Some examples of synthesis methods and applications of hydrogels.
\r\n\t"
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"cc796459268324e827219d1d904e4265",bookSignature:"Prof. Moulay Tahar Lamchich",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7196.jpg",keywords:"Induction motor, smart motor, electrical vehicles, energy generation, drives, electromechanical, hybrid transportation, smart control, high efficiency motor, variable speed drives, power electronic, energy efficiency.",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 4th 2018",dateEndSecondStepPublish:"July 25th 2018",dateEndThirdStepPublish:"September 23rd 2018",dateEndFourthStepPublish:"December 12th 2018",dateEndFifthStepPublish:"February 10th 2019",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",middleName:null,surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich",profilePictureURL:"https://mts.intechopen.com/storage/users/21932/images/system/21932.png",biography:"Moulay Tahar Lamchich is a Professor at the Faculty of Sciences Semlalia at Marrakech (Morocco). He completed his thesis in electromechanics in September 1991 and received his third cycle degree. Dr. Lamchich received his Ph.D. from the same university in July 2001. His main activity is based on short-circuit mechanical effects in substation structures, control of different types of machine drives, static converters, active power filters. In the last decennia, his research interests have included renewable energies, particularly the control and supervision of hybrid and multiple source systems for decentralized energy production, and intelligent management of energy. He has published more than fifty technical papers in reviews and international conferences. With IntechOpen, he has published two chapters and was editor of the books “Torque Control” and “Harmonic Analysis”. He is also the director of the “Intelligent management of energy and information systems” laboratory and supervising more than ten thesis projects.",institutionString:"University Cadi Ayyad",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Cadi Ayyad University",institutionURL:null,country:{name:"Morocco"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"108",title:"Torque Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"torque-control",bookSignature:"Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/108.jpg",editedByType:"Edited by",editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6173",title:"Compendium of New Techniques in Harmonic Analysis",subtitle:null,isOpenForSubmission:!1,hash:"39a6df08251bdf1771d2921b3b7386b6",slug:"compendium-of-new-techniques-in-harmonic-analysis",bookSignature:"Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/6173.jpg",editedByType:"Edited by",editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51535",title:"An Introduction to Hydrogels and Some Recent Applications",doi:"10.5772/64301",slug:"an-introduction-to-hydrogels-and-some-recent-applications",body:'\nA hydrogel is a three-dimensional (3D) network of hydrophilic polymers that can swell in water and hold a large amount of water while maintaining the structure due to chemical or physical cross-linking of individual polymer chains. Hydrogels were first reported by Wichterle and Lím (1960) [1]. By definition, water must constitute at least 10% of the total weight (or volume) for a material to be a hydrogel. Hydrogels also possess a degree of flexibility very similar to natural tissue due to their significant water content. The hydrophilicity of the network is due to the presence of hydrophilic groups such as -NH2, -COOH, -OH, -CONH2, - CONH -, and -SO3H.
\nHydrogels undergo a significant volume phase transition or gel-sol phase transition in response to certain physical and chemical stimuli. The physical stimuli include temperature, electric and magnetic fields, solvent composition, light intensity, and pressure, while the chemical or biochemical stimuli include pH, ions, and specific chemical compositions. However, in most cases such conformational transitions are reversible; therefore, the hydrogels are capable of returning to their initial state after a reaction as soon as the trigger is removed. The response of hydrogels to external stimuli is mainly determined by the nature of the monomer, charge density, pendant chains, and the degree of cross-linkage. The magnitude of response is also directly proportional to the applied external stimulus.
\nThere are numerous original papers, reviews, and monographs focused on the synthesis, properties, and applications of hydrogels. This chapter covers the fundamental aspects and application areas of hydrogels.
\nThe literature reports a number of classifications of hydrogels and presents several views. Hydrogels are mainly formed from biopolymers and/or polyelectrolytes. Concerning definitions of hydrogel types, according to the source, hydrogels can be divided into those formed from natural polymers and those formed from synthetic polymers [2]. Depending on the ionic charges on the bound groups, hydrogels may be cationic, anionic, or neutral. The types of cross-linking agents also can be the criteria for classification.
\nHydrogels can be physical, chemical, or biochemical. Physical gels can undergo a transition from liquid to a gel in response to a change in environmental conditions such as temperature, ionic concentration, pH, or other conditions such as mixing of two components. Chemical gels use covalent bonding that introduces mechanical integrity and degradation resistance compared to other weak materials. In biochemical hydrogels, biological agents like enzymes or amino acids participate in the gelation process.
\nClassification of hydrogels based on the different properties.
It is also possible to divide hydrogels into groups based on their structure: amorphous, semicrystalline, crystalline, and hydrocolloid aggregates [3]. Figure 1 clearly represents the classification of hydrogels based on their source and properties, along with detailed classifications based on their response, that is, physically, chemically, and biochemically responsive hydrogels (Figures 2 and 3).
\nIn situ hydrogel formation using chemical cross-linking and ionic interaction between alginate and calcium ions [61, 62].
In situ hydrogel formation using an enzymatic cross-linking reaction with horseradish peroxidase (HRP) and H2O2 [62].
Based on the methods of preparation, hydrogels may be classified as homopolymer, copolymer, semi-interpenetrating network (semi-IPN) and interpenetrating network (IPN). Table 1 indicates some examples.
\nType of hydrogel | \nMonomer | \nCross-linker | \nSpecific reaction conditions | \nReferences | \nApplications | \n
---|---|---|---|---|---|
Homopolymer | \nPoly(2-hydroxyethyl methacrylate) (PHEMA) | \nPolyethylene glycol dimethacrylate | \nPresence of benzoin isobutyl ether as the UV-sensitive initiator | \n[4, 5] | \nDrug delivery systems, contact lenses, scaffolds for protein recombination | \n
2-Hydroxyethyl methacrylate (HEMA) | \n|||||
TEGDMA (triethylene glycol dimethacrylate) | \n|||||
Polyethylene glycol (PEG) | \nWound healing and functional tissues production | \n||||
Copolymer | \nMethacrylic acid (MAA) | \nTetra(ethylene glycol) dimethacrylate | \nFree-radical photopolymerization | \n[4–7] | \nDrug delivery, hydrogel dressing material | \n
PEG-PEGMA | \n|||||
Carboxymethyl cellulose (CMC) | \n|||||
Polyvinylpyrrolidone (PVP) | \n|||||
Semi-interpenetrating network | \nAcrylamide/acrylic acid copolymer | \nN,N′-methylene bisacrylamide | \nTemplate copolymerization | \n[75] | \nDrug delivery | \n
Linear cationic polyallylammonium chloride | \n|||||
Interpenetrating network | \nPoly(N-isopropyl acrylamide) (PNIPAM) | \nN,N′-methylene bisacrylamide | \nN,N,N′,N′-tetramethylethylenediamine (TEMED), ammonium persulphate (APS) and Presence of UV light | \n[76] | \nDrug delivery | \n
Chitosan | \n|||||
Self-assembling peptide systems | \nAcrylate-modified PEG and acrylate-modified hyaluronic acid | \nNo cross -linking agent | \nPresence of UV light and a photo-initiator | \n[63, 49] | \nTissue regeneration | \n
Heparin | \nEDC/sulfo-NHS solution and low temperature | \n||||
Amine end-functionalized 4-arm star-PEG | \n
Some examples of synthesis methods and applications of hydrogels.
Homopolymers contain only one type of monomer in their structure, and based on the nature of the monomer and the technique used for polymerization, they may have a cross-linked structure (Figure 4).
\nStructures of (a) HEMA and (b) TEGDMA.
Copolymeric hydrogels are composed of two types of monomers, of which at least one is hydrophilic in nature (Figures 5–7).
\nSynthesis of the poly(e-caprolactone)-HEMA macromonomer.
Synthesis of the poly(2-hydroxyethyl methacrylate)-graft-poly(e-caprolactone) copolymer.
Dicyclohexylcarbodiimide (DCCI) method to synthesize PEG-containing macromonomers.
A semi-IPN forms when a linear polymer penetrates into another cross-linked network without any other chemical bonds between them. Semi-IPNs can more effectively preserve rapid kinetic response rates to pH or temperature due to the absence of a restricting interpenetrating elastic network while still providing the benefits like modified pore size, slow drug release, etc.
\nCombining of two polymers can lead to the formation of IPNs provided that one of them is already present in the solution and the other is synthesized or cross-linked in situ. This process is done by preparing a solution of monomers and initiators and then immersing a pre-polymerized hydrogel into this solution. The pore size and surface properties of an IPN can be modified to control the kinetics of drug release, environmental interactions of the hydrogel, and its mechanical features.
\nIt is worth to point here the self-assembling peptide systems that are synthetic amino acid-based molecules which undergo a sol-gel transition when brought to neutral pH and ionic concentration. These systems do not use cross-linking agents; hence, they can safely encapsulate cells and/or drugs without exposing them to toxic agents [49] (Figures 8 and 9).
\nIn situ hydrogel formation using photo-cross-linking.
Hydrogel formation by cross-linking of star-PEG and heparin.
The environment-sensitive hydrogels, also called “intelligent” or “smart” hydrogels, are currently the subject of considerable scientific research in various fields including biomedical, biotechnology, pharmaceutical, and separation science. In this section, we will introduce four classes of most used hydrogels.
\nAny pH-sensitive polymer structurally contains hanging acidic (e.g. carboxylic and sulfonic acids) or basic (e.g. ammonium salts) groups that respond to the pH changes in their environment by gain or loss of protons. Polyelectrolytes are polymers that have a large number of such ionizable groups. Anionic polyelectrolytes such as poly(acrylic acid) (PAA) are deprotonated in basic environmental conditions and then electrostatic repulsions between the chains strongly increase, which allow water molecules to penetrate causing drastic swelling of the hydrogel. However, in an acidic media, the acidic polymer protonates resulting in a decrease of charge density and polymer volume collapse (Figure 10). In contrast, cationic polyelectrolytes such as poly(N,N 9-diethylaminoethyl methacrylate) become ionized and swell in acidic pH (Figure 10). Amphiphilic hydrogels contain both acidic and basic moieties; therefore, they exhibit two-phase transitions in both acidic and basic environments, rather than neutral media. Figure 11 clearly demonstrates phase transition behavior of polyelectrolyte hydrogels. Worth noting is that the phase transition from collapsed state to expanded state occurs in a small range close to the apparent dissociation constant pKa of the hydrogel which is mostly identical with the pKa of the ionizable groups. Approximately at the apparent pKa of the polymer, the ionization begins and the electrostatic repulsions of the same charges present in the polymer network cause a drastic swelling of the hydrogel. If the ionization of the ionizable component is complete, the swelling process stops and further pH increase only increases the ionic strength [7, 8]. The phase transition pH range can be modulated by selecting the ionizable moiety with a pKa matching the desired pH range or by incorporating hydrophobic moieties into the polymer backbone [10].
\npH-dependent ionization of polyelectrolytes. (a) Poly(acrylic acid) and (b) poly(N,N’-diethylaminoethyl methacrylate).
Phase transition behavior of polyelectrolyte hydrogels. Acidic hydrogels (□) are ionized by deprotonation in basic solutions. Basic hydrogels (○) swell in acidic solutions due to the ionization of their basic groups by protonation. Amphiphilic hydrogels (Δ) contain both acidic and basic groups, therefore they show two-phase transitions.
Ionization of a polyelectrolyte takes place similar to acidic or basic groups of monoacids or monobases, but due to the electrostatic effects of neighboring groups, it will have a different dissociation constant (Ka) from corresponding monoacids or monobases.
\nThe extent of swelling is influenced by any factor that alters this electrostatic repulsion including pH, ionic strength, and the type of counterions. Figure 12 shows this phenomenon. In this figure, hydrogel has two phases: one phase is separated, gel-like, and formed by polymer-polymer interactions. In this condition, the maximum hydrophobicity takes place and the shrinkage of hydrogel occurs. In the second phase, interactions between the solvent and the polymer create a mixed phase in which the polymer and the aqueous solution are mixed well. The maximal value of hydrophilicity and swelling occurs in this second phase [7].
\nPhase transition behavior of stimuli-responsive hydrogels.
Different pH-sensitive behaviors and degrees of swelling can be achieved by using different monomers. The most commonly studied ionic polymers for pH-responsive behavior include poly(acrylamide) (PAAm), PAA, poly(methacrylic acid) (PMAA), poly(diethylaminoethyl methacrylate) (PDEAEMA), and poly(dimethylaminoethyl methacrylate) (PDMAEMA). Polymers containing phosphoric acid derivatives have also been reported.
\nTemperature-sensitive hydrogels (thermogels) are aqueous monomer/polymer solutions, which have the ability to form a gel upon temperature change and have a slightly hydrophobic characteristic due to the presence of groups such as methyl, ethyl, and propyl, which preferably interact with water molecules by hydrogen bonds that cause the hydrogel to swell. These hydrogen bonds are correlated to the temperature. The structures of some of the temperature-sensitive hydrogels are shown in Figure 13.
\nStructures of some temperature-sensitive polymers.
As can be seen, the common characteristic of temperature-sensitive polymers is the presence of hydrophobic groups. Most polymers increase their water solubility as the temperature increases. However, in some cases water solubility decreases with an increase in temperature (inverse or negative temperature dependence) [9]. This unusual behavior produces a phenomenon of polymer phase transition as the temperature is raised to a critical value called the “lower critical solution temperature” or LCST, which is an entropy-driven process. In the case of hydrogels with negative thermosensitivity, right below the LCST, water is a good solvent for the polymer, and hydrogen bonding interactions between the polymer and water molecules lead to enhanced dissolution in water. However, when the temperature exceeds the LCST, these interactions are broken, and the polymer chains collapse and then precipitate in the media [10, 11]. These types of hydrogels comprise polymer chains that either possess moderately hydrophobic segments (if too hydrophobic, the polymer chains will not dissolve in water at all) or contain a mixture of hydrophilic and hydrophobic groups.
\nSome examples of poly(organophosphazene) thermogels.
As the temperature increases, positive thermosensitive hydrogels exhibit just the opposite behavior of negative thermosensitive hydrogels. The LCST of hydrogels can be modulated to increase by adding a hydrophilic component, or to decrease with a hydrophobic one. Due to this property, temperature-sensitive hydrogels swell below the LCST and collapse in an aqueous environment above this temperature, being thus suitable for controlled drug delivery. Among others, poly(N-isopropylacrylamide) (PNIPAM) is the most studied thermosensitive hydrogel in tissue engineering investigations. This is due to the ability of PNIPAM to squeeze out the absorbed drug when temperature is near that of the human body [19].
\nOther examples of thermosensitive hydrogels are collagen, agarose, hyaluronic acid, poly(organophosphazenes), and chitosan [58, 59] (Figure 14).
\nElectro-sensitive hydrogels, as the name indicates, undergo shrinking or swelling in the presence of an applied electric field. Like pH-sensitive hydrogels, they are usually composed of polyelectrolytes. Under the influence of an electric field, a force on counterions and immobile charged groups is produced in the network, which attracts mobile ions to the electrodes. As a result, the hydrogel can swell and shrink regionally at the cathode and anode, respectively. This phenomenon leads to bending of the hydrogel, which is caused by ion concentration difference inside the hydrogel network and culture medium and can be explained by Flory’s theory of osmotic pressure [12–17]. The extent of bending depends on hydrogel structure and electrical field characteristics including strength, direction, and duration of the electrical stimulus. Electro-sensitive hydrogels can selectively be permeable for a specific molecular size and adjust the water permeability by expanding and contracting in micropore size under electrical stimulation [18]. Because electro-responsive hydrogels can transform electrical energy into mechanical energy and have promising applications in biomechanics, sensing, energy transduction, sound dampening, chemical separations, controlled drug delivery [33], and tissue engineering [20, 21], these polymers are an increasingly important class of smart materials. Hydrogels of acrylamide and carboxylic acid derivatives like PAA have been utilized as electro-sensitive and biocompatible smart muscle-based devices [22, 23].
\nPhoto-responsive hydrogels undergo a change in their properties when irradiated with light of the appropriate wavelength. Typically, these changes are the result of light-induced structural transformations of specific functional groups along the polymer backbone or side chains. Light-sensitive hydrogels can expand and contract upon exposure to ultraviolet (UV) or visible light. Visible light offers many advantages over UV light including wide availability, low cost, ease of manipulation, and clean operation. The mechanism of visible light-induced volume change of hydrogels is based on the induction of temperature changes by incorporating a photo-responsive functional group (chromophore) (e.g. trisodium salt of copper chlorophyllin) into the polymer network. Under exposure to a specific wavelength, the chromophore absorbs light which is then dissipated locally as heat, increasing the “local” temperature of the hydrogel [26]. The resulting temperature change alters the swelling behavior of the thermosensitive hydrogel [9]. Because of the thermal nature of the infrared radiation, it can also be used to elicit a hydrogel response in the absence of chromophores. If an additional functional group, such as an ionizable moiety of PAA, is incorporated into the hydrogel network, the light-responsive hydrogels become sensitive to pH changes also. This type of hydrogel can be induced to shrink by visible light and can be induced to swell by increasing the pH. The UV-sensitive hydrogels can be synthesized by introducing a leuco derivative molecule into the polymer network. Leuco derivatives are normally neutral but dissociate into ion pairs upon UV exposure. At a fixed temperature, the hydrogels discontinuously swelled in response to UV irradiation but shrank when the UV light was removed [24]. The potential applications of light-responsive hydrogels in the development of artificial muscles [25, 64], reversible valves in microfluidic devices [65], and temporal drug delivery were proposed.
\nHydrogels are used in many fields. This is due to their specific structures and compatibility with different conditions of use. Flexibility of hydrogels, which is because of their water content, makes it possible to use them in different conditions ranging from industrial to biological, and the biocompatibility of the materials used to produce them and also their chemical behavior in biological environments, which can be nontoxic, extends their applications to the medical sciences.
\nMajor applications and some examples of hydrogel usages are listed below. Note that it is not a complete listing but considers the most practical applications of hydrogels in medicine and industry.
\nControlled drug delivery systems (DDS), which are used to deliver drugs at certain rates for predefined periods of time, have been used to overcome the limitations of regular drug formulations. The marvelous properties of hydrogels make them a great choice in drug delivery applications. The hydrogel structures with high porosity can be obtained by controlling two factors: the degree of cross-linking in the matrix and the affinity of hydrogel to the aqueous environment in which swelling occurs. Due to the porous structures, hydrogels are highly permeable to different kinds of drugs and thus drugs can be loaded and, in proper conditions, released [27]. The possibility of releasing pharmaceuticals for long periods of time (sustained release) is the main advantage obtained from hydrogels in drug delivery investigations, which results in supplying a high concentration of an active pharmaceutical substance to a specific location over a long period of time.
\nBoth physical (electrostatic interactions) and chemical (covalent bonding) strategies can be employed to enhance the binding between a loaded drug and the hydrogel matrix to extend the duration of drug release. Hydrogels can store and protect various drugs from hostile environments, and release them at a desired kinetics of the release. Drug release can be activated on demand by local changes in pH, temperature, the presence of specific enzymes, or by remote physical stimuli.
\nSince the pH change occurs at many specific or pathological body sites, it is one of the important environmental parameters for DDS. The human body exhibits variations of pH along the gastrointestinal tract and also in some specific areas such as certain tissues (and tumoral areas) and subcellular compartments. Both acidic and basic polymers are employed in pH-sensitive DDS. PAA, PMAA, poly(L-glutamic acid), and polymers containing sulfonamide are the most commonly used acidic polymers for drug delivery. Typical examples of the basic polyelectrolytes include poly(2-(dimethylamino) ethyl methacrylate) and poly(2-(diethylamino) ethyl methacrylate), poly(2-vinylpyridine), and biodegradable poly(β-amino ester).
\npH-sensitive hydrogels were also used for extraction and determination purposes by different methodologies [28–31].
\nThermosensitive polymers, like pH-responsive systems, offer many possibilities in biomedicine.
\nAmong many temperature-sensitive polymers, poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-diethylacrylamide) (PDEAAm) find many applications. PDEAAm has a low value of LCST (a critical temperature below which the components of a solution with any composition are miscible) in the range of 25–32°C, which is near to normal body temperature.
\nHeavy metal pollution is commonly found in wastewater of many industrial processes and has been known to cause severe threats to the public health and ecological systems. The removal of heavy metal ions from various water resources is of great scientific and practical interest.
\nSynthetic cross-linked polyacrylate hydrogels have been used to remove heavy metal toxicity from aqueous media [27]. However, application of these synthetic materials on large scales may not be a practical solution because they are very costly.
\nThe pollution caused by heavy metal ions can be removed by well-known adsorption processes which, alongside flexibility in design and operation, offer the advantage of reusing the treated effluent. Also because of general reversibility of adsorption process, it is usually possible to regenerate the adsorbent to make the process most cost-effective.
\nThe use of hydrogels as adsorbents for the removal of heavy metals, recovery of dyes, and removal of toxic components from various effluents has been studied. Adsorbents with carboxyl, sulfonic, phosphonic, and nitrogen groups on their surface favor metal ion adsorption [77].
\nThe hydrogels were proven to be excellent dye adsorbent materials with extremely high amounts of methylene blue adsorption.
\nAmong hydrogel-forming materials, polyelectrolytes have a special significance in heavy metal ions’ removal. Many applications of polyelectrolytes in this area are due to their ability to bind oppositely charged metal ions to form complexes.
\nIn fact, having both cationic and anionic charges on the micro- or nano-gel provides additional advantages for the removal of two distinct species simultaneously. Hydrogels are versatile and viable materials that show potential for environmental applications.
\nChitosan, alginate, starch, and cellulose derivatives are biopolymer-based hydrogels, which were used to remove metal ions from aqueous media. It has been shown that the sorption mechanism and sorption capacity of heavy metal ions were influenced by the functional groups of the hydrogel. This is because of the participation of other processes like chelating and ion exchange rather than simple sorption in removal of metal ions [78, 79].
\nChitosan-based hydrogels are applicable in the removal of heavy metal ions due to the presence of multiple amino (NH2) and hydroxyl (OH) groups in their structure. This applicability originates from the tendency of metal ions to form chelates with the so-called amino groups. But after reaction of chitosan with cross-linkers, its alkalescence which is related to adsorption capacity is decreased. Chemical modification of these functional groups can improve not only the adsorption capacity but also the physicochemical properties of chitosan [79, 80]. Different approaches were employed by researchers to modify chitosan including the use of amino acid esters, oxo-2-glutaric acid, pyridyl, ethylenediamine, carbodiimide, aromatic polyimides, amine-functionalized magnetic nanoparticles, and glycine [81–83]. It is shown in these studies that both adsorption capacity and mechanical resistance of chitosan-based hydrogels will improve after modification of functional groups.
\nTissue engineering is defined as a combination of materials, engineering, and cells to improve or replace biological organs. This needs finding proper types of cells and culturing them in a suitable scaffold under appropriate conditions. Hydrogels are an appealing scaffold material because their structures are similar to the extracellular matrix of many tissues, they can often be processed under relatively mild conditions, and they may be delivered in a minimally invasive manner [32]. Adequate scaffold design and material selection for each specific application depends on several variables, including physical properties, mass transport properties, and biological properties and is specified by the intended scaffold application and environment into which the scaffold will be placed. For example, the type of scaffold used to produce artificial skin must be different from that used for artificial bone and thus different structures for materials are needed.
\nBoth synthetic and naturally derived materials can be used to form hydrogels for tissue engineering scaffolds.
\nSynthetic hydrogels are interesting because it is easy to control their chemistry and structure and thus alter their properties. Examples of polymeric synthetic materials which can be used to form hydrogels are poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and poly(propylene fumarate) (PPF) [33] (Figure 15).
\nStructure of synthetic hydrogel-forming polymers: (a) PEO, (b) PVA (100% hydrolyzed), and (c) PPF.
Naturally derived hydrogel-forming polymers are other candidates for use in tissue engineering scaffolds because they either are natural extracellular matrix components or have properties similar to these matrices and they interact in a favorable manner in vivo. Examples are alginate and chitosan [32–34] (Figure 16).
\nStructure of naturally derived hydrogel-forming polymers: (a) alginate and (b) chitosan.
Hydrogels are used for three purposes in tissue engineering applications. They may be used as agents for filling vacant spaces, carriers for delivery of bioactive molecules, and 3D structures that act as a support for cells and help the formation of an ideal tissue.
\nAgents for filling vacant spaces (space-filling agents) include scaffolds that provide bulking, prevent adhesions, or act as bioadhesives [33]. To reach this aim, the most basic design requirements for a hydrogel are the abilities to keep a desired volume and structural integrity for the required time.
\nHydrogel scaffolds based on alginate, chitosan, and collagen show potential for use as general bulking agents. Synthetic hydrogels are often used as anti-adhesive materials because cells lack adhesion receptors to them and proteins often do not readily absorb to them if designed appropriately. Polyethylene glycol (PEG) has been used to prevent post-operative adhesions [32, 33].
\nHydrogels composed of chitosan and chitin derivatives are now used as biological adhesives in surgical procedures to seal small wounds out of which air and body fluids could leak, and to improve the effectiveness of wound dressings [37, 38].
\nAnother application of scaffold hydrogels that is quite different includes using them as vehicles to stabilize and deliver bioactive molecules to the target tissues and to encapsulate secretory cells. Currently, most drugs are delivered into patients systemically without the use of a scaffold, so large doses are usually required for a desired local effect because of enzymatic degradation of the drug and nonspecific uptake by other tissues. This is a costly process and can cause serious side effects. In addition, many factors, which are necessary or beneficial to the target tissue, may be toxic to other tissues. Thus, a vehicle or scaffold allowing for local and specific delivery to the desired tissue site is highly desirable in many situations. Ionically cross-linked alginate hydrogels and glutaraldehyde cross-linked collagen sponges are some of the examples to fulfill this requirement [39, 40].
\nAs hydrogels are highly hydrated 3D networks of polymers, they can provide chemical and mechanical signals and also an environment for cells to adhere, proliferate, and differentiate; thus, they are suitable for cell delivery and tissue development goals. Nowadays, hydrogel scaffolds are being used to produce a wide range of tissues, including cartilage, bone, muscle, fat, liver, and neurons. Based on the type of the desired tissue, different kinds of hydrogels can be utilized. For example, alginate has been used more widely than other hydrogels to assess the in vivo potential of hydrogel scaffolds for cartilage engineering and also as Schwann cell matrices in the area of nerve grafting, and collagen has been used for engineering large blood vessels [33].
\nA key area in the use of synthetic hydrogels for bioapplications is ophthalmology, especially contact lenses. A contact lens is a small optical device placed directly on the cornea to alter the corneal power. The first concept of using contact lenses was described by Leonardo da Vinci in 1508; this consisted of immersing the eye in a bowl of water. At the end of 1960, poly(2-hydroxyethyl methacrylate) (PHEMA) lenses were developed by Professor Otto Wichterle; this invention represents the most important step in contact lens development and the start of soft lenses’ era [41].
\nDirect placing of contact lenses on the surface of cornea prevents the exchange of atmospheric oxygen and thus disturbs the natural physiological metabolism of the cornea known as hypoxic stress, so a good contact lens must have maximum oxygen permeability. Mechanical stress to the cornea produces the same problems as the hypoxic stress, such as mitosis of the epithelial cells, elevated activity in protease and glycosidase, corneal sensitivity, and changes in corneal hydration and transparency. To reduce these stresses, the proper choice of contact materials and their shape are necessary.
\nHydrogels used for production of contact lenses can cover most of the requirements needed when using in different physiological conditions. For a hydrogel material that is used as a contact lens, there are some necessities to make it comfortable during usage. These necessities include amount of water content, good mechanical properties, permeability toward oxygen, wettability of surface, good optical facilities, stability toward hydrolysis and sterilization, having nontoxic nature, and having enough biological tolerance for living cells.
\nIn order to increase the water content of hydrogel and achieve an enhanced swelling effect, different types of monomers can be used. These include dihydroxy methacrylates, methacrylic acid, acrylamides, and many other monomers.
\nSilicone hydrogels represent an independent group of contact lens materials. The evolution of basic hydrogels gave rise to the production of this class, and they have good swelling properties and high permeability toward oxygen, which make them suitable for use in lenses. These properties are owing to their structure in which hydrophobic silicones are connected with hydrophilic chains in such a way that makes the resulting composite suitable both mechanically and optically.
\nHigh oxygen permeability is achieved with the siloxymethacrylate monomer commonly referred to as “TRIS.“ The methylene groups in the structure of TRIS represent the sites for hydrophilic modification (Figure 17).
\nStructure of siloxymethacrylate monomer (TRIS).
It is possible to incorporate linear or branched hydrophilic polymer chains into the structure of the polymer to form an interpenetrated network to reduce the drying by the lenses when using them normally. This means that the “wetting chains” are fixed only by physical bonds without any covalent attachments to the patterned hydrogels’ network [43].
\nStimuli-responsive polymers or hydrogels can change their volume significantly in response to small alterations of certain environmental parameters. Cationic polyelectrolytes dissolve (swell) more at low pH and anionic polyelectrolytes vice versa and this is due to ionization [44].
\nTwo types of transducers are used in pH-sensitive hydrogel sensors: transducers based on mechanical work performed by hydrogel swelling and shrinking and those observing changes in properties of free swelling gels [45].
\nThe ability of hydrogels to deform or to strain mechanically a transduction element resulting in a change of a special property of that element or in a change of a detectable distance is the basis of operation of transducers based on mechanical work of the hydrogel. They are classified as optical transducers, including reflective diaphragms and fiber Bragg grating sensors, and mechanical transducers, including microcantilevers and bending plate transducers.
\nTransducers of free swelling gels have to directly observe changes in one or more hydrogel properties and include optical, conductometric, and oscillating transducers. Optical transducers can directly measure changes in optical properties of hydrogels. A different approach is based on the observation of special fillings or surface coatings, which are changed or moved due to hydrogel swelling. Oscillating transducers are devices that keep changing their resonance frequency. Changes in the properties of a load result in a shift of this resonance frequency. This can be accompanied by a change of the signal amplitude. Conductometric transducers are based on measuring the conductivity of hydrogel as the degree of swelling changes [44].
\nCombining physical and chemical sensors results in a biosensor. There are two definitions for what a biosensor can do: it can be thought as a device that can sense and report a biophysical property of the system under study or a device that can deliver useful analytical information from transforming biochemical data. A common aspect in all biosensors is the presence of a biological recognition part that makes it possible to analyze biological information. Biosensors are becoming increasingly important as practical tools to cover a wide variety of application areas including point-of-care testing, home diagnostics, and environmental monitoring. Biological recognition part known as bioelement consists of different structures like enzymes, antibodies, living cells, or tissues but the point is its specificity toward one analyte and zero response to other interferents. There are various methods for coupling biomolecules with sensors including entrapment into membranes, physical adsorption, entrapment into a matrix, or covalent bonding [42, 44].
\nThe high water content and hydrophilic nature of hydrogels are similar to the void-filling component of the extracellular matrix and render them intrinsically biocompatible. Hence, an apparent application of hydrogels in biosensors is the protection and coating function of sensor parts to prevent undesired interaction with biological molecules or cells. Hydrogels can be used as immobilization matrices for the biosensing elements and provide excellent environments for enzymes and other biomolecules to preserve their active and functional structure.
\nThe interaction between analyte and sensing element results in a volume change in response to target component and this volume change is the basis of recognition in hydrogel-based sensors (Figure 18).
\nVolume increase of a hydrogel biosensor in response to an analyte.
Several types of sensing elements are used based on the nature of analyte but these elements can be categorized in two distinct groups: molecular interactions and living sensors.
\nMolecular interactions used for sensing analytes encompass different mechanisms. One of them is enzyme-substrate interactions. As enzymes are highly specific and efficient in their reactions with substrates, they may be used for precise determination of desired analytes’ concentrations. There are many examples for different sensors based on enzyme-substrate interactions in hydrogel matrices including detection of organic-phase alcohols, amino acids, ammonia, urea, glucose, hydrogen peroxide, etc. Glucose-responsive hydrogels that are capable of acting as long-term insulin depots in response to increased blood glucose levels and automatically release doses of insulin at appropriate times are a promising development and could obviate the need for frequent injection and therefore provide a more convenient treatment option that would improve treatment efficacy and quality of life for hundreds of millions of people. The swelling of a hydrogel in the presence of glucose molecules makes it possible to release insulin in a controlled manner [46] (Figure 19).
\nConcanavalin A-based glucose-responsive hydrogel swelling mechanism.
Antibody-antigen-based sensors that are affinity-based devices with a coupling of immunochemical reactions are another class of molecular interactions group. The general working principle of these sensors is based on the specific immunochemical recognition of antibodies (or antigens) immobilized on a transducer to antigen (or antibodies) that produce signals which depend on the concentration of the analyte. It is possible to use quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), or electrochemical methods for detection of the analyte.
\nThere are several other examples of molecular interaction-based sensing of analytes like nucleotide, oligonucleotide, DNA, etc.
\nAnother group of sensing elements is living sensors. They are combinations of hydrogels with living cells and microorganisms to form living cell-polymer composites for biosensing application. Microorganisms can detect a wide range of chemical substances, they are amenable to genetic modification and have a broad operating pH and temperature range, making them ideal as biological sensing materials. 3D structures, high water content, and biocompatibility are the main advantages of hydrogels that provide the ability to entrap cells or bacteria inside their networks enabling them to exchange gases in high rates and nourish the entrapped cells and in this way provide the possibility of usage of the cell-polymer composites in a biosensor. An instance is the use of Arxula adeninivorans LS3 as a biological recognition element for the rapid determination of the concentration of biodegradable pollutants in wastewater on a Clark-type oxygen electrode [47, 48].
\nThere are two different methods to use hydrogels in biosensors: they can be coated on the surface of a sensing device like an electrode or be used as a 3D matrix or support to maintain bioelements such as cells. Preservation of cells for certain time periods in a hydrogel matrix and pathogen sensing are other examples of applications in this group (Figure 20).
\nSchematic diagram of the A. adeninivorans LS3 microbial sensor illustrates the microbial consumption of dissolved oxygen (a) before and (b) after the addition of biodegradable pollutant.
Spinal cord injury (SCI) is a complex regenerative problem because of the multiple facets of growth inhibition that occur following trauma to the cord tissue. Many of these injuries do not hurt the dura mater and some of the axons are yet alive in the injury site and can be recovered. In such conditions, inserting a preformed frame or DDS into the damaged spinal cord by surgical operations may cause subsequent lesion. One alternative for this method is the use of in situ-forming scaffolds. What happens after injection into the injured cord area is the fast conversion of viscoelastic hydrogel from liquid form to gel and adaptation to the tissue of injury site [49].
\nThe small spaces between spinal cord tissue and even transected parts formed after SCI will be filled by in vivo conversion of liquid hydrogel to the gel form. The gel, which now serves as a scaffold, will eliminate vacant spaces and forms a template for regeneration of the injured cord tissue by helping cellular penetration and matrix. In this way, it is not necessary to create preformed scaffolds for each patient individually and disconnecting viable tissue at the injury site to implant the preformed scaffold, which can cause further damage and loss of functionality, will be avoided [50, 51] (Figure 21).
\nInjection of liquid hydrogel into the site of injury.
Injectable materials, in their liquid state, can be uniformly mixed with cells and other therapeutics prior to delivery into the injury site. The mechanical properties of gel scaffolds can more closely match the properties of the spinal cord tissue, compared to most preformed biomaterial matrices [49, 51].
\nThere are some requirements for the design and use of injectable systems based on their functions and design parameters.
\nTheir functions include [49, 52–54]:
\nCreate a scaffold for cellular infiltration and axonal ingrowth. The gel material itself will serve to bridge the lesion site.
Encapsulation of drugs and maintenance of bioactivity throughout gelation and release. Injectable systems can provide a sustained and tunable delivery of these agents locally to the lesion site.
Support of suspended cell populations prior to injection, throughout the solidification process, and within the lesion site. Cellular therapies are more effective when delivered and maintained locally in the injured area as opposed to being delivered systemically (Figure 22).
Functions of injectable hydrogels.
The importance of design parameters is originating from the difficulty in isolating the effects of cross-linking and macromer concentration-dependent material properties such as mechanical stiffness, mesh or pore size, degradation rate, and bioactive ligand density.
\nDesign parameters include biocompatibility of used materials with the tissue of injured site, mild solidification conditions, suitable porosity and mesh size of the designed scaffold, mechanical properties of the gel material, degradation rate, and bioactivity [55–57].
\nInjectable hydrogels can be natural or synthetic with their own benefits and disadvantages. They can also be classified as physical and chemical gels [49, 62].
\nGenerally, physical hydrogels have the limitation of weak mechanical properties; thus, a combination of chemical and physical cross-linking has been used to overcome this weakness. For example, PNIPAAm-co-glycidyl methacrylate (GMA) and polyamidoamine (PAMAM) macromers undergo a dual-hardening physical and chemical gelation precess and form PNIPAAm-co-glycidyl methacrylate (GMA)/polyamidoamine (PAMAM) injectable hydrogel [58].
\nInjectable hydrogel systems are minimally invasive and patient friendly. Cells or bioactive molecules are easy to mix with polymer solutions and these mixtures are in situ and easily form the 3D microenvironments into any desired defect shapes.
\nThe fast developments in portable electronic equipments industry such as wearable devices, arbitrarily curved displays and even transparent mobile phones, require the fabrication of flexible, transparent, lightweight and efficient storage options [73]. To this end, the key issue is the simultaneous incorporation of mechanical robustness, optical transmittance, and electronic conductivity [74]. Because of the importance of high-performance flexible supercapacitors, the technique of the supercapacitors is still making rapid progresses. Recently, several strategies for flexible supercapacitors have been demonstrated, including coating active materials, such as RuO2 [66], MnO2 [67], V2O5 [68], NiOH [69], and graphene nanosheets [70] onto conductive fibers by electrochemical deposition or casting and fabrication of hydrogel or aerogel films based on graphene [73]. However, these methods suffer from several disadvantages that hinder their large-scale commercialization, such as high cost of noble metals or expensive carbon support materials, limited ionic/electronic conductivity, poor mechanical flexibility, and scalable electrochemical synthesis conditions.
\nElectrically conducting polymer hydrogels show great potential for the expected integration due to their excellent solid-liquid interface, good electric characteristics, and mechanical flexibility, and represent a promising material platform for emerging flexible energy storage devices [71, 72]. Conducting polymers such as polyaniline, polypyrrole, and their derivatives provide the unique electrical properties of metals or semiconductors, as well as attractive properties associated with conventional polymers, such as ease of synthesis and flexibility in processing; therefore, supercapacitor hydrogels are attracting much attention as new power sources [73]. Flexible solid-state supercapacitors provide high power density, long cycle life, and the potential to achieve relatively high energy density.
\nShi et al. have recently synthesized a 3D nanostructured conductive polypyrrole hydrogel via an interfacial polymerization method [73]. The high-performance flexible solid-state supercapacitor demonstrated promising capacitive properties and good electrochemical stability during long-term cycling. So far, many aspects such as conductivity and morphology of conductive polymer hydrogels have been extensively studied. However, the combination of stretchability and transparency is unique, and particularly long cycle stability has not been achieved before. In this regard, Hao et al. demonstrated a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent α-cyclodextrin polyacrylamide-polyaniline hybrid hydrogel networks as electrodes, which show a high performance in supercapacitor application [74].
\nThis chapter aims to introduce briefly the hydrogels: a class of natural or synthetic polymeric materials that have the ability to hold huge amounts of water because of their specific structures and subsequent swelling properties. Based on this ability, they found a wide variety of applications, and because of the possibility to modify the polymeric structure to obtain desired functionality, the areas of applications are rapidly expanding. They can be designed in such a way that they can respond to a specific stimulus including pH, temperature, light, etc. at a predefined level and thus be stimuli responsive. Among their amazing characteristics, the biocompatibility and biodegradability make them a powerful candidate to use in biological and environmental applications as implants or materials for removal of toxic pollutants. In addition, conducting hydrogels are often a good choice in designing and fabrication of supercapacitors, which promise the most rapid developments in electronics.
\nIndustrial automation plays a major role in real-time data acquisition and control applications. Modern industries depend on vastly more automation and intercommunication. Industrial process equipment is automated to do periodic data collection, event detection, control operation, real-time data acquisition, real-time inventory management, alarming etc. Industrial automation system makes installation flexibility, reduces the repairs costs, disintegration of machine control functions, monitoring the mechanical equipment parameters, error detection and improves the overall efficiency of plant operations. An industrial automation system is a computer system which monitors and controls the various industrial processes such as petrochemical plants, power plants, water treatment plant, oil and gas, food production etc. The behavior of the process changes due to the attack during data communication between devices. Automation devices such as SCADA and Programmable Logic Controller (PLC) does not have inbuilt security mechanisms. The suitable security algorithm is essential to protect the process equipment and its information from unauthorized access.
The SCADA system is widely used in industrial automation for monitoring and controls the process parameters. It is used for data gathering in a variety of applications such as power generation, petrochemical, sewage and water treatment systems, food and pharmaceutical industry. The monitoring and control of process parameters takes place in remote areas to keep up the steady state of process. SCADA systems include Master Terminal Unit (MTU), Remote Terminal Unit (RTU), network devices and SCADA software. SCADA alerts operators by alarm when conditions become hazardous. The SCADA system includes RTU, and Programmable Logic Controllers (PLC) which collect data from end-point devices like actuators, pumps, or other sensors and control ongoing processes in a plant. The plant sensitive information is transmitted between MTU and RTU that is unsecure and unsafe plant operations. The process data can be accessed and modified by the attackers. The security mechanisms are essential to protect the SCADA system from unauthorized access and to give safety for plant operators.
PLCs are used to control the process parameters and to ensure smooth plant operation. PLC and SCADA system is used together in automation and management of processes in real-time. PLCs are connected to a Human-Machine Interface (HMI) which presents current input and output values to the operators and accepts commands from the user. In SCADA system, RTU provide high processing power, communication capabilities and flexibility as compared to PLCs. The data transmitted from the PLC need to be protected from the attackers. The process data must be encrypted using suitable cryptography and the cipher text is to be transmitted over the internet to ensure confidentiality. The decryption algorithm is to be used at the receiver to get the process data in original plain text. The security policies and security mechanisms are essential for internet enabled industrial automation system.
The industrial data gathering and monitoring has greatly improved by the wireless standards and internet. The real-time process information can be transmitted through wireless medium and monitored through the internet anywhere in the world. The plant information can be monitored and controlled with the SCADA system through the internet. The control operations and management of sensitive process information are carried out in the master station. Human Machine Interface (HMI) allows operators to read various physical parameters and status of alarm. The general monitoring and supervisory functions are carried out in the corporate networks. The functions of Remote Terminal Unit (RTU) are to monitor the field analog and digital parameters and transmit data to the central control room. RTUs are connected through the remote networks.
The need for security increases due to the integration of industrial networks with Information Technology (IT) networks. Wireless and Internet technologies are essential to monitor and control the process data efficiently. The benefit of wireless technologies in industrial networks provides mobility, to manage substations, and it requires little installation and preservation cost. The control and automation functions can be performed in real-time over the internet by the use of TCP/IP standard in SCADA transmissions. The technological advancement in industrial network operations gives rise to various security risks and challenges in managing IT networks while integrating with both SCADA and corporate networks. The use of Internet in industrial networks creates additional security hazards and safety issues in the automation system. The major intrusion takes place in communication medium and data modification. The existing industrial automation equipments were not built with security mechanisms. Attackers may create new process information, can alter the process data and capture the physical channels. This leads to failure of process equipments and heavy loss to industries. It is essential to propose the novel security mechanism for secure operation in web-based industrial networks.
The major technological, operational and organizational changes increase the security problems. Most of the industries focus on improving the security in data communication, safety standards and cost reduction by applying innovative technology design. The standards and regulations of data security have to be applied during design, implementation and execution of the industrial process to ensure adequate safety, consistency and lifecycle effectiveness for all parties involved in the plant operations. Industrial Control System security requires secure management of work flow and policies. The security management involves physical access control, physical intrusion detection etc. It also requires the device security where the hardware, software and firmware need to be protected. The security in communication is another aspect where the message or data need to be protected. The supervisory and control operations are carried out by integrating the SCADA devices with remote web-based networks. Due to the web-based operation, SCADA devices become more vulnerable to various attacks.
Intrusion detection system is one of the software applications which monitors the network activities for violations and produces reports to the management. The status of security is to be monitored and tested by the continuous security assessment in the security management system. Cryptography is used to address important aspects of communication security, such as, message authentication and integrity as well as confidentiality. The hybrid cryptography algorithm is proposed which combines the asymmetric, symmetric and hash algorithms along with the dedicated hardware key all together strengthens the plant information security [1]. This hybrid algorithm provides confidentiality, integrity and ensures privacy in accessing the sensitive process data. It is essential to propose strong security mechanisms for accessing the process information through internet. The highly secure encryption decryption algorithm is proposed which is simple and it can be used for cloud computing-based applications [2]. This algorithm is based on efficient logical operations, such as XORing, addition, and subtraction as well as byte shifting. It allows selecting the secret key length and the number of rounds to generate the cipher text. Key management is the most dynamic field of research in cryptography and there are challenges in the area of industrial plant key management. The critical information such as passwords and encryption keys should be kept confidential due to security concerns in industries.
The industrial process parameters should be protected from unauthorized access during transmission. The security mechanisms are essential for data monitoring, storage and control. An enhanced data security algorithm is proposed to ensure security in the cloud [3]. The SHA-256 hashing and AES encryption algorithms are used to maintain integrity and confidentiality in the cloud. A novel parallel cryptographic algorithm is proposed which overcomes the drawback of symmetric security algorithm and hash algorithm [4]. The analysis was done with respect to computation time. The run time is less as compared to the RSA-MD5 algorithm. The additional layers of hybrid function can be performed to enhance the data integrity and security. A peculiar security protocol is formed to increase the level of security [5]. It increases the level of security by incorporating MD5 algorithm and combining the AES with RSA algorithms. The encryption and decryption of image files can be performed using the hybrid algorithm. A hybrid cryptographic algorithm is proposed which combine the Blowfish and MD5 hashing algorithm to increase data security in the cloud [6]. The various parameters include file size and execution time is evaluated. It takes less time for encryption and decryption and it occupies less storage space. An innovative identity based hybrid encryption is proposed to increase the security of outsourced data [7]. The encryption is performed using RSA and Elliptic Curve Cryptography (ECC). The data is encoded along with receiver identification. The identity and the keyword are encrypted using Proxy Re Encryption. It achieves efficiency and assures the security of user message. The hybrid cryptography algorithm is proposed which includes symmetric and hash algorithms that ensure confidentiality and integrity of process parameters [8]. It is implemented with the embedded system which enables secure monitoring of plant information over internet.
The Intrusion Detection System (IDS) is essential to preserve the SCADA system from internet attacks. IDS monitor the network activities and host to detect the security threats. The clustering based IDS are proposed to detect the attacks on SCADA systems [9]. SCADA attacks were detected by normal and critical states of process parameters of target system. When the process parameter reaches the critical state, alarms are raised. The criticality scoring algorithm is proposed to determine the state of the target system. The distributed and networked approach of SCADA system increases the cyber-attacks. The major threats are unauthorized access to the control software and network intrusion. The various possibilities of cyber-attacks on SCADA system is evaluated by using two Bayesian attack graph models [10]. The probabilities of the intruder influence the destination is determined by the Bayesian attack graph model. The evaluation results infer that the reliability of the power system becomes less due to the increase in attacks against cyber components and skill levels of attackers. The energy efficient security architecture is proposed for wireless based industrial automation systems [11]. The packet protection based on encryption consumes energy in the case of battery powered devices. The packet based selective encryption is also proposed which reduces energy consumption and detection of attacks. The results infer that the intrusion is difficult to distinguish from normal disruption at industrial operations. A Dynamic Security management mechanism is proposed which reduces security hazard, deadline miss ration and process elimination ratio of discontinuous actual process compiling on server systems [12]. The time and power utilization of extensively used security mechanisms are measured. A security hazard measures is introduced which quantifies the strength of security in real-time operations. A dual-level feedback control scheme is designed to notify the task scheduling issues. The future work includes proposal of security assessment for shared control in enterprise networks and integrity protection. A multilayer cyber-security scheme is proposed which is based on Intrusion Detection System (IDS) for safeguarding SCADA in smart grids [13]. In this work, external malicious attack is identified by a SCADA-specific IDS technique. A cyber security test-bed used to investigate vulnerabilities and hybrid intrusion detection approach is implemented in a SCADA system. The test-bed is the setup of grid connected solar panel based SCADA system in real-time. This proposed multi-attribute SCADA-IDS provides early alert, intrusion detection and prevention and abnormal behaviors in SCADA based automation system. A key management scheme is evaluated which includes session and master key updates [14]. The master station is responsible for producing the session keys. The Elliptic Curve Diffie-Hellman protocol is used in the master key update phase. This scheme of key management supports the MODBUS implementation with the required speed, greater efficiency and achieves high degree of security in SCADA communication.
The cryptography is essential for secure communication of plant information through SCADA networks. The characteristics of cryptographic algorithms are analyzed in terms of energy and time related for embedded real-time systems [15]. The analysis indicates that energy consumptions of security algorithms are non-linear to the size of the plain text. The energy cost is proportional to the run time of security algorithm with variable data size. Based on this analysis, the application of cryptographic algorithms can be extended in embedded real-time applications. The security issues in Industrial Automation and Control System (IACS) are analyzed which includes risk assessment, countermeasures, validation and monitoring of results [16]. The analysis ensures the satisfied security level can be achieved for a distributed industrial system. The efficient security management solutions will become tough due to the complexity and size of IACS. It is essential to propose advanced mechanisms to support IACS security.
A network filtering approach is proposed for the detection and mitigation of cyber-attacks [17]. It is based on the packets analysis of communication between master and slaves of SCADA system and monitoring the state of the protected system. The benefit of this proposed work is that it provides less number of negative results. A Critical State Analysis and State Proximity for detection of intrusion are proposed for SCADA systems [18]. A multidimensional metric approach is introduced which provides the measurement related to the length between a critical state and the given states. The unique security issues in electric power system are addressed which is based on SCADA Networks [19]. The SCADA system is secured by using symmetric encryption. The master station takes the Key Distribution Center (KDC) and it initiates the communication. The slave station includes security devices which generate the session key, perform the key encryption with the master key and transmit it to the equipment on the master station.
The trust system is proposed which perform active security analysis and response in order to increase the security of SCADA systems [20]. The status information delivery, issue of network node commands, packet delivery analysis in various protocols and arrangements are performed by the trust system.
The key management architecture is proposed for SCADA System that requires less number of keys stored in a RTU [21]. It reduces the operational cost for group communication. Group link is attained by using the key hierarchy configuration. The Master Terminal Unit (MTU) is able to send the information between a Sub-Master Terminal Unit and Remote Terminal Unit. In this proposed key structure, two classes of communication which includes communication between MTU and Sub-MTUs and between Sub-MTUs and RTUs. The impact of traditional Information and Communications Technologies (ICT) malware is focused on SCADA systems [22]. The experimental test-bed which includes software toolkit called MAlSim (Mobile Agent Malware Simulator). MAlSim agent class is used for simulation of malware. The vulnerabilities exist in the SCADA systems due to network connections, access control, protocols and software. A vulnerability estimation scheme is proposed to estimate the susceptibility of SCADA systems in terms of access points [23]. This work quantifies the potential impact on causes of attack. The method used in this work is to assess the losses in power system and computer networks susceptibility due to cyber-attack.
The security is a major concern for industrial operations and the process plant information should be protected from unauthorized access. The existing security mechanisms are adopted for intrusion detection, cyber-attacks, risk management, data protection by cryptography, network firewall etc. The security threats increase due to process monitoring and control through internet. It is essential to ensure process data security and privacy in accessing the plant information in the automation system.
Table 1 shows the existing security mechanisms, its advantage and disadvantage. It is identified that there is a large number security issues arises due to the integration of SCADA Network with the Information Technology Networks. Traditional ICT countermeasures cannot provide complete protection to SCADA systems. Conventional Security mechanisms are not suitable to handle the new security problems. Even though the varieties of security mechanisms are proposed, still there is a lack of security in the modern industrial automation systems. It is essential to propose efficient and less complex security algorithm to secure the data communication takes place between SCADA Networks.
Algorithm | Key size | Block size | Rounds | Encryption Speed | Security |
---|---|---|---|---|---|
AES | 128, 192, 256 bits | 128 bits | 10, 12, 14 | Fast | Considerably Secure |
DES | 56-bits | 64 bits | 16 | Very Slow | Inadequate Security |
3 DES | 112-bits | 64 bits | 48 | Very Slow | Adequate Security |
RC2 | 8–128 bits | 64 bits | 18 | Fast | Vulnerable |
RC5 | 2040 bits | 128 bits | 255 | Fast | Considerably Secure |
Blowfish | 32–448 bits | 64 bits | 16 | Fast | Vulnerable |
Proposed Algorithm (RSA and SHA) | 4096-bits and 512-bits | 470 bytes, 1024 bits | 80 | Fast | Highly Secure |
Comparison between standard and proposed cryptography algorithms.
The existing security mechanism for SCADA networks are related to hybrid encryption, intrusion detection, key management, and packet based encryption etc. The lack of strong dynamic security management mechanisms exists related to cryptography for securing SCADA systems. The SCADA system deals with remote monitoring and control of sensitive process parameters. The strong cryptographic algorithm is essential to protect the process information and equipment from unauthorized access. The existing security mechanisms and algorithms are inadequate to achieve strong security. The attackers can easily capture the process data, modifies it and retransmit to the destination. The security attack leads to failure of process instruments, major losses to the management and unsafe working condition to operators. The hybrid security algorithm is proposed to secure the plant parameters in wastewater treatment process across the internet [24]. It includes symmetric and secure hash algorithm to protect the wastewater parameters from unauthorized access and modification. It is essential to implement the protocols for secure data transmission in embedded system with wireless networks.
This proposed work focuses on securing the process information by incorporating modified asymmetric and hash algorithms. It ensures secure monitoring of plant information in real-time applications. It combines the asymmetric encryption and hash algorithm which provides data confidentiality and integrity. The large key size of 4096-bits is generated using asymmetric encryption which is not exists in the previous work and it enables secure transmission and monitoring of process information through the internet.
The temperature and gas process data is secured by performing hybrid cryptographic algorithm which includes modified asymmetric encryption and hash algorithm. The public and private keys are generated in the asymmetric algorithm to perform data encryption and decryption in order to ensure data confidentiality.
Asymmetric algorithm involves usage of public key and private key. The public key is used for encryption of process data and the private key is used for decryption of process data. It enhances the security level of sensitive plant information due to the usage of two keys.
The various steps involved in asymmetric algorithm are given below. These include
Generation of public and private keys
Encryption
Decryption
Select two different prime numbers: i and j
Calculate s = i*j
Calculate g (s) = (i-1) (j-1)
Select integer ‘d’ such that gcd(g(s)) = 1; 1 < d < g(s)
Calculate e, e = d−1(mod(g(s))
Public key, PU = (d,s)
Private key, PR = (e,s)
After generation of public and private keys, encryption is performed to convert the raw input data into cipher text that is., unreadable format. The encryption of plant information is performed at the transmitter. The encrypted data is transmitted across internet.
Assume that the original input is denoted by ‘T’. The cipher text is obtained by the formula given below.
Original text: T
Cipher text: C = Td mod s
where d – Public key.
The cipher text is obtained at the receiver and performs decryption. It converts process data in unreadable format to original plain text. The original plain text is obtained by the formula given below.
Original text: T = Ce mod s
where e – Private key.
The large key size of 4096-bit is generated in this proposed modified asymmetric algorithm. The hash algorithm is proposed which generates different hash value in order to ensure data integrity. The SHA (Secure Hash Algorithm)-512 generates intermediate hash value using the message block as key. The block size is 1024-bits, the word size is 64-bits and the number of rounds is 80. The SHA-512 algorithm is highly secured as compared to the MD5 (Message Digest) algorithm.
The SHA hash function converts input value of approximate to a constant length. The hash is smaller than the input data and it is a tiny representation of a big data which is referred to as digest. The hashing algorithm involves processing of hash function and each block size varies depending on the algorithm. The capacity of the block varies from 128-bits to 512-bits. It involves round function in which each round takes an input of a uniform size, typically merging of the latest information block and the result of the last round. The modified SHA1 algorithm is developed which expands the hash value from 160-bits to 1280-bits [25]. It is achieved by allocating four buffer registers in each round inside the compression function for eight times. This hash value was not hacked against brute force attack. The hash algorithm protects the password storage and it is used to check the data integrity.
The input message is padded first to obtain the block size of 1024-bits. The message schedule is generated to process the 1024-bit block size of the input message. It consists of eighty 64-bit words. The first 16 words are directly obtained from the 1024-bit message block. The remaining words are generated by performing permutation and mixing functions to the previously generated words. The modified asymmetric and hash algorithm is proposed that generates large key size of 4096-bit and 512-bit respectively [26]. It provides authentication and integrity of process information across internet. Authentication is essential to ensure the plant information is accessed and controlled by the authorized users.
The message block consists of two inputs which are 512-bit hash buffer and the 1024-bit message block. The hash buffer contents are processed along with the input which is called round function. The round function is to be performed for each block of 1024-bit input message. The eighty rounds are to be carried out for each message block. The eightieth round output is added to the hash buffer contents at the starting of the round process. This addition is performed for each 64-bit word of the output. The message digest is obtained from the content of hash buffer which is the processing of all N-message blocks. The key generation and encryption algorithm is proposed for ensuring privacy in Mobile Ad-Hoc Networks [27]. This key generation algorithm adds scrambling factors to generate random key sequences with essential length but incurred low execution overhead, whereas the encryption/decryption algorithm utilizes the One Time Pad (OTP) system by adding scrambling factors for data confidentiality which satisfies the randomness, diffusion, and confusion tests.
Figure 1 shows the generation of message digests of SHA 512 algorithm. The input message is first divided into block of 1024-bits long. The messages of each 1024-bit block are denoted by M (1), M (2)…M (N). The message blocks are processed one at a time, starting with a fixed initial value H(0), sequentially compute
SHA-512 for generation of message digest.
where C – Compression function.
Figure 2 shows the processing of single 1024-bit block. The message schedule array has eighty 64-bit words. Each 1024-bit block is performed with 80 rounds to generate hash value.
Processing of SHA-512 single 1024-bit block.
Figure 3 shows round function of SHA-512 hash algorithm. The intermediate output is generated which is equivalent to the addition of modulo 2^32 sum of.
SHA-512 round function.
The following quantities are performed logical XOR operation.
Rotation of block towards right by 14 places
Rotation of word towards right by 18 places
Rotation of word towards right by 41 places
The additional quantities are also appended with the eighth word in the block modulo 2^64:
The following quantities are performed with logical XOR operation.
Rotation of the first word in the block towards right by 28 bits
Rotation of word towards right by 34 bits
Rotation of word towards right by 39 bits
Finally, each of the eight words of the block that will ultimately become the hash is moved to the position of the next word in the block, with the first word in the block being replaced by the modified eighth word in the block.
The first step is to perform modified asymmetric encryption using public key. The SHA-512-bit block cipher algorithm is performed to generate hash value. The hash algorithm ensures IP security and data integrity. The process data in cipher text is transmitted across the internet.
This proposed work uses large key size of 4096-bit in the modified asymmetric algorithm and the number of rounds can be varied. It performs data encryption at very high speed. This proposed hybrid cryptographic algorithm achieves higher level of data security. It can be applicable for securing the sensitive plant information in industrial applications. The cipher text is received through the internet. The modified asymmetric decryption is performed using 4096-bits private key at the receiver. The key length is a major factor in securing the sensitive process data. The larger key size ensures that the brute force attack is infeasible. The process data in original numerical form is monitored through the SCADA system.
Table 1 shows the comparison between standard and proposed cryptographic algorithms. As compared to standard algorithms, the large key size as well as block size is generated in the proposed security algorithm. The proposed asymmetric algorithm produces the large key size of 4096-bits that strengthens the security to higher level. The number of rounds used in SHA-512 is 80 for each message block. The size of each message block is 1024-bits long. It achieves high speed of encryption. This proposed algorithm strengthens the level of security. It is suitable for securing highly sensitive plant information in industrial operations.
Table 2 shows the comparison between existing and proposed cryptographic algorithms. The asymmetric algorithm used in the proposed work generates large key size and provides authentication. The hash algorithm is also used which ensures data integrity. The key size of the existing security algorithms is low and the key size is increased in this work. The number of rounds also increased during the process of encryption. This proposed work uses one key for encryption and another key for decryption.
Authors | Algorithm | Key size | Block size | Rounds | Security |
---|---|---|---|---|---|
Vikas K.Soman [2017] | AES, ECDSA, SHA-256 | 128, 256 bits | 128 bits | 10, 12, 14 | Medium Security |
Adviti Chauhan [2017] | Blowfish, MD5 | 32–448 bits | 64 bits | 16 | Medium Security |
M. Harini [2017] | AES, RSA, MD5 | 128, 1024 bits | 128 bits | 10 | Medium Security |
Anushka Gaur [2017] | Blowfish, MD5 | 332–448 bits | 64 bits | 16 | Medium Security |
Prabukanna [2016] | RSA, ECC | 1024 bits, 256 bits | 128 bits | — | Highly Secure |
Proposed Modified Compound Cryptography algorithm | RSA and SHA | 4096-bits and 512-bits | 470 bytes, 1024 bits | 80 | Highly Secure |
Comparison between existing and proposed cryptography algorithms.
Figure 4 shows the transmission of temperature and gas process data in cipher text. The temperature and gas process data is sensed by the sensor and it is transmitted to the embedded system. This process data is encrypted using the embedded system. The hybrid encryption algorithm is proposed which combines the asymmetric encryption and hash algorithm. The encrypted data is transmitted over the internet.
Transmission of process data using embedded system with internet.
Figure 5 shows the reception of process data in cipher text through internet. The decryption is performed using embedded system and the original data in numerical form is monitored through SCADA master terminal unit.
Reception of process data using SCADA system with internet.
This proposed modified compound cryptography algorithm is performed using python. This modified asymmetric algorithm generates large key size of 4096-bit and the modified hash function of 512-bitmessage digest is generated which ensures data integrity over wireless networks. The private key is used only by the receiver to decrypt the process data. The public key is used by the sender to encrypt the process information.
The large key size of 4096-bit private key is generated from the modified asymmetric encryption which strengthens the security of sensitive process data. The private key and public key generated from the proposed modified asymmetric algorithm is given below.
-----BEGIN RSA PRIVATE KEY-----.
MIIEpAIBAAKCAQEAms7TPybmkXuzbEGcfQsBuHu2SigegjXbzlrS94ktXNevH40cpjEGEfUYxX3qoUwJXhTSNb9TnoTRNdL6cgwhdByly07dEM7 + sfK1Jw/lvLjsZQmYuoIWfJJAmNey55rD/oqkFV6wnpG5O97JJEHjCEDqpqbcUoqmbPBBAUsP5yZcvAhKJorhicPajBnN8ZOoYm6pv/1KmVBtNxY/edSKQFUsekbbMvjgkpWcqaBbGsR62NWPErK58jUReJrPYI39u + 97yGEEu3Wm2zOXjAqmTX2 + 6Jb1cXC7lMzdZ/UOQRz9Fw + BdHCIeJRMUktdjdQD4BNq5kub4tTAcqU2h6AyUQIDAQABAoIBAGPd5P0qdTeJG3hM40zvWs7OUAyK0ROi9weqI8q4XeE06q5p8/9qRMY03SQaVNB1It3khK9Tm/f5KpWUYyhLlxE2oeYEHCyJvFjDgAWRBd23VhjgFfzLiwIVv0Jac/lhJ + r/OVbn3PyOeXacBBo1vuZGKpoTrrI465//ZZAWAk5Uukb9h9CzHCiSQofbx68qXMK/bXuiWFFGRWSdOSN53eX3j/gm8 + wvWRwYBnahIhgoLIQd8mVwzSoimg4sQnAenep7y6a + 0znATQNU1boANn2vDyUHtKLIbLBI9fHAycWg3 + nKQAUBTFsxvPSBulAFalfHbSqLGGsuUW+pk1HiCKECgYEAxcXyor8Flys1Gd/lOGJPdsOitnlvecQgTZjKks+Hqfferxketdvb0mG7Hiimmz75QN + 8D6yHR/rl4rlKERTGMqm/5K6C + HQ5qUOHmneyWefRV + gKu1Zt1YcLSSY0Dpbn2LUqW6YHueBjJLPkBM7IyZGNtcn9niQPjda8MvcP32UCgYEAyGKbNrdrP4U8RlJIz6vbyo4F0viQh1ydNY6PgX/038y19dey + mPk8MQh3nZFwvN0rpsSgcOqjSj/1avXETmlGNMhFM2IfR5jnGW0oQMD8nRXfe0qheB2sEeVxlQlITIhP2WAxDOelKff0iq4yJlC5Y0utpzIC5Xq8Rq8RcA4xn0CgYEAiFggHzyr4PyjnhPx1b5I5CqZOU1cocipMHW + ahnygCXm+jXKKzvIPzCrLG5/9ZUjhyr3XqLlnKUG6RguTLpSrUjDhyccGacevWdVzBLq/PpJI15QT7iU/dkc2bAhwVEdwxOagRZkSyu7jekKsJnSaMwUsxfu5aAcrP82Pbh/09UCgYEAtyAGILb2uBIWx10jVUYFktK/19F4o3ur3 + nsk7hQHMaD86uv0MvByZY0LY2Aq2y50We + PgCGuIIjay2jWgaILmuj69L5TP6coa0AqbSLwuM3ock/9yDu1qJU6e60D + Y0JC + qwaM65TeVgAey3v/Q9t9TNWeKGaxkDPsV29iTCjECgYA0cNjdb/ifHRL0QMy3oJJjn3HAFDwbpO1UN0CQ2SoVfob1Cy7byq2NTnfPjHjheeVmLW6e3zMxHfezAJ42y3SNLHH5vVJkauecorZZMnVC8iVla8v0D/Yvti8bkigt4YcQGWSpTE8Trdjfdr6gNOgrvVJrVHWvD4R78ftZS7O + 5A==7fEnw52DyQMSF4U35duRJfs/g3HsNGDyhLlxE2oeBRDGrtKWdgDVR5ghes4xf63jkhueijvzdfhuucTG8jtjdihdbnhnxndflklddVhjgFfzLiwIVv0Jac/lhJ + r/OVbn3PyOeXacBBo1vuZGKpoTrrI465//ZZAWAk5Uukb9h9CzHCiSQofbx68qXMK/bXuiWFFGRWSdOSN53eX3j/gm8 + wvWRwYBnahIhgoLIQd8mVwzSoimg4sQnAenep7y6a + 0znATQNU1boANn2vDyUHtKLIbLBI9fHAycWg3 + nKQAUBTFsxvPSBulAFalfHbSqLGGsuUW+pk1HiCKECgYEAxcXyor8Flys1Gd/lOGJPdsOitnlvecQgTZjKks+Hqfferxketdvb0mG7Hiimmz75QN + 8D6yHR/rl4rlKERTGMqm/5K6C + HQ5qUOHmneyWefRV + gKu1Zt1YcLSSY0Dpbn2LUqW6YHueBjJLPkB7IyZGNtcn9niQPjda8MvcP32UCgYEAyGKbNrdrP4U8RlJIz6vbyo4F0vih1.
ydNY6PgX/038y19dey + mk8MQh3nZFwvN0rpsSgcOqjSj/1avXETmlGDZiAy5w7cvgjhhRTdxujNhj2gbdrrbcsxgnhhsvdDVGgtsrWAxDOelKff0iq4yJlC5Y0utpzIC5Xq8Kvdyij8dpsufjk3etundfDGTyhu4HYVsuiv7MRC4JTNEVthr6JFB8xnfmshJRMC7fklnuihvduhsuihHBGdbvhdn4hjbh9hjbhBVH3Jbvkj4shrh/rTNKJnbuir4bhjsbvBGHH9uhuiHgfsdv/gubSJ5ohybvj8afhvuIBJKugibv.
-----END RSA PRIVATE KEY-----.
-----BEGIN PUBLIC KEY-----.
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAms7TPybmkXuzbEGcfQsBuHu2SigegjXbzlrS94ktXNevH40cpjEGEfUYxX3qoUwJXhTSNb9TnoTRNdL6cgwhdByly07dEM7 + sfK1Jw/lvLjsZQmYuoIWfJJAmNey55rD/oqkFV6wnpG5O97JJEHjCEDqpqbcUoqmbPBBAUsP5yZcvAhKJorhicPajBnN8ZOoYm6pv/1KmVBtNxY/edSKQFUsekbbMvjgkpWcqaBbGsR62NWPErK58jUReJrPYI39u + 97yGEEu3Wm2zOXjAqmTX2 + 6Jb1cXC7lMzdZ/UOQRz9Fw + BdHCIeJRMUktdjdQD4BNq5kub4tTAcqU2h6AyUQIDAQAB.
-----END PUBLIC KEY-----.
The modified hash algorithm of 512-bit message digest is proposed which operates on eight 64-bit words. Each block is considered as sixteen 64-bit words, eighty 64-bit words are produced.
The initial input value to SHA-512 is hexadecimal and is given below.
7D03A66713842D93 1F83D9ABFB41BD6.
3C6EF372FE94F82B A54FF53A5F1D36F1.
5BE0CD19137E2179B05688C2B3E6C1F.
2BF549C5158E2A72510E527FADE682D1.
Each of the eight words in a block becomes the hash which is shifted to the position of the next word in the block. The first word in the block is being replaced by the modified eighth word in the block. The constant words of length 80 used in SHA-512, obtained from the fraction of cube roots of the first eighty primes, which are:
766A0ABB3C77B2A8A831C66D2DB43210240CA1CC77AC9C6E2748774CDF8E5D353380D139D95B3DF4CC5D4BECB3E42B6923F82A4AF194F9B CA273ECEEA26619391C0CB3C5C95A63243185BE4EE4B28C550C7DC3D5FFB4E2983E5152EE66DFAB72BE5D74F27B896F80DEB1FE3B1696B19BDC06A725C71235 C19BF174CF692694C 92722C851482353B6EFBE4786384.
F25E3AB5C0FBCFEC4D3B2 A0FC19DC68B8CD5B00327C898FB213FEAD.
A7DD6CDE0EB165CB0A9DCBD41FB D876F988DA83115312835B01457.
06FBE2DE92C6F592B0275BF597FC7BEEF0EE47137449123EF65CD2J L7C6E00BF33DA88FC2D5A79147930AA72559F111F1B605D019142929670A0E6E703GU281C2C92E47EDAEE62E1B21385C26C92619 A4C116B8D 2D0C8 4D2C6DFC5AC42AE50A73548BAF63DE428A2F98D728AE22E49 B69C19EF14AD227B70A8546D22FFCN6KVC24B8B70D0F89791A4506CEB DE82BDE9C76C51A30654BE308CC702081A6439EC4A7484AA6EA6 E483 5FCB6FAB3AD6FAECA2BFE8A14CF1036 CF40E35855771202E9B5DBA581.
89DBBC3956C25BF348B538F57D4F7FEE6ED178 4B0BCB5E19B48AD807.
AA98A30302426C44198C4A4758174C9EBE0A15C9BEBC90BEFFFA23631 E2597F299CFC657E2AC67178F2E372532B106AA07032BBD1B884C87814.
A1F0AB72C28DB77F523047D841B710B35131C471B78A5636F43172F604 2CAAB7B40C72493D7AB1C5ED5DA6D81181E376C085141AB5D186B8C.
721C0C207 6D192E819D6EF521806F067AA72176FBA0A637DC5A2C898.
A6113F9804BEF90DAE A81A664BBC423001682E6FF3D6B2B8A3BEF9A3.
F7B2C67915431D67C49C100D4C5B9CCA4F7763E373Y4N06CA6351E003.
826F748F82EE5DEFB2FC4ED8AA4AE3418ACB D69906245565A910.
The above hash value changes when the input value applied to the modified hash algorithm is changed. It ensures data integrity during transmission over wireless networks. The combination of modified asymmetric and hash algorithms ensures secure monitoring of plant information and protects the sensitive process data from unauthorized access. It also ensures smooth functioning of plant equipments which deals with data monitoring and control applications. Asymmetric algorithm is complex and it achieves higher level of security than the symmetric algorithm. Hash function provides protection of password and ensures data integrity. It is necessary to propose the security algorithm that ensures end-to-end secure plant operations, low latency and high speed.
This proposed work is the implementation of modified asymmetric and hash algorithms using embedded system with process monitoring through internet. The temperature and gas process data is read through the sensor and encrypted using the embedded system. The strength of the proposed modified asymmetric encryption is it generates large key size of 4096-bit and the 512-bit message digest to ensure confidentiality and integrity. This proposed modified asymmetric algorithm provides authentication and modified hash algorithm provides data integrity as well as Internet Protocol (IP) security. This encrypted data is transmitted across the internet. The cipher text is received through the internet by providing the correct IP address. The decryption algorithm is executed at the embedded system to obtain the plain text. The original process data is monitored through the SCADA master terminal. This proposed work achieves data integrity as well as data confidentiality. It offers low latency and achieves higher efficiency of more than 95 percent in securing the sensitive plant information. It allows secure monitoring of plant information through the SCADA system. This proposed work can be applicable for securing sensitive process information in any industrial applications. It provides the cost-effective solutions in protecting the expensive industrial devices from unauthorized attacks and ensures workers safety.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"6,5"},books:[{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1511,numberOfAuthorsAndEditors:39573,numberOfWosCitations:21767,numberOfCrossrefCitations:11544,numberOfDimensionsCitations:29307,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editedByType:"Edited by",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1511,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9697,totalCrossrefCites:109,totalDimensionsCites:230,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:1995,totalCrossrefCites:79,totalDimensionsCites:180,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8066,totalCrossrefCites:57,totalDimensionsCites:145,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39763,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1706,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"70405",title:"Hemostasis in Cardiac Surgery: How We Do it with Limited Resources",slug:"hemostasis-in-cardiac-surgery-how-we-do-it-with-limited-resources",totalDownloads:2694,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1",fullTitle:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1"},signatures:"Fevzi Sarper Türker",authors:null},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9954,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:6504,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"64858",title:"The Neurobiology of Anorexia Nervosa",slug:"the-neurobiology-of-anorexia-nervosa",totalDownloads:892,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"anorexia-and-bulimia-nervosa",title:"Anorexia and Bulimia Nervosa",fullTitle:"Anorexia and Bulimia Nervosa"},signatures:"Ashley Higgins",authors:null},{id:"63771",title:"The Role of Catheter Reshaping at the Angiographic Success",slug:"the-role-of-catheter-reshaping-at-the-angiographic-success",totalDownloads:536,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"angiography",title:"Angiography",fullTitle:"Angiography"},signatures:"Yakup Balaban",authors:[{id:"252647",title:"Associate Prof.",name:"Yakup",middleName:null,surname:"Balaban",slug:"yakup-balaban",fullName:"Yakup Balaban"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5564,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11790,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]},{id:"64747",title:"Bone Development and Growth",slug:"bone-development-and-growth",totalDownloads:3711,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"osteogenesis-and-bone-regeneration",title:"Osteogenesis and Bone Regeneration",fullTitle:"Osteogenesis and Bone Regeneration"},signatures:"Rosy Setiawati and Paulus Rahardjo",authors:null}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75604",title:"Normal Puerperium",slug:"normal-puerperium",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96348",book:{title:"Midwifery"},signatures:"Subrat Panda, Ananya Das, Arindam Mallik and Surajit Ray Baruah"},{id:"75596",title:"The Use of a Dynamic Elastomeric Fabric Orthotic Intervention in Adolescents and Adults with Scoliosis",slug:"the-use-of-a-dynamic-elastomeric-fabric-orthotic-intervention-in-adolescents-and-adults-with-scolios",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96391",book:{title:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Martin Matthews and James Wynne"},{id:"75582",title:"Elimination of Plasmodium vivax Malaria: Problems and Solutions",slug:"elimination-of-plasmodium-vivax-malaria-problems-and-solutions",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.96604",book:{title:"Current Topics and Emerging Issues in Malaria Elimination"},signatures:"Liwang Cui, Awtum Brashear, Lynette Menezes and John Adams"}],onlineFirstChaptersTotal:652},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/163771/wilfried-elmenreich",hash:"",query:{},params:{id:"163771",slug:"wilfried-elmenreich"},fullPath:"/profiles/163771/wilfried-elmenreich",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()