectopic ACTH secretion or adrenal limited hypercortisolism, there is a failure of suppression of cortisol secretion. Also it is important to remember that cortisol is not suppressed with either low- or high-dose dexamethasone suppression in adrenal hyperplasia associated with ectopic ACTH production [18].
This investigation is used primarily for the diagnosis of hypercortisolism due to Cushing’s syndrome, and reference ranges for this test with respect to age are 1.4–20 μg/24 h (3–8 years), 2.6–37 μg/24 h (9–12 years), 4–56 μg/24 h (13–17 years), and 3.5–45 μg/24 h in individuals ≥18 years of age. A 24-h urine sample with boric acid (10 g) as preservative is advisable for performing this analysis [10, 17, 18, 19].
\nNearly 15–20% of Cushing’s syndrome are associated with ACTH-independent hypercortisolism and are secondary to a functioning adenoma or carcinoma. Diagnosis of ACTH-independent Cushing’s syndrome includes clinical features of hypercortisolism, absence of serum cortisol diurnal rhythm, elevated late-night cortisol levels, and incomplete suppression of cortisol production with low-dose dexamethasone suppression test [10, 17, 18, 19, 20].
\nAdrenal glands from patients with Cushing’s syndrome/hyperplasia appear variably enlarged in size and weigh approximately 6–12 g. The cortical width is widened as compared to the reticulosa. The zona fasciculata usually shows nodular hyperplasia. Nearly 10–20% of the patients reveal bilateral nodular hyperplasia, and up to 30% of patients may have normal adrenal morphology [2, 20, 21].
\nPrimary pigmented nodular adrenocortical disease is a rare cause of childhood Cushing’s disease having female preponderance, whereas Cushing’s disease is common in prepubertal males [20, 21, 22]. It is the main endocrine manifestation of Carney complex (a multiple neoplasia syndrome caused by mutation in PRKAR1A gene) [23]. This is an autosomal dominant syndrome and is characterized by cutaneous lentigines, myxoma, schwannomas, and endocrinopathy [11, 23]. It was first described by Aidan Carney and co-workers in 1985. Almost 25–30% of patients with Carney complex have ACTH-independent Cushing’s syndrome. Cutaneous pigmentation is the commonest manifestation of the disease [24]. Lentigines are seen in most patients, and this characteristic manifestation can be used to make the definitive diagnosis. The name is derived from the macroscopic appearance of the adrenals that show characteristic small pigmented micronodules in the adrenal cortex. The disease typically involves bilateral adrenal glands. Grossly the adrenal glands may have variable size. The most characteristic finding is the presence of multiple brown-black pigmented cortical nodules that measure 1 mm to 3 cm in diameter. The adjacent cortical tissue invariable shows atrophy. These pigmented nodules may extend into corticomedullary junction or peri-adrenal fat [9, 11, 24].
\nOn microscopy these tumors appear as sharply circumscribed, unencapsulated tumors composed of large eosinophilic lipid-poor cells similar to the zona reticularis arranged predominantly in trabecular growth pattern. However the nucleus appears enlarged, with a variable degree of pleomorphism and prominent nucleoli. There is prominent lipofuscin deposit. Lipid-rich fasciculata-like cells are also seen invariably. The tumor may have focal areas of necrosis, mitotic activity, myelolipomatous change, and lymphocytic infiltrates [9, 11, 24].
\n(Synonyms: ACTH-independent massive bilateral adrenal disease, massive macronodular hyperplasia, giant macronodular adrenal hyperplasia, macronodular adrenal hyperplasia, macronodular hyperplasia).
\nAIMAH is a disorder characterized by bilateral adrenocortical nodules, associated with ACTH-independent hypercortisolism, without any clinical features of pigmented nodular adrenocortical disease and histological features consistent with atrophic internodular cortex [25]. It is a rare cause of ACTH-independent Cushing’s syndrome with slightly male preponderance. The patients present usually at later age (average: 48 years) [24, 25, 26]. In few patients with AIMAH, ectopic expression and/or increased sensitivity to gastric inhibitory peptide, vasopressin receptors, and beta-adrenergic receptors is also seen [25].
\nGrossly these lesions are characterized by nodules in the adrenal cortex, ranging from 1 to 4.2 cm. The adrenal gland weighs approximately 16.7–218 g. The adrenal gland may have a large mass of cortical tissue and multiple bilateral nodules measuring up to 5 cm. Combined adrenal gland weight of more than 300 g has also been noted (normal range: 8–12 g). Histology demonstrates large, yellow macronodules comprising of small cells with eosinophilic cytoplasm. Bilateral adrenalectomy and well-controlled glucocorticoid replacement is the most accepted treatment modality [2, 3, 9, 25, 26].
\nCAH is an autosomal recessive disorder characterized by impaired steroidogenesis finally leading to mineralocorticoid and cortisol deficiency secondary to reduced activity of enzymes required for cortisol biosynthesis in the adrenal cortex. These patients usually present during the perinatal period with ambiguous genitalia in females and salt wasting in males. The milder forms of disease may present later with virilization at puberty or even as irregular menses. Most of the cases (nearly 95%) are attributed to deficiency of the 21-hydroxylase enzyme [27, 28].
\nAbnormal growth and development, adverse effects on bone and the cardiovascular system, and infertility are few long-term effects seen in these patients. These patients are usually managed by reducing glucocorticoid exposure and improving excess hormone control [29, 30].
\nCongenital adrenal hyperplasia can be of four forms [8, 9, 10, 27, 28, 29, 30]:
Congenital adrenal hyperplasia: classical 21-hydroxylase deficiency
Simple virilizing congenital adrenal hyperplasia
Non-classic or late onset form of congenital adrenal hyperplasia
Congenital adrenal hyperplasia with steroidogenic acute regulatory (StAR) mutation
This form is the most common form of CAH, occurring due to 21-hydroxylase (21-OH) deficiency, accounting for almost 90% of the cases. It occurs with the frequency of 1:12000 to 1:15000 births, and nearly 75% of patients with classic 21-OH deficiency also have defect in synthesizing aldosterone. These patients die in the neonatal period due to shock from salt wasting. CAH is associated with multiple tumors like testicular tumors arising from ectopic adrenal cortical rests, testicular and ovarian Leydig cell tumor, and ovarian tumor of the adrenogenital syndrome as ovarian and paraovarian brown masses. Grossly the adrenal gland is marked enlarged having a cerebriform appearance. On cut surface the gland appears tan-brown in color. Under the microscope the adrenal gland reveals diffuse cortical hyperplasia. The cells are compactly arranged like how they are in the zona reticularis [2, 27, 28, 29, 30].
\n\nTable 1 illustrates various syndromes associated with adrenocortical lesions [31].
\nMultiple endocrine neoplasia (MEN) type 1 | \nAdrenocortical lesions are seen in nearly 36–41% of individuals with MEN type I syndrome, the commonest being bilateral nonfunctioning adrenal cortical hyperplasia or adenoma; adrenocortical carcinoma is exceedingly rare. The pathogenesis of these lesions is proposed to be due to influence of locally secreted insulin and insulin-like growth factors and not due to menin gene mutations | \n
Carney complex | \nThis syndrome encompasses multiple endocrine hyperplasia, with tumors of two or more endocrine glands, including primary pigmented adrenocortical disease (PPNAD), GH- and prolactin-producing pituitary adenomas, testicular neoplasms, thyroid adenoma or carcinoma, and ovarian cysts. This autosomal dominant syndrome is mapped to two genetic loci, one present on chromosome 2p16 and another locus at chromosome 17q22–24 encoding the PRKARIA gene [82] | \n
Beckwith-Wiedemann syndrome | \nThis syndrome is characterized by gigantism, ear lobe pits and/or creases, macroglossia, and defects in the abdominal wall and is associated with chromosomal aberration of 11p15.5. These individuals are at higher risk of developing benign or malignant tumors of multiple organs, commonest being Wilms’ tumor, rhabdomyosarcoma, hepatoblastoma, and adrenal carcinoma | \n
Li-Fraumeni syndrome | \nRare, autosomal, dominant familial syndrome with high incidence of multiple malignancies at an early age, including breast cancer, leukemias, soft tissue sarcomas, gliomas, laryngeal carcinoma, lung cancer, and adrenocortical carcinoma. The pathogenesis of this syndrome is attributed to germ-line point mutations in the p53 tumor suppressor gene (chromosome 17p13) in pediatric age group with adrenocortical carcinoma and deletion of short arm of chromosome 17 (17p) | \n
Familial adenomatous polyposis | \nThis disease is an autosomal dominant disorder, characterized by the presence of multiple adenomatous polyps of the colon and rectum. The gene [adenomatous polyposis coli gene] is located at 5q21. These patients are at high risk to develop adrenocortical adenomas and carcinomas, the incidence being 7.4% higher than 0.6–3.4% reported for normal population | \n
Hereditary adrenocortical tumor syndromes.
This disease was defined first by Conn in 1955, with a prevalence of 5–13%. This syndrome is characterized by an inappropriate increase in production of aldosterone which is relatively independent from the renin-angiotensin mechanism and is non-suppressible by sodium loading. This is one of the leading causes of secondary hypertension in hypertensive adults [32]. Patients with primary aldosteronism may exhibit adrenal cortical hyperplasia or adenoma in 30% of sporadic cases, and nearly 1% of sporadic cases may have adrenocortical carcinoma [33]. Clinically these patients present most commonly as normokalemic hypertension, and severe cases do show hypokalemia (Table 2).
\nS. no. | \nTests | \nProcedure | \nInterpretation | \n
---|---|---|---|
1. | \nPostural testing | \n\n
| \n\n
| \n
2. | \n18-Hydroxycortico-sterone level | \n\n | \n
| \n
3. | \nDexamethasone suppression test: used for patients with glucocorticoid-remediable aldosteronism (GRA) as well as for those patients who do not have GRA | \n\n
| \n\n
| \n
4. | \n18-Oxocortisol and 18-hydroxycortisol (>100 nmol/day) | \n\n | \n
| \n
5. | \nAdrenal venous sampling | \n\n
| \n\n
| \n
The aldosterone-to-renin ratio (ARR), a gold standard method to differentiate primary from secondary causes of hyperaldosteronism, is defined as the ratio of plasma aldosterone (expressed in ng/dL) to plasma renin activity (PRA, expressed in ng/mL/h). The cutoff value of ARR is 30 ng/dL per/mL per hour (or 750 pmol/L per ng/mL per hour). The principle behind this test is that as aldosterone secretion rises, PRA in ex vivo testing falls due to sodium retention. This negative feedback response should occur when the aldosterone levels are supraphysiologic for that individual patient, and PRA may fall well before plasma aldosterone is clearly increased. Primary aldosteronism is suspected if the ARR is >30 ng/dL per mL per hour. This method is also helpful in differentiating aldosterone-producing adenoma from bilateral adrenal hyperplasia [34].
\nFamilial primary aldosteronism is mainly of three types, all of which are inherited in an autosomal dominant manner [8, 10, 32, 33]:
Familial hyperaldosteronism type I (glucocorticoid-remediable aldosteronism): accounts for less than 1% of cases. This disorder is caused by a recombination between the CYP11B2 and CYP11B1 genes.
Familial hyperaldosteronism type II: nearly 3–5% cases of primary aldosteronism belong to this category and are attributed to 7p22. This disorder still lacks a specific gene.
Grossly, the adrenal gland in cases of idiopathic hyperaldosteronism is rather unremarkable or may exhibit slight enlargement. The enlargement could be due to the presence of micronodules or macronodules. Usually, adenomas are unilateral and solitary. However few cases of bilateral disease have also been reported. These adenomas are mostly intra-adrenal and do not show a capsule. Few cases may reveal the presence of a true capsule or a pseudocapsule [2, 3, 35]. The cut surface of this tumor appears homogenous and golden yellow and is classically described as “canary yellow” [2]. Focal areas of hemorrhage or cystic changes can be present in few cases [35].
\nMicroscopically these adenomas appear encapsulated by compressed fibrous rim or fibrous “pseudocapsule.” The tumor cells are most commonly arranged in the form of nests or in alveolar pattern. Occasionally these cells may be arranged in short cords and trabeculae. Few cases may show mixed histological patterns. The tumor is composed of four different varieties of cells which may be present in varying proportions. More commonly seen are clear cells, having optically clear cytoplasm and centrally placed nuclei similar to those of the zona fasciculata cells; then there may be cells resembling to the zona glomerulosa or zona reticularis which appear small with compact eosinophilic cytoplasm. Then we have cells that are designated as “hybrid” cells. These hybrid cells have cytological features resembling both the zona fasciculata and glomerulosa (Figure 1). The uninvolved portion of adrenal cortex reveals atrophy. This atrophy is secondary to the negative feedback suppression effect of the hypothalamic–pituitary axis. Spironolactone bodies which appear as small, intracytoplasmic eosinophilic inclusions, round to oval, measuring 2–12 mm, are often encountered in adrenal cortical adenoma in patients on spironolactone treatment. These inclusions are delineated from the surrounding cytoplasm by a small, clear halo [2, 7, 9, 35].
\nSection from a 22-year-old patient, presented with a 2 cm mass in the right adrenal gland. Histology reveals adenoma with clusters of cells with enlarged lipid-rich cytoplasm (hematoxylin and eosin stain, ×200).
Adrenal insufficiency was first described by Thomas Addison in 1855 and was popularly known as Addison’s disease. This disorder can occur either due to failure of the adrenal gland or impairment of the hypothalamic–pituitary axis [36]. Clinically this syndrome is characterized by weakness, fatigue, anorexia, abdominal pain, weight loss, orthostatic hypotension, and salt craving. Characteristic hyperpigmentation is seen in patients with primary adrenal failure [37]. This disease has been reported in three forms [7, 9, 37]:
Primary disease also known as Addison’s disease, a result of destruction of 90% or more of the adrenocortical gland or conditions that involve decreased production of adrenal steroids, resulting in subnormal synthesis of aldosterone, cortisol, and androgens.
Secondary and tertiary insufficiency occurs due to deficiency of secretion of corticotropin (ACTH) and corticotropin-releasing hormone (CRH), respectively.
Most of the cases (80–90%) of primary adrenal insufficiency are caused by autoimmune adrenalitis. Most of the cases fall under the autoimmune polyendocrinopathy syndrome (60%) [1, 2, 19, 32, 33, 34]. Cell-mediated immune mechanisms are implicated in pathogenesis. Various antibodies have been identified, antibodies against steroid 21-hydroxylase (85% cases) and autoantigens like steroid 17α-hydroxylase and cholesterol side-chain cleavage enzyme. Other associations include cytotoxic T-lymphocyte antigen 4, protein tyrosine-phosphatase non-receptor type 22, and the MHC class II transactivator. Secondary adrenal insufficiency results from any process that involves the pituitary gland and interferes with corticotropin secretion. Tertiary adrenal insufficiency results from processes that involve the hypothalamus and interfere with secretion of corticotropin-releasing hormone, arginine vasopressin, or both. Suppression of the hypothalamic–pituitary–adrenal (HPA) axis by long-term administration of high doses of glucocorticoids is the most common cause [9, 36, 38].
\nThe patients of AI usually present with hyponatremia and hyperkalemia due to decreased aldosterone. Hypoglycemia also occurs due to cortisol. Decreased levels of this hormone also lead to an increase in lymphocytes and eosinophils, as a result of decreased immune-modulatory action of hydrocortisone. Measurement of baseline cortisol levels between 8:00 and 9:00 AM is the test used to diagnose AI. A serum cortisol level of value less than 5 μg/mL favors diagnosis of AI. Stimulation test with cosyntropin which stimulates the cortex helps in differentiating primary and secondary AI. In this test 250 μg of cosyntropin is administered intramuscularly or intravenously, and serum cortisol is measured 30 min after infusion. Serum cortisol value of ≥18 μg/dL indicates a normal response. A cortisol peak <18 μg/dL confirms the diagnosis of AI. Serum cortisol level ≥ 100 pg/mL confirms the diagnosis of Addison’s syndrome. Serum cortisol value of <10 pg/mL confirms diagnosis of secondary AI [35, 36, 37, 38, 39].
\nACC is a highly aggressive and a very rare malignancy. The incidence of this malignancy is approximately 0.72 per million cases per year according to the study by Surveillance, Epidemiology, and End Results (SEER) database [39]. The median age of diagnosis is usually fifth to sixth decade; however the German ACC Registry reports a median age at diagnosis of 46 years with a predilection for the female gender (female to male ratio: 1.5–2.5:1) [35, 38, 39].
\nAdrenocortical carcinomas (ACC) are rare tumors with an estimated annual inci¬dence of 0.7–2 cases by year and a global prevalence of 4–12 cases per million with a 5-year survival rate inferior to 35% in most of the studies published.
\nVarious mutations have been implicated in association with ACC. Most common are germ-line TP53 mutations, associated with childhood ACCs. The adult population shows a prevalence of 3–7% of similar mutation. Childhood ACC can be found in association with Li-Fraumeni syndrome, Beckwith-Wiedemann syndrome, Lynch syndrome, and multiple endocrine neoplasia type 1. Of late an association with familial adenomatous polyposis (FAP), neurofibromatosis type 1, Werner syndrome, and Carney complex has also been postulated [39, 40].
\nIn ACCs, chromosomal gains were frequently observed in regions 4q, 4p16, 5p15, 5q12–13, 5q32-qter, 9q34, 12q13, 12q24, and 19p, and chromosomal losses were observed at 1p, 2q, 11q 17p, 22p, and 22q. Microsatellite studies identified frequent allelic losses in regions 17p13, 11q15, and 2p16 (85%, 92%, and 90% of samples, respectively) [41, 42, 43].
\nSignaling pathways involved in adrenal malignant carcinogenesis [44, 45, 46, 47]:
p53 signaling pathway
Wnt/beta-catenin signaling pathway
Insulin growth factor II (IGF-II) locus
Protein p53, “guardian of genome,” is located at the 17p13 locus, and alterations in this gene have been noticed in various cancers including adrenocortical carcinoma, more so at the somatic level. p53 gene mediates cellular response to stress, and adult sporadic ACCs usually reveal loss of heterozygosity at this locus (nearly 85%) [48]. Stress leads to inhibition of degradation of p53 by E3 ubiquitin ligase MDM2, leading to inhibition of cell cycle arrest in response to DNA damage as well as apoptosis. These tumors tend to be larger and present at more advanced stage of tumor progression with shorter disease-free survival. Various genetic alterations have been reported in patients with adrenal cortex carcinoma like loss of PTTG1 has been reported in nearly 84%, mutation in retinoblastoma protein (pRb) in nearly 27% cases and mutation in RB1 gene in 7% of the cases. Inactivating mutations or homozygous deletions of CDKN2A have also been reported in 11–16% cases. High-level amplifications of CDK4 and MDM2 were reported in 2–7% ACCs [49, 50, 51]. It is surprising to see that majority of the TP53 mutations occur at the DNA-binding domain. Some tumors also have shown abnormalities in genes that encode for negative regulators of TP53, like PTTG1 which encodes for securin, noted in 84% of ACC. It is considered as a marker of poor survival [44, 46, 49].
\nWnt family consists of highly conserved growth factors having similar amino acid sequences and is responsible for various developmental and homeostatic processes [4, 44, 46, 47, 48, 51]. A prevalence of 39 and 84% has been reported by various authors on immunohistochemistry for β-catenin. The Wnt receptor is composed of members of the frizzled family and low-density lipoprotein receptor-related protein. β-Catenin accumulates in the cytoplasm and gets translocated into the nucleus and then binds with Wnt receptor leading to inhibition of the axin-adenomatous polyposis coli—glycogen synthase kinase 3β (GSK-3) complex. This blocks the phosphorylation of β-catenin, leading to increased accumulation of β-catenin in the cytoplasm which further translocates into the nucleus. Interaction between β-catenin with the T cell-specific transcription factor/lymphoid enhancer-binding factor-1 family of transcription factors occurs in the nucleus, thus regulating transcription of Wnt target genes. If Wnt stimulation of GSK-3 phosphorylating β-catenin does not occur, degradation by proteosomes occurs following ubiquitylation of this receptor. Wnt pathway has been implicated in patients with familial adenomatous polyposis and in the development of colorectal carcinomas as well as ACCs. Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by CTNNB1 mutations and by ZNRF3 inactivation in adrenal cancer. ZNRF3 is a recent gene that encodes a cell-surface transmembrane E3 ubiquitin ligase which acts as a negative feedback regulator of Wnt signaling. Recently, ZNRF3 was found to be the most frequently altered gene in study cohorts of ACC investigated by integrated genomics, with a prevalence of 21 and 19% in studies by Assié et al. and Zheng et al., respectively [50, 51].
\nNearly 85–90% of the adult adrenocortical carcinomas are attributed to IGF-II overexpression. This molecular abnormality is associated with DNA demethylation at IGF-II locus in most of cases. Various transcriptome studies have confirmed that IGF-II is the most upregulated gene in ACC [52, 53].
\nACC are the tumors characterized by adrenocortical hormone production in nearly 45–70% of patients. Hypercortisolism is the most common presentation of patients presenting with hormone excess leading to a plethora of symptoms like diabetes mellitus, hypertension, hypokalemia, muscle weakness/atrophy, and osteoporosis [40, 41, 42, 43]. Excess of androgens which comprise nearly 40–60% of hormone-secreting ACCs can cause rapid-onset male pattern baldness, hirsutism, virilization, and menstrual irregularities in women. Estrogen production occurs in 1–3% of male ACC patients, causing gynecomastia and testicular atrophy (through suppression of the gonadal axis). In the evaluation of adrenal tumors, regardless of size, androgen or estrogen production should always raise the suspicion of a malignant tumor [44].
\nACCs are generally large tumors, measuring on average 10–13 cm. Only a minority of tumors are less than 6 cm (9–14%), with only 3% presenting as lesions less than 4 cm [2, 3, 6, 9, 35].
\nMicroscopically these tumors have variable architectural patterns. The tumor cells are arranged in a trabecular, alveolar, or diffuse pattern. Occasionally mixed patterns are also noted. Some areas may also exhibit free-floating tumor cells forming balls [2, 3, 6, 9, 35] (Figure 2A,B).
\n(A) Section from a 45-year-old patient, presented with a 13 cm mass in the left adrenal gland. Histology reveals clusters of cells having anisocytosis and enlarged nuclei with prominent nucleoli. The fair number of darkly stained atypical mitosis is also evident (hematoxylin and eosin stain, ×200). (B) Histology reveals clusters of cells having anisocytosis and enlarged nuclei with prominent nucleoli. The cells are separated by myxoid stroma. The fair number of darkly stained atypical mitosis is also evident (hematoxylin and eosin stain, ×400).
Histologic criteria for malignancy in adrenal cortical tumors are assessed as follows [2, 3, 6, 9, 35, 43, 44, 45]:
High nuclear grade (grades III and IV according to the criteria of Fuhrman)
Mitotic rate > 5 per 50 HPF (10 HPF in each of the five areas that are most suspicious to be malignant)
Atypical mitotic figures (abnormal distribution of chromosomes or an excessive number of mitotic spindles)
Eosinophilic tumor cell cytoplasm (>75% of tumor cells or <25% clear vacuolated cells resembling the normal fasciculata)
Diffuse architecture (>33% of the tumor forming patternless sheets of cells)
Necrosis (occurring in confluent nests of cells)
Venous invasion (endothelial-lined vessel with smooth muscle as a component of the wall)
Sinusoidal invasion (endothelial-lined vessel in the adrenal with little supportive tissue)
Capsular invasion (nests or cords of tumor extended into or through the capsule with the corresponding stromal reaction)
Weiss et al. proposed a scoring system which was further modified and is widely accepted to report adrenal cortex carcinomas. These criteria include [35, 43, 44, 45, 54] (Table 3).
\nCriteria | \nScore | \n|
---|---|---|
Absent | \nPresent | \n|
Mitotic rate (≥6 mitotic figures/50 HPF) | \n0 | \n1 | \n
Cytoplasm characteristics [clear vs. compact (compact >75% of cells)] | \n0 | \n1 | \n
Abnormal mitoses | \n0 | \n1 | \n
Tumor necrosis | \n0 | \n1 | \n
Invasion of the capsule | \n0 | \n1 | \n
Weiss scoring for adrenocortical carcinoma.
Overall score = 2 × mitotic rate + 2 × cytoplasm + abnormal mitoses + necrosis + capsular invasion.
Adrenal cortical adenoma: total score < 3.
\nAdrenal cortical carcinoma: total score ≥ 3.
\nThus if the modified Weiss score is ≥ 3, then a diagnosis of adrenocortical carcinoma is given.
\nHowever there are other features that may help in differentiating between adenomas and carcinoma. These are listed in Table 4 [35, 43, 44, 45].
\nCharacteristics | \nAdrenocortical adenoma | \nAdrenocortical carcinoma | \n
---|---|---|
Macroscopy | \n||
Weight | \nUsually less than 100 g | \nMore than 100 g | \n
Hemorrhage | \n+/− | \n+++ | \n
Necrosis | \n+/− | \n+++ | \n
Cystic degeneration | \n+/− | \n+++ | \n
IHC | \n||
MIB-1 | \nNegative | \nPositive | \n
Vimentin | \nNegative | \nPositive | \n
Inhibin | \nPositive | \nPositive | \n
Melanin | \nPositive | \nPositive | \n
Calretinin | \nPositive | \nPositive | \n
BCL-2 | \nPositive | \nPositive | \n
C-kit | \nNegative | \nPositive | \n
EMA | \nNegative | \nNegative | \n
Cytokeratin | \nNegative | \nNegative | \n
NSE | \n— | \nPositive | \n
Synaptophysin | \n— | \nPositive | \n
Chromogranin | \n— | \nNegative | \n
Differentiating features between adrenocortical adenoma and adrenocortical carcinoma.
Adrenal glands have an essential role in maintaining the normal hemostasis. However the three layers of adrenal cortex, the zona glomerulosa, zona fasciculata, and zona reticularis, secrete essential hormones that are involved in fluid and electrolyte balance, regulating renin-angiotensin-aldosterone system, production of glucocorticoids, and synthesis of sex hormones. These hormones play an important role in maintaining the normal homeostasis of the body. Various lesions in adrenal, benign as well as malignant, are known to cause disturbances in the internal milieu of our body. It is therefore essential to know the physiology as well as various types of disorders that can be encountered so as to define proper management of the patient. Also lesions of adrenal gland are attributed to various genetic abnormalities, knowledge of which can be implicated to study the pathogenesis and in applying this knowledge in prognosis as well as developing targeted therapy for these lesions.
\nThe industrial revolution could not avoid its effects on increasing environmental pollution, which pose a life threat to living beings. On the other hand, the increase of population rises the corresponding needs, which in turn result in the increased release of pollutants. The toxic substances from farmhouses, municipalities, pesticides, and factories are the major sources of water pollution. Organic dyes are one of the major groups of pollutants which are released from textile industrial wastewater. The dye effluent contaminates the surface and groundwater, thereby, making it unfit for drinking and other daily usages. Polluted drinking water can cause serious cariogenic effects on human and other living beings.
\nThe effective handling of increasing environmental pollution is a major challenge for the sustainable progress of modern civilization. With a lack of waste management measures, there is an urgent need in finding efficient ways to treat and decompose the pollutants. Water is a “universal solvent,” it can dissolve more substances than any other liquid on earth. It is because of this substantial property, water dissolves most of the pollutants and thus be polluted easily. Quality drinking water is a fundamental right to every human being and most of the countries do not provide drinking water in the WHO standards. Water pollution not only affects the human being, but also every living organism, as there is nothing without water.
\nOrganic dyes used in many industries such as textiles, furniture, chemical, paint, food, and cosmetic industries are the major water pollutants. The organic dyes possess color owing to the following reasons; (i) the dye molecules absorb light in the visible region of the electromagnetic spectrum (400–700 nm), (ii) they have a conjugated structure, i.e. a structure with alternating single and double bonds, (iii) the molecule dye have at least one color bearing chromophore group, and (iv) exhibit resonance of electrons, which is a stabilizing force in organic compounds [1]. The removal of dye molecules is a challenging process because of the enormous variety of functional groups in dissimilar dyes and their different properties. Many techniques like electrochemical coagulation, reverse osmosis, nano-filtration, photocatalytic degradation, adsorption using activated materials etc., are used for the removal of dye from wastewater. Among the various types of approaches adsorption and photocatalytic degradation of chemically stable organic pollutants occupy a prominent place, due to some of the obvious advantages such as cost-effectiveness, simplicity of operation besides great efficiency.
\nPhotocatalysis is a process, which accelerates a photoreaction in the presence of a photocatalyst. Photocatalysis, as a fresh, cheap, environmentally friendly “green” process, offers great potential for environmental protection and energy exchange. The organic pollutants can be effectively decomposed by the semiconductor-based photocatalysts under light irradiation with the photon energies equal or higher to the bandgaps of the photocatalysts. In recent years, the photocatalytic reaction has received increasing attention for environmental applications such as air purification, hazardous material remediation, water disinfection, and water purification. The versatility of the photocatalytic process, for example, photocatalytic degradation of dyes and photoelectrocatalytic reduction of CO2 into hydrocarbon compounds in aqueous semiconductor suspensions, greatly attracted the scientists to work in the field of photocatalysis. The pioneering work of photo-electrochemical water splitting on TiO2 electrode reported by Fujishima and Honda in 1972, has been the initiative in the field of photocatalysis. In this way, the semiconductor based photocatalysis has grown as an ideal green chemistry tool in dealing with the globally concerned energy shortage and environmental pollution issues. In general, a photocatalytic reaction consists of three simple steps; (i) The semiconductor photocatalysts absorb incident photons whose energy (hν) is equal to or more than its bandgap (Eg), resulting in the generation of electron-hole pairs, (ii) The photogenerated charge electrons and holes are separated and transferred to the surface of photocatalysts, and (iii) The photogenerated electrons and holes contribute in catalytic reactions by forming superoxide and hydroxide radicals which react with dye molecules [2].
\nThe detailed photocatalytic mechanism was shown in Figure 1. Several efforts have been conveyed through a variety of materials and methods and it is true, that each report put forward some scientific development to its ancestors. The photodegradation is one of the cost-effective and easy-to-implement methods, and the materials studied include TiO2, SnO2, ZnO, CuO, and WO3 along with their heterostructures and organic/inorganic composites [3, 4, 5, 6, 7].
\nSchematic illustration of photocatalytic dye degradation.
The photocatalytic decomposition of pollutants in the real-time application for water sanitization requires the use of non-toxic, cheap as well as reproducible resources. The conventionally used wide bandgap (SCs) with limited light responding range, which can only absorb UV light (λ <380 nm), seriously confines the photocatalytic efficiencies. Therefore, it has become a significant problem to develop the photocatalytic SCs with a visible light response for practical applications. Besides, another major task in photocatalysis is the increase in the charge separation efficiency of the photocatalyst and the corresponding photocatalytic efficiency. The separation of the electron–hole pairs can increase the efficiency of photocatalysts. Transition metal oxides (TiO2, ZnO2, SnO2, etc.) have lower photocatalytic efficiency since its wide bandgap and high recombination rate of photogenerated electron-hole pairs. To overcome this difficulty, the development of hetero-nanostructures could offer an enhancement in the photocatalytic efficiency and can act as a better photocatalyst which can degrade various kinds of persistent organic pollutants.
\nAmong the numerous photocatalytic materials, ZnO occupied the reasonable research area owing to its whole beneficial characteristics over other materials [8, 9]. Even though, when it comes to commercial developments, the robustness of ZnO needs further developments [10]. Such as, the trapping state (including interstitial and missing atoms/vacancy defect) bolstered loss of excitons, which is basic in oxide-based semiconductors, should be tended to appropriately [11]. One plausibility of accomplishing this is, utilize a better surfactant/capping molecule to passivate the surface traps, which overwhelmingly trigger the charge carrier recombination. On the other hand, such passivation has the opportunity to acting as a barrier for hinders the association between the dye pollutant and active material, which will likewise bring low efficiencies. The development of a ZnO based hybrid photocatalyst comprising of a composite material with suitable band structure would be a better choice towards the concealment of charge carrier recombination and consequent improvement in the photocatalytic dye degradation process [12, 13].
\nGraphitic carbon nitride (g-C3N4), is a two-dimensional metal-free conjugated crystalline sheet material with a bandgap energy of 2.7 eV, which has concerned exceptional research enthusiasm because of its environmental friendly nature, attractive electronic structure, low-cost excellent thermal and chemical stabilities [14, 15, 16, 17, 18]. The conduction and valence band boundaries of g-C3N4, exist at −1.12 and + 1.6 eV, making it active under visible light as an efficient photocatalyst [19, 20, 21, 22]. Even though, its implication has drawbacks such as faster recombination of the electron-hole pairs, and agglomeration in most solvents caused by the strong van der Waals attractions between sp2 carbon atoms [23]. 2D g-C3N4, nanosheets have much attention because of their enlarged specific surface area, improved electron–phonon interaction, and enhanced electron mobility along the in-plane direction [24]. Although some developments have been attained, the light-harvesting ability and quantum efficiency of these modified g-C3N4 systems are still poor.
\nFor these reasons, various protocols such as surface modification, doping with metal or nonmetal elements and co-polymerization have been actively employed to enhance the photocatalytic performance of g-C3N4. It has high nitrogen content compared to other N-carbon materials, which is capable of creating more active reaction sites that would increase the electron donor/acceptor characteristics. Even after several decades and extensive investigations on several materials, a robust combination of materials and method is still required to vanish away the environment threatening organic pollutants.
\nLayered double hydroxides (LDH), a new class of lamellar metal hydroxide materials, consist of positively-charged hydrotalcite-like layers with carbonate ions and water molecules in the interlayer galleries [25, 26, 27]. Due to the two dimensional (2D) layered structure, LDH has a high explicit surface area, which can help quick ion transfer [26, 28, 29, 30]. Dvininov et al. prepared the SnO2/Mg-Al LDH coupling through the thermal treatment, which demonstrated good photocatalytic activity for methylene blue degradation [31]. It was made conceivable by the oxygen reduction and progressive creation of hydroxyl radicals, which are accountable for the degradation. Seftel et al. synthesized Ti incorporated Mg-Al LDH solid which shows better photocatalytic activity due to the isolation of small TiO2 nanoparticles on the LDH surface [32]. Kingshuk Dutta et al. prepared ZnO\\Zn-Al LDH nanostructure by hydrothermal method using Al substrate as a template for developing different compositions and morphologies and the author demonstrated the degradation of Congo red dye [33]. Therefore, the LDH is a better candidate to be hybridized with ZnO which will enhance the catalytic activity of photocatalysts.
\nIn any case, to build up a superior photocatalyst, hybridizing the LDH with a material having high conductivity and surface area is one of the hopeful approaches, which can further improve the charge transport proficiency of LDH-composite. Xiaoya Yuan et al. prepared the g-C3N4\\Zn-Al LDH composites through a simple in situ crystallization technique and the as-prepared composite exhibited improved photodecolorization of MB.
\nIn the present work, we have prepared a ternary nanocomposite of g-C3N4 intercalated ZnO\\Mg-Al LDH through a hydrothermal technique and studied its photocatalytic activity against the MB dye degradation. The ZnO is attached on the surface also interlayers of the LDHs, and ZnO\\Mg-Al LDH are distributed over the surface of g-C3N4 nanosheets. The nitrogen-rich ternary composite formation resulted in the enhancement of visible light absorption and improved charge separation to result in the enhanced photocatalytic degradation activity towards the MB dye.
\nThe g-C3N4 was prepared by a thermal condensation method using melamine as a precursor. 5 g of melamine was kept in an alumina crucible and thermally treated at 550°C for 3 h in a furnace. The obtained agglomerate residues are ground into fine powder and subjected to hydrochloric acid treatment for 12 h to obtain the g-C3N4 nanosheets. The suspension was centrifuged to separate the residual of g-C3N4 nanosheets. The obtained precipitate product was heated at 60°C for overnight to attain the light yellow colored powder of g-C3N4 nanosheets.
\nIn a typical synthesis procedure, Mg-Al LDH was prepared by a facile hydrothermal method. Firstly, 0.05 M of aluminum nitrate and 0.03 M of magnesium chloride were dissolved into 20 ml DDW separately under vigorous magnetic stirring for 10 min. Subsequently, 0.04 M of urea were dissolved into the 10 ml DDW and stirred for 30 min. After that, the precursor and urea solutions were mixed and 0.2 M of NaOH was added to the above solution mixture until the pH of the suspension was reached 12. The entire solution was transferred into a 100 ml Teflon lined stainless-steel autoclave, followed by heating in an oven under 180°C for 24 h. After the reaction was complete, the autoclave was cooled to room temperature. Finally, the sample was centrifuged and washed with DDW water and dried at 80°C for overnight to obtain the final product.
\nZnO nanoparticles were prepared by the hydrothermal method. In this process, 0.2 M of ZnCl2 were dissolved in 100 ml of DDW, and 0.2 M of NaOH were dissolved in 20 ml of DDW separately under constant stirring. After 10 min stirring the above-mentioned solutions were mixed together, and transferred into a 100 ml Teflon liner stainless-steel autoclave, followed by heating in an oven under 180°C for 24 h. Later, the autoclave was cooled down naturally. Finally, the obtained solution was centrifuged and washed with DDW water and dried at 80°C for overnight to obtain the final product.
\nA certain amount of g-C3N4 was dispersed into 20 ml of DDW and ultrasonicated for 30 min. Subsequently, the ZnO\\Mg-Al precursor solution was prepared and mixed with ultrasonicated g-C3N4 nanosheets. Again, the mixture was ultrasonicated for 30 min in a beaker to form a homogeneous suspension. After that, the reaction mixture was transferred into a 100 ml Teflon liner stainless-steel autoclave, followed by heating in an oven under 180°C for 24 h. After that, the autoclave was cooled down naturally to ambient temperature. Finally, the sample was centrifuged and washed with DDW water and dried at 80°C for overnight to obtain the final product. Figure 2 shows the formation of g-C3N4\\ZnO\\Mg-Al LDH 2D\\2D hybrid.
\nPictorial representation for the formation of g-C3N4\\ZnO\\Mg-Al LDH 2D/2D LDH tertiary nano-composite [34].
The photocatalytic activities mostly depend on the material nature, specific surface area, and light energy utilization ratio [35] etc., and for these reasons the crystallinity, functional group, surface area morphology and photophysical properties of the as-prepared samples were systematically investigated by various analytical techniques.
Structural investigation
Morphology analysis
Elemental analysis
Photophysical investigation
Surface area investigation
The crystalline phases have a significant influence on the photocatalytic activities [36]. So the phase purity and crystallite size of the synthesized samples were evaluated by X-ray diffractometer using Riguku MiniFlux-II diffractometer using Cu Kα radiation (λ = 1.540 46 Å). The crystalline nature of the prepared samples were investigated through XRD analysis and Figure 3 displays the XRD pattern of Mg-Al LDH, gC3N4, ZnO and g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite.
\nXRD pattern of (a) Mg-Al LDH, (b) gC3N4, (c) ZnO and (d) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite [34].
The XRD pattern of the Mg-Al LDH and g-C3N4, sample is in good agreement with the JCPDS card no: 35-0965 [37] and 87-1526 [38], respectively. The diffraction peaks indexed to (003), (006), (012), (015), (018), and (110) are the plane reflections of a typical hydrotalcite-like phase screening, sharp and symmetric basal (00 l) reflection of LDH. The XRD pattern of ternary nanocomposite consists of g-C3N4, ZnO and Mg-Al LDH diffraction peaks indicate the formation of the composite.
\nThe surface morphology of the prepared samples was investigated by using FESEM and HRTEM analyses, respectively. The FE-SEM images were obtained by using Zeiss SUPRA-25 and the particle size and morphology of the prepared samples were analyzed by using HR-TEM – Jeol/JEM 2100, with LaB6 source.
\n\nFigure 4 shows the FESEM images of (a) Mg-Al LDH, (b) g-C3N4, (c) ZnO and (d) gC3N4\\ZnO\\Mg-Al LDH ternary nanocomposite samples. The Mg-Al LDH consists of plenty of two-dimensionally structured hexagonal LDHs matrix with a layer by layer assembly. The size of the hexagonal nanoflakes is approximately 200 nm, which indicate the successful exfoliation of a 2D layer.
\nMorphology analysis: FE-SEM images of (a) Mg-Al LDH, (b) g-C3N4, (c) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite and HRTEM images of (d) Mg-Al LDH, (e) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite, (f) SAED pattern of ternary nanocomposite [34].
Furthermore, the hexagonal formed hydrotalcite-like particles were seen from the HRTEM analysis (Figure 4d and e) and it concurs well with the morphology acquired from FE-SEM investigation. Some dull spots showed up on the outside of the LDH, demonstrating that the ZnO nanoparticles are well attached on the LDH surfaces. Some dark spots appeared on the surface of the LDH, indicating that the ZnO nanoparticles are well attached to the surface of the as-prepared LDH. The 2D\\2D ternary nanocomposites assembly was successfully obtained, and by arresting the ZnO\\Mg-Al LDH sheets with g-C3N4 sheets, the formation of the 2D\\2D ternary nanocomposite was possible. Surprisingly, after the formation of the ternary nanocomposite, the LDH loose its horizontal stacking arrangements and started aligning vertically on the surface of the g-C3N4 nanosheets. These types of arrangements provide a more active surface for the prepared photocatalysts.
\nThe surface chemical composition of the prepared samples was confirmed by the FTIR, EDAX, Elemental mapping, and XPS analyses.
\nThe vibrational bands of the prepared samples were analyzed by FTIR analysis (using a Bruker model Tensor 27 instrument) and the results are shown in Figure 5a. All the spectra, exhibit a strong band at 3700 to 3000 cm−1 which could be ascribed to the vibration of surface adsorbed water molecules and in the case of LDH plates, it is due to the formation of interlayer water molecules. Furthermore, several bands were observed in the 1200–1650 cm−1 region, which is assigned to the characteristic stretching modes of C▬N heterocycles [39]. The absorption bands at 1620 cm−1 are associated with the C〓O of the carboxylate groups. The occurrence of the feeble band at 1631 and 1643 cm−1 can be ascribed to the bending frequency and O▬H asymmetric stretching vibration of the water molecules, respectively [40, 41]. The characteristic absorption band of ZnO samples was observed at 595 cm−1, which is related to the metal-oxygen stretching vibration. The absorption bands at 653 cm−1 could be owed to the M▬O▬M lattice vibrations of the hexagonal sheets [42]. The successful intercalation of g-C3N4 and ZnO with Mg-Al LDH were observed from the presence of their corresponding bonds, in the FTIR results.
\n(a) FTIR spectra for as prepared samples (b) EDX spectra of MgAl LDH and g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite and (c) mapping analysis of g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite [34].
\nFigure 5b shows the observed elemental composition of the ternary nanocomposite by EDX analysis (carried out using a JEOL Model JED 2300). From the EDX results, it could be able to observe the high percentages of O, Mg and Al elements, present in the as-prepared samples and no other impurities were observed. The elemental mapping of Mg-Al LDH and g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite were presented in Figure 5c, which indicates the even distribution of the observed elements across the sample.
\nXPS analysis was used to investigate the surface chemical composition of the prepared ternary nanocomposite and the obtained results were shown in Figure 6. The survey spectra show that the prepared sample is contain Mg, Al, Zn, O, C and N elements which creating peaks corresponding to Mg 1s, Al 2p, Zn 2p, O 1s, C 1s, and N 1s positions, respectively (Figure 6A). The high-resolution spectra of individual elements are presented in Figure 6B. The Mg2+ species are observed by the presence of Mg 2p, Mg 2s, Mg KLL, and Mg 1s state corresponding to the binding energies of 52.8, 90.8, 306.8, 351.8 and 1302.8 eV, respectively [43]. The high-resolution spectra of Mg 1s are fitted with three segments associating to the binding energies of 1307, 1308 and 1308.8 eV, which are ascribed to Mg, Mg-CO3 and MgO [44, 45]. The Al attributed to the two states such as Al 2p and Al 1s and the characteristic peak were observed at 76.8 and 120.8 eV. The occurrence of Zn is seen from the two Zn 2p states as Zn 2P3\\2 and Zn 2P1\\2 corresponding to 1020.8 and 1043.8 eV respectively. It additionally uncovers that the Zn is available just in 2+ oxidation state which affirms the conceivable bonding between Zn and O [10]. The oxygen O 1s is deconvoluted into three peaks corresponding to the O2− at 532.2 eV, OH− species at 533 eV and C▬O▬O at 536 eV, respectively [46]. In over-all, the inferior binding vitality of O 1s peaks emerges from the bond between O2− and Zn2+ metal ions. The C 1s spectra can be deconvoluted into dual contributions such as 284.4 and 289 eV, assigned to the occurrence of sp2 hybridized carbon atoms and C〓N▬C bonding [47], respectively. The N 1s spectra can be tailored into three basic peaks with the binding energies of 402, 404.1 and 405 eV, which are attributable to the binding of C▬N, C▬N▬C, and N▬N respectively [20]. Henceforth, the above observations affirm the formation of g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite and the XPS results are in good agreement with FTIR, EDX and mapping analyses.
\nXPS spectra of C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite: (A) survey spectra and (B) high resolution XPS spectra of (a) Mg 1s (b) Al 2p (c) Zn 2p (d) O 1s (e) C 1s (f)N 1s [34].
Optical properties possess a prominent role in the photocatalytic materials and therefore the photophysical properties of the prepared materials were investigated by UV-Vis and PL analyses. The optical absorption analysis was done using a SHIMADZU 3600 UV-Vis-NIR spectrophotometer and Emission spectrum of the as-prepared samples was recorded by using Horiba Jobin Yvon Spectro Fluromax 4. Figure 7A shows the UV-Vis. absorption spectra of the prepared samples. The absorption maxima were observed in the range between 320 and 450 nm. And the absorption of ternary nanocomposite was extended to the visible region and show an obvious red shift compared with the other samples, which may because of the interaction between the ZnO, LDH, and g-C3N4. The 2D\\2D formation demonstrates a reality that the as-prepared ternary nanocomposite noticeable light vitality which can thusly create more charge transporters offered to contribution in the photocatalytic efficiency. Tauc’s plot was used to determine the energy bandgap of the samples and the obtained values are 2.6, 3.5, 2.57 and 2.81 eV for LDH, ZnO, g-C3N4, g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite, respectively. The UV-Vis absorption results show the considerable enhancement in the visible light absorption and it is because of this reason, an enhancement in the photocatalytic performance of the as-prepared photocatalyst is observed (discussed in the latter part).
\n(A) UV-Vis absorption spectra (B) Tauc’s plots and (C) PL spectra of the prepared samples ((a) Mg-Al LDH and (b) ZnO (c) g-C3N4 (d) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite) [34].
The emission spectrum is produced because of recombination of the charge carriers and it provides hints about the proficiency of charge carrier transformation, trapping, and separation of the photo generated electrons-holes pairs. The strong PL emission profile usually indicates the quick recombination of electron-hole pairs which provides low photocatalytic activity.
\n\nFigure 7C shows the PL emission spectra of (a) MgAl LDH, (b) g-C3N4, (c) ZnO and (d) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite, which were recorded using 320 nm as excitation wavelength. The LDH and ZnO nanoparticles exhibit a strong PL emission in the range from 350 to 450 nm. The pure g-C3N4 shows a strong emission about ∼420 nm, which can be attributed to the fast electron-hole recombination process. It can be seen that, after the formation of ternary nanocomposite the emission was intensity was decreased which may due to the delocalization of electrons. In general, a decrease in the recombination rate gives rise to a low PL intensity, which results in the maximum photocatalytic activity.
\nThe specific surface area of the photocatalyst was determined by Brunauer-Emmett-Teller (BET) analysis through N2 adsorption/desorption measurements at 25°C (Figure 8). The measured surface area of the ternary nanocomposite was ∼37 m2 g−1. The high surface area support more active species and reactants to be absorbed on its surface, which might proficiently help the kinetics of photo catalytic reaction.
\nBET surface area analysis of g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite [34].
The photocatalytic activity of the as-prepared samples was investigated under UV-Vis light irradiation. The aqueous MB solution (20 mg L−1) was prepared and kept in dark for 60 min to attain equilibrium. Later, 10 mg of the as-prepared photocatalyst was added to 10 ml MB solution and it was placed in a water jacketed photocatalytic reactor for the photocatalytic degradation process. A 250 W Hg lamp was used as the illumination source to excite the photocatalysts. In the whole reaction, the photocatalytic container was maintained at room temperature by circulating water. At 15 min time interval, 3 ml of solution was taken and centrifuged to remove the photocatalyst particles. The supernatant was examined by a Shimadzu UV3000 UV-Vis spectrophotometer and the dye absorption band maximum was observed at ∼664 nm. The percentage of degradation was calculated using the Beer-Lambert relation [48]:
\nwhere
\nA – absorbance at a given wavelength λ,
\nI0 (λ) – incident light intensity,
\nI (λ) – light intensity transmitted through the MB solution,
\nε – Molar attenuation coefficient of MB.
\nl – Path length of the beam of light.
\nThe degradation efficiency was calculated by
\nwhere,
\nC0 is the initial dye concentration and
\nC is the dye concentration at time t from the start of the photocatalytic reaction.
\nFor the reusability purpose, the as-prepared photocatalyst collected after the photocatalytic reaction by centrifuging, washed with DDW and then dried at 60°C.
\nTo elucidate the reaction mechanism of the photocatalytic MB dye degradation, the radical trapping investigation was performed. In the scavenging activity, h+, OH and O2\n− radicals are trapped by EDTA, 2-propanol and benzoquinone, respectively. The trapping experiments were carried out with the accumulation of different scavengers into the catalytic reaction. The reaction samples were taken from the photocatalytic reactor to record their UV-Vis absorption spectra.
\nThe photocatalytic activities of the Mg-Al LDH, g-C3N4, and g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite were assessed under UV-Vis light illumination. In this work, MB dye was utilized as an objective contamination so as to decide the photocatalytic action of the impetuses under obvious light illumination. The MB dye solutions were prepared and the photocatalytic reactions were performed by adding the as-prepared samples to the MB dye solutions. The pure MB dye fragment shows a strong visible light absorption around 664 nm. The MB dye with prepared photocatalyst is subjecting under the visible light irradiation, corresponding absorption peak intensity was decreased, and the decreasing MB dye intensity is attributed to the degradation of MB dye through the photocatalytic activity. When increases the irradiation time, absorption intensity of MB dye molecules was decreased (i.e.) once increase the irradiation/reaction time, the large number of dye molecules can be degraded. In this process, a photocatalyst is irradiated by light with energy equal to or higher than the bandgap energy of the photocatalyst. This results in the excitation of an electron (e−) from the valence band to the conduction band, leaving a hole (h+) in the valence band. Before the recombination takes place, the photogenerated electrons (e−) and holes (h+) should be transferred to the surface of the photocatalyst in order to take part in the redox reactions with the adsorbed species. The redox reactions of electrons (e−) and holes (h+) with adsorbed oxygen and water molecules lead to the formation of superoxide radical anion (∙O2\n−) and hydroxyl radical (∙OH), respectively.
\nAmong all the as-prepared photocatalyst samples, g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite sample exhibit better photocatalytic activity. This could be attributed to a large number of electrons and holes generated by the as-prepared photocatalyst system, caused by the favorable visible light absorption. On the other hand, ZnO, a wide bandgap material, provides intermediate states to delay the electron–hole recombination, which could also contribute to the high photocatalytic activity. The morphological arrangements of the nanocomposite and its resultant electronic structure, (i.e.) the even distribution of ZnO intercalated LDH over the surface of g-C3N4 [49], collectively contribute to the effective separation of the photogenerated charge carriers. The observed photocatalytic degradation efficiencies of the as-prepared photocatalysts are 32%, 30%, 49% and 96.5% for ZnO, LDH, g-C3N4, and g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite, respectively.
\nIt has to be noted that the photocatalytic efficiency reported in the present study, betters our previous research work, in which ZnS QDs-LDH [49] exhibited a photocatalytic degradation efficiency of 95%. The enhanced photocatalytic efficiency is originated from the photocatalytic activity of N-rich g-C3N4, (i.e.,) the improved photocatalytic mechanism could be ascribed to the synergetic effect of graphitic N rich surface which offers more reactive sites for photocatalytic reaction. This in turn increases the utilization of the photo-separated charges towards the radical formation and corresponding degradation. Parallelly, the N-carbon acted as a co-catalyst to improve surface reaction kinetics and the nitrogen species directly contributed to the outstanding photocatalytic activity under visible light irradiation. Especially the nitrogen rich surface can achieve essential optical absorbance under visible light due to the mixing of O 2p states with p states. And also the nitrogen rich surface 2D/2D offers more active surface for the e− transfer. The reaction kinetics of the MB dye degradation of the prepared photocatalysts is investigated by fitting the pseudo-first-order kinetic curve [50].
\nThe plots of ln (C0\\C) against illumination time are appeared in Figure 9. From the kinetic graph, the ternary nanocomposite fits well and the outcome is in concurrence with the pseudo-first-order model. The impact of different scavengers on the photodegradation of MB dye solution was studied in order to recognize the role of receptive oxidative species in the photodegradation process. The role of H+, OH and O2 radicals were done individually, utilizing EDTA, 2-propanol, and BQ respectively. During the addition of EDTA and BQ, there were conspicuous variations in the photocatalytic process, which shows that H+ and O2 radicals are influences in MB dye degradation. But after the addition of 2-Proponal (scavenger for the OH radical), the degradation of MB is highly suppressed than other reactions, indicating the major of *OH in MB dye degradation. From this result, it is clear that the photocatalytic degradation process is led by the contribution of hydroxyl radical (*OH). After the addition of the as-prepared photocatalyst into the reaction and irradiating with visible light, the electrons were photoexcited from the valence band (VB) to the conduction band (CB). Once electrons are excited, the hole act as an oxidizing agent and oxidize the aquatic or the dye directly to form *OH radicals.
\n(A) Photocatalytic degradation and (B) pseudo-first-order kinetics for the degradation of MB over (a) ZnO (b) LDH(c) g-C3N4 (d) g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite [34].
These OH reactive species are responsible for the efficient degradation of organic pollutants in water. The following equation represent the possible photocatalytic reaction mechanism of MB dye degradation under visible light irradiation.
\nThe Figure 10 shows the schematic illustration of possible photocatalytic degradation of MB dye under visible light irradiation. The reusability of the prepared photocatalyst was studied by performing continual tests under same reaction conditions (shown in Figure 11b). The fresh MB solution was utilized for resulting cycles. Subsequently in each cycle, the prepared catalyst was isolated from the photocatalytic reactor through centrifugation. After 4 cycles, the degradation ability of the prepared catalyst was slightly reduced and it might be because of the loss of catalyst during the recycling process. The photocatalytic dye degradation activity of the prepared sample was compared to the previously reported nanomaterials, which is given in Table 1.
\nSchematic illustration of proposed photocatalytic reaction mechanism.
(a) Radical trapping experiments of active species over g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite and (b) reusability of g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite in the photodegradation of MB [34].
S. No | \nCatalyst | \nDosage of dye (mg) | \nDye | \nLight source | \nCatalyst efficiency (%) | \nReaction time (min) | \nReferences | \n
---|---|---|---|---|---|---|---|
1. | \nPANI-ZnO | \n100 | \nMB | \n250 W | \n98.3 | \n180 | \n[51] | \n
2. | \nNitrogen doped dual phase titanate | \n10 | \nMB | \n450 W | \n∼97 | \n310 | \n[52] | \n
3. | \nZirconia | \n50 | \nMB | \n500 W | \n∼78 | \n300 | \n[53] | \n
4. | \nCA-CNT/TiO2-NH2\n | \n2 cm × 13 cm (CNT) | \nMB | \n40 W | \n80 | \n300 | \n[54] | \n
5. | \nTiO2\n | \n100 | \nMB | \n6 W | \n97 | \n180 | \n[55] | \n
6. | \ng-C3N4\\ZnO\\Mg-Al LDH | \n10 | \nMB | \n250 W | \n96.5 | \n120 | \nPresent work | \n
Comparison table of MB dye degradation using different photocatalyst with degradation (%) of previously reported nanomaterials.
Form the experimental results, it was confirmed that the as-prepared ternary nanocomposite exhibits remarkable photocatalytic activity and reusability under visible light to photo-degrade MB dye.
\nIn summary, the hydrothermally prepared 2D\\2D ternary nanocomposite was used as an efficient photocatalyst for the photodegradation of MB dye. The nitrogen-rich 2D\\2D (g-C3N4 and Mg-Al LDH) surface significantly enhanced the photocatalytic efficiency under the visible light irradiation due to the improved photo active surfaces. Especially, in ternary nanocomposite Mg-Al LDH 2D nanoplates are vertically well aligned on the surface of the g-C3N4 2D nanosheets. This 2D/2D arrangement results effectively enhances the photocatlytic activity due to the efficient separation of photo-induced charge carriers and transfer by the incorporation of ZnO into LDH brucite layers. In addition, the g-C3N4 surface contributed to the efficient charge injection in the photocatalytic reaction. The novel g-C3N4\\ZnO\\Mg-Al LDH ternary nanocomposite can be used as a proficient material for the photocatalytic degradation of MB dyes under visible light irradiation.
\n\n
The as prepared ternary nanocomposite show large specific surface area and efficiently active in the visible light region so this material can used as a good photocatalytic for other organic dye degradation
The LDH have large number of interlayer galleries which can capable to adsorb the pollutants such as heavy metals synthetic or organic dyes.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10704",title:"Cardiac Arrhythmias - Translational Approach from Pathophysiology to Advanced Care",subtitle:null,isOpenForSubmission:!0,hash:"0e5d67464d929fda6d8c83ec20c4138a",slug:null,bookSignature:"Dr. Endre Zima",coverURL:"https://cdn.intechopen.com/books/images_new/10704.jpg",editedByType:null,editors:[{id:"201263",title:"Dr.",name:"Endre",surname:"Zima",slug:"endre-zima",fullName:"Endre Zima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10705",title:"Healthcare Access",subtitle:null,isOpenForSubmission:!0,hash:"e8e9561a91e5f7771932aa5d49c3b687",slug:null,bookSignature:"Prof. Amit Agrawal and Dr. Srinivas Kosgi",coverURL:"https://cdn.intechopen.com/books/images_new/10705.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10706",title:"Fighting the COVID-19 Pandemic",subtitle:null,isOpenForSubmission:!0,hash:"1a5246f0b6ba4f0e9ad1fbfa4134c598",slug:null,bookSignature:"Dr. Manal Mohammad Baddour",coverURL:"https://cdn.intechopen.com/books/images_new/10706.jpg",editedByType:null,editors:[{id:"174598",title:"Dr.",name:"Manal Mohammad",surname:"Baddour",slug:"manal-mohammad-baddour",fullName:"Manal Mohammad Baddour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Care",subtitle:null,isOpenForSubmission:!0,hash:"bdb1aeb61b1eb116c1bdb09d25593686",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!0,hash:"264f7f37033b4867cace7912287fccaa",slug:null,bookSignature:"Prof. Víctor M. Whizar-Lugo and Dr. José Ramón Saucillo-Osuna",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:null,editors:[{id:"169249",title:"Prof.",name:"Víctor M.",surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10710",title:"Recent Advances in the Treatment of Orofacial Clefts",subtitle:null,isOpenForSubmission:!0,hash:"ec438b5e4be44dc63870c1ace6a56ed2",slug:null,bookSignature:"Dr. Marcos Roberto Tovani Palone",coverURL:"https://cdn.intechopen.com/books/images_new/10710.jpg",editedByType:null,editors:[{id:"221178",title:"Dr.",name:"Marcos Roberto",surname:"Tovani Palone",slug:"marcos-roberto-tovani-palone",fullName:"Marcos Roberto Tovani Palone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!0,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:null,bookSignature:"M.D. Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:null,editors:[{id:"235976",title:"M.D.",name:"Carlos",surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:51},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"223",title:"Engineering Physics",slug:"physics-engineering-physics",parent:{title:"Physics",slug:"physics"},numberOfBooks:3,numberOfAuthorsAndEditors:82,numberOfWosCitations:69,numberOfCrossrefCitations:37,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physics-engineering-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10042",title:"Noise and Environment",subtitle:null,isOpenForSubmission:!1,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:"noise-and-environment",bookSignature:"Daniela Siano and Alice Elizabeth González",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],equalEditorOne:{id:"56358",title:"Dr.",name:"R. C.",middleName:null,surname:"Mehta",slug:"r.-c.-mehta",fullName:"R. C. Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\nDivision of Vikram Sarabhai Space Centre/Indian Space Research\nOrganization. He has participated in the design of launch and\nreentry vehicles. He has served as a Senior Fellow in the School\nof Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Life Time\nAchievement Award from the Flow Physics Society of India. He is a senior member\nof AIAA. He has published over 120 papers in peer-reviewed national and international journals. He has published five chapters and co-authored two books. He is a\nreviewer for many international journals. He is presently Dean in the Noorul Islam\nCentre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"521",title:"Acoustic Waves",subtitle:"From Microdevices to Helioseismology",isOpenForSubmission:!1,hash:"54432e5ff2c93e574f225da232e79c8c",slug:"acoustic-waves-from-microdevices-to-helioseismology",bookSignature:"Marco G. Beghi",coverURL:"https://cdn.intechopen.com/books/images_new/521.jpg",editedByType:"Edited by",editors:[{id:"41947",title:"Prof.",name:"Marco G.",middleName:null,surname:"Beghi",slug:"marco-g.-beghi",fullName:"Marco G. Beghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"23410",doi:"10.5772/19815",title:"Compensation of Ultrasound Attenuation in Photoacoustic Imaging",slug:"compensation-of-ultrasound-attenuation-in-photoacoustic-imaging",totalDownloads:2196,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"P. Burgholzer, H. Roitner, J. Bauer-Marschallinger, H. Grün, T. Berer and G. Paltauf",authors:[{id:"36294",title:"Dr.",name:"Peter",middleName:null,surname:"Burgholzer",slug:"peter-burgholzer",fullName:"Peter Burgholzer"},{id:"51111",title:"Dr",name:"Heinz",middleName:null,surname:"Roitner",slug:"heinz-roitner",fullName:"Heinz Roitner"},{id:"51112",title:"Mr.",name:"Johannes",middleName:null,surname:"Bauer-Marschallinger",slug:"johannes-bauer-marschallinger",fullName:"Johannes Bauer-Marschallinger"},{id:"51113",title:"MSc",name:"Hubert",middleName:null,surname:"Grün",slug:"hubert-grun",fullName:"Hubert Grün"},{id:"51114",title:"Dr.",name:"Thomas",middleName:null,surname:"Berer",slug:"thomas-berer",fullName:"Thomas Berer"},{id:"51115",title:"Mr.",name:"Günther",middleName:null,surname:"Paltauf",slug:"gunther-paltauf",fullName:"Günther Paltauf"}]},{id:"23415",doi:"10.5772/19722",title:"Acoustic–Gravity Waves in the Ionosphere During Solar Eclipse Events",slug:"acoustic-gravity-waves-in-the-ionosphere-during-solar-eclipse-events",totalDownloads:2514,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Petra Koucká Knížová and Zbyšek Mošna",authors:[{id:"35967",title:"Dr.",name:"Petra",middleName:null,surname:"Koucká Knížová",slug:"petra-koucka-knizova",fullName:"Petra Koucká Knížová"},{id:"89765",title:"MSc.",name:"Zbyšek",middleName:null,surname:"Mošna",slug:"zbysek-mosna",fullName:"Zbyšek Mošna"}]},{id:"23416",doi:"10.5772/18862",title:"Use of Acoustic Waves for Pulsating Water Jet Generation",slug:"use-of-acoustic-waves-for-pulsating-water-jet-generation",totalDownloads:3507,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Josef Foldyna",authors:[{id:"32826",title:"Dr.",name:"Josef",middleName:null,surname:"Foldyna",slug:"josef-foldyna",fullName:"Josef Foldyna"}]}],mostDownloadedChaptersLast30Days:[{id:"72522",title:"Traffic Noise",slug:"traffic-noise",totalDownloads:316,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Sanja Grubesa and Mia Suhanek",authors:[{id:"316372",title:"Dr.",name:"Mia",middleName:null,surname:"Suhanek",slug:"mia-suhanek",fullName:"Mia Suhanek"},{id:"318126",title:"Dr.",name:"Sanja",middleName:null,surname:"Grubesa",slug:"sanja-grubesa",fullName:"Sanja Grubesa"}]},{id:"72748",title:"Innovative Approaches to Noise Reduction",slug:"innovative-approaches-to-noise-reduction",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Mia Suhanek and Sanja Grubesa",authors:[{id:"316372",title:"Dr.",name:"Mia",middleName:null,surname:"Suhanek",slug:"mia-suhanek",fullName:"Mia Suhanek"},{id:"318126",title:"Dr.",name:"Sanja",middleName:null,surname:"Grubesa",slug:"sanja-grubesa",fullName:"Sanja Grubesa"}]},{id:"68149",title:"Fouling in Heat Exchangers",slug:"fouling-in-heat-exchangers-1",totalDownloads:491,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"inverse-heat-conduction-and-heat-exchangers",title:"Inverse Heat Conduction and Heat Exchangers",fullTitle:"Inverse Heat Conduction and Heat Exchangers"},signatures:"Sergio García and Alfredo Trueba",authors:null},{id:"72584",title:"Neighborhood Noise",slug:"neighborhood-noise",totalDownloads:218,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Jiho Lee",authors:[{id:"214399",title:"Prof.",name:"Jiho",middleName:null,surname:"Lee",slug:"jiho-lee",fullName:"Jiho Lee"}]},{id:"23414",title:"Photoacoustic Technique Applied to Skin Research: Characterization of Tissue, Topically Applied Products and Transdermal Drug Delivery",slug:"photoacoustic-technique-applied-to-skin-research-characterization-of-tissue-topically-applied-produc",totalDownloads:2576,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Jociely P. Mota, Jorge L.C. Carvalho, Sérgio S. Carvalho and Paulo R. Barja",authors:[{id:"32237",title:"Dr.",name:"Paulo",middleName:null,surname:"Barja",slug:"paulo-barja",fullName:"Paulo Barja"},{id:"87448",title:"MSc.",name:"Jociely",middleName:null,surname:"Mota",slug:"jociely-mota",fullName:"Jociely Mota"},{id:"87449",title:"BSc",name:"Jorge",middleName:"Luis",surname:"Carvalho",slug:"jorge-carvalho",fullName:"Jorge Carvalho"},{id:"87450",title:"MSc.",name:"Sérgio",middleName:null,surname:"Carvalho",slug:"sergio-carvalho",fullName:"Sérgio Carvalho"}]},{id:"72200",title:"Attenuation of Environmental Noise through Digital Filtering",slug:"attenuation-of-environmental-noise-through-digital-filtering",totalDownloads:156,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Juan Ríos and Celedonio Aguilar",authors:[{id:"314253",title:"Dr.",name:"Juan",middleName:null,surname:"Rios",slug:"juan-rios",fullName:"Juan Rios"},{id:"317577",title:"Dr.",name:"Celedonio",middleName:null,surname:"Aguilar",slug:"celedonio-aguilar",fullName:"Celedonio Aguilar"}]},{id:"72750",title:"Underwater Ambient Noise",slug:"underwater-ambient-noise",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Vijaya Baskar Veeriayan and Rajendran V.",authors:[{id:"201966",title:"Dr.",name:"Vijaya Baskar",middleName:null,surname:"Veeriayan",slug:"vijaya-baskar-veeriayan",fullName:"Vijaya Baskar Veeriayan"},{id:"317900",title:"Dr.",name:"Rajendran",middleName:null,surname:"V",slug:"rajendran-v",fullName:"Rajendran V"}]},{id:"72762",title:"A New BEM for Modeling of Acoustic Wave Propagation in Three-Temperature Nonlinear Generalized Magneto-Thermoelastic ISMFGA Structures Using Laser Ultrasonics",slug:"a-new-bem-for-modeling-of-acoustic-wave-propagation-in-three-temperature-nonlinear-generalized-magne",totalDownloads:107,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Mohamed Abdelsabour Fahmy",authors:[{id:"233766",title:"Prof.",name:"Mohamed Abdelsabour",middleName:"Abdelsabour",surname:"Fahmy",slug:"mohamed-abdelsabour-fahmy",fullName:"Mohamed Abdelsabour Fahmy"}]},{id:"72544",title:"Applications of Heat Transfer Enhancement Techniques: A State-of-the-Art Review",slug:"applications-of-heat-transfer-enhancement-techniques-a-state-of-the-art-review",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"inverse-heat-conduction-and-heat-exchangers",title:"Inverse Heat Conduction and Heat Exchangers",fullTitle:"Inverse Heat Conduction and Heat Exchangers"},signatures:"Suvanjan Bhattacharyya, Devendra K. Vishwakarma, Sanghati Roy, Ranjib Biswas and Mohammad Moghimi Ardekani",authors:null},{id:"23424",title:"Polymer Coated Rayleigh SAW and STW Resonators for Gas Sensor Applications",slug:"polymer-coated-rayleigh-saw-and-stw-resonators-for-gas-sensor-applications",totalDownloads:1528,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Ivan D. Avramov",authors:[{id:"40655",title:"Dr.",name:"Ivan",middleName:null,surname:"Avramov",slug:"ivan-avramov",fullName:"Ivan Avramov"}]}],onlineFirstChaptersFilter:{topicSlug:"physics-engineering-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/16443/benjamin-hamlington",hash:"",query:{},params:{id:"16443",slug:"benjamin-hamlington"},fullPath:"/profiles/16443/benjamin-hamlington",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()