\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"6387",leadTitle:null,fullTitle:"Polyester - Production, Characterization and Innovative Applications",title:"Polyester",subtitle:"Production, Characterization and Innovative Applications",reviewType:"peer-reviewed",abstract:"Polyester is one of the most important polymers for fibers and composites. Significant developments in nanoparticle-doped polyester composites, polyester recycling, flame-retardant unsaturated polyester resins, and application of polyester for construction and automotive industry are currently carried out. Thus, this book provides leading edge research on improvements of functional properties of polyester, modifications of unsaturated polyester resins, and polyester (especially recycled polyester) usage in construction and in automotive application areas in the form of fiber, resin, and composite. The book also covers the characterization of unique features of polyester found by mechanical, chemical, physical, microstructural, and thermal analyses. This book intends to provide an understanding of the developments of functional polyester production, synthesis, and characterization and support to many academic researchers and graduate students in textile, polymer, composite, chemical science, and research and development managers in recycling and composite applications of polyester in the construction and automotive industry.",isbn:"978-953-51-3882-2",printIsbn:"978-953-51-3881-5",pdfIsbn:"978-953-51-4091-7",doi:"10.5772/intechopen.69941",price:100,priceEur:109,priceUsd:129,slug:"polyester-production-characterization-and-innovative-applications",numberOfPages:98,isOpenForSubmission:!1,isInWos:1,hash:"3a1fd3a0981aecc295467e1d7650c1af",bookSignature:"Nurhan Onar Camlibel",publishedDate:"March 14th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6387.jpg",numberOfDownloads:6290,numberOfWosCitations:4,numberOfCrossrefCitations:9,numberOfDimensionsCitations:15,hasAltmetrics:0,numberOfTotalCitations:28,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 18th 2017",dateEndSecondStepPublish:"August 8th 2017",dateEndThirdStepPublish:"November 4th 2017",dateEndFourthStepPublish:"February 2nd 2018",dateEndFifthStepPublish:"April 3rd 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"198613",title:"Dr.",name:"Nurhan",middleName:null,surname:"Onar Camlibel",slug:"nurhan-onar-camlibel",fullName:"Nurhan Onar Camlibel",profilePictureURL:"https://mts.intechopen.com/storage/users/198613/images/4960_n.jpg",biography:"Assistance Professor Dr. Nurhan Onar Camlibel earned her B.S. (2000) in Textile Engineering from Ege University and MSc (2003) and Ph.D. (2009) degrees in Textile Engineering from Dokuz Eylul University. She is employed at the Department of Textile Engineering, Engineering Faculty, Pamukkale University since 2001. She received the title of Assistance Professor at the Department of Textile Engineering, Engineering Faculty, Pamukkale University in 2011. She teaches graduate and undergraduate level courses in textile chemistry, chemical textile testing, nanotechnological applications in textile, coating and lamination, textile degradation and analysis methods and has main research interests in textile treatments, functional finishing processes, enzymatic applications in textile, sol-gel applications in textile, conductive textiles, fire protective textiles, electromagnetic shielding efficiency of textiles, etc. She has written over 35 scientific publications and one book chapter in the aforementioned areas and co-authored over 50 conference papers and has studied as the management or researcher in national and international projects. She is co-ordinator of Erasmus mobility programme for students.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Pamukkale University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1415",title:"Polymer Chemistry",slug:"polymer-chemistry"}],chapters:[{id:"59228",title:"Introductory Chapter: Introduction to “Polyester – Production, Characterization and Innovative Applications”",doi:"10.5772/intechopen.74422",slug:"introductory-chapter-introduction-to-polyester-production-characterization-and-innovative-applicatio",totalDownloads:916,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Nurhan Onar Camlibel",downloadPdfUrl:"/chapter/pdf-download/59228",previewPdfUrl:"/chapter/pdf-preview/59228",authors:[{id:"198613",title:"Dr.",name:"Nurhan",surname:"Onar Camlibel",slug:"nurhan-onar-camlibel",fullName:"Nurhan Onar Camlibel"}],corrections:null},{id:"58300",title:"PET Bottle Recycling for Sustainable Textiles",doi:"10.5772/intechopen.72589",slug:"pet-bottle-recycling-for-sustainable-textiles",totalDownloads:1648,totalCrossrefCites:6,totalDimensionsCites:8,signatures:"Esin Sarioğlu and Hatice Kübra Kaynak",downloadPdfUrl:"/chapter/pdf-download/58300",previewPdfUrl:"/chapter/pdf-preview/58300",authors:[{id:"117486",title:"Dr.",name:"Hatice Kubra",surname:"Kaynak",slug:"hatice-kubra-kaynak",fullName:"Hatice Kubra Kaynak"},{id:"216179",title:"Dr.",name:"Esin",surname:"Sarıoğlu",slug:"esin-sarioglu",fullName:"Esin Sarıoğlu"}],corrections:null},{id:"58335",title:"Flame-Retardant Unsaturated Polyester Resins: An Overview of Past and Recent Developments",doi:"10.5772/intechopen.72536",slug:"flame-retardant-unsaturated-polyester-resins-an-overview-of-past-and-recent-developments",totalDownloads:1165,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Ewa Kicko-Walczak and Grażyna Rymarz",downloadPdfUrl:"/chapter/pdf-download/58335",previewPdfUrl:"/chapter/pdf-preview/58335",authors:[{id:"221591",title:"Associate Prof.",name:"Ewa",surname:"Kicko-Walczak",slug:"ewa-kicko-walczak",fullName:"Ewa Kicko-Walczak"},{id:"231231",title:"Mr.",name:"Grazyna",surname:"Rymarz",slug:"grazyna-rymarz",fullName:"Grazyna Rymarz"}],corrections:null},{id:"59499",title:"Polyester Usage in Manufacturing of Electrical and Mechanical Products and Assemblies",doi:"10.5772/intechopen.74368",slug:"polyester-usage-in-manufacturing-of-electrical-and-mechanical-products-and-assemblies",totalDownloads:676,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Ahmad Nawaz, Bilal Islam, M. Sadiq Khattak, Liaquat Ali, Umar\nSaleem, Azmat Ullah, M. Zafar Ijaz and Weiguo Mao",downloadPdfUrl:"/chapter/pdf-download/59499",previewPdfUrl:"/chapter/pdf-preview/59499",authors:[{id:"222043",title:"Associate Prof.",name:"Ahmad",surname:"Nawaz",slug:"ahmad-nawaz",fullName:"Ahmad Nawaz"},{id:"238325",title:"Mr.",name:"Bilal",surname:"Islam",slug:"bilal-islam",fullName:"Bilal Islam"},{id:"238326",title:"Dr.",name:"Muhammad",surname:"Sadiq Khattak",slug:"muhammad-sadiq-khattak",fullName:"Muhammad Sadiq Khattak"},{id:"238458",title:"Prof.",name:"Weiguo",surname:"Mao",slug:"weiguo-mao",fullName:"Weiguo Mao"}],corrections:null},{id:"59092",title:"A Case Study: Particulate-Filled Polyester Hybrid Laminated Composites",doi:"10.5772/intechopen.73476",slug:"a-case-study-particulate-filled-polyester-hybrid-laminated-composites",totalDownloads:867,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Muhammad Azeem Munawar, Dirk Wolfram Schubert, Shahzad\nMaqsood Khan, Nafisa Gull, Atif Islam, Muhammad Atiq Ur Rehman\nand Monika M. Voigt",downloadPdfUrl:"/chapter/pdf-download/59092",previewPdfUrl:"/chapter/pdf-preview/59092",authors:[{id:"218680",title:"Mr.",name:"Muhammad Atiq",surname:"Ur Rehman",slug:"muhammad-atiq-ur-rehman",fullName:"Muhammad Atiq Ur Rehman"},{id:"219669",title:"Mr.",name:"Muhammad",surname:"Munawar",slug:"muhammad-munawar",fullName:"Muhammad Munawar"},{id:"220553",title:"Dr.",name:"Shahzad Maqsood",surname:"Khan",slug:"shahzad-maqsood-khan",fullName:"Shahzad Maqsood Khan"},{id:"239463",title:"Prof.",name:"Dirk Wolfram",surname:"Schubert",slug:"dirk-wolfram-schubert",fullName:"Dirk Wolfram Schubert"},{id:"239464",title:"Ms.",name:"Nafisa",surname:"Gull",slug:"nafisa-gull",fullName:"Nafisa Gull"},{id:"239465",title:"Dr.",name:"Atif",surname:"Islam",slug:"atif-islam",fullName:"Atif Islam"},{id:"239466",title:"Dr.",name:"Monika M",surname:"Voigt",slug:"monika-m-voigt",fullName:"Monika M Voigt"}],corrections:null},{id:"59208",title:"Polyester Usage for Automotive Applications",doi:"10.5772/intechopen.74206",slug:"polyester-usage-for-automotive-applications",totalDownloads:1018,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Canan Saricam and Nazan Okur",downloadPdfUrl:"/chapter/pdf-download/59208",previewPdfUrl:"/chapter/pdf-preview/59208",authors:[{id:"217470",title:"Associate Prof.",name:"Canan",surname:"Saricam",slug:"canan-saricam",fullName:"Canan Saricam"},{id:"232183",title:"Dr.",name:"Nazan",surname:"Okur",slug:"nazan-okur",fullName:"Nazan Okur"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7750",title:"Acrylate Polymers for Advanced Applications",subtitle:null,isOpenForSubmission:!1,hash:"de343721338b474b64fae0339e85b4a7",slug:"acrylate-polymers-for-advanced-applications",bookSignature:"Ángel Serrano-Aroca and Sanjukta Deb",coverURL:"https://cdn.intechopen.com/books/images_new/7750.jpg",editedByType:"Edited by",editors:[{id:"202230",title:"Prof.",name:"Ángel",surname:"Serrano-Aroca",slug:"angel-serrano-aroca",fullName:"Ángel Serrano-Aroca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8357",title:"Organic Polymers",subtitle:null,isOpenForSubmission:!1,hash:"ff2ffd663fed5810f0d78bf8487ade97",slug:"organic-polymers",bookSignature:"Arpit Sand and Elsayed Zaki",coverURL:"https://cdn.intechopen.com/books/images_new/8357.jpg",editedByType:"Edited by",editors:[{id:"202274",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9319",title:"Thermosoftening Plastics",subtitle:null,isOpenForSubmission:!1,hash:"02c4a3b7dcd88ffbe6adcdc060c2465b",slug:"thermosoftening-plastics",bookSignature:"Gülşen Akın Evingür, Önder Pekcan and Dimitris S. Achilias",coverURL:"https://cdn.intechopen.com/books/images_new/9319.jpg",editedByType:"Edited by",editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7363",title:"Cellulose",subtitle:null,isOpenForSubmission:!1,hash:"ed333d89928591f1a4b2710130fddee3",slug:"cellulose",bookSignature:"Alejandro Rodríguez Pascual and María E. Eugenio Martín",coverURL:"https://cdn.intechopen.com/books/images_new/7363.jpg",editedByType:"Edited by",editors:[{id:"141654",title:"Dr.",name:"Alejandro",surname:"Rodríguez Pascual",slug:"alejandro-rodriguez-pascual",fullName:"Alejandro Rodríguez Pascual"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7479",title:"Plastics in the Environment",subtitle:null,isOpenForSubmission:!1,hash:"48f6da13cb26718adde3c690bb6fd924",slug:"plastics-in-the-environment",bookSignature:"Alessio Gomiero",coverURL:"https://cdn.intechopen.com/books/images_new/7479.jpg",editedByType:"Edited by",editors:[{id:"217030",title:"Ph.D.",name:"Alessio",surname:"Gomiero",slug:"alessio-gomiero",fullName:"Alessio Gomiero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8807",leadTitle:null,title:"Organic Synthesis",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOrganic synthesis has always been one of the central topics of research for the scientific community in the academic laboratories and industrial world. Many striking journal articles and remarkable reviews and books have been published in the past year describing the practicability and applications of the subject demonstrating the importance of organic synthesis. In the present book, we will be putting together the topics in organic synthesis which may include but not limited to, (1) the basic terms and concepts, (2) various organic reactions including reduction, oxidation, addition, elimination, rearrangements, and cycloadditions, (3) Total Synthesis of Natural products, (4) transition metal catalysts, organocatalysts, enzymes and biotransformations, (5) applications in medicinal chemistry and drug design and development, (6) purification methods and characterization techniques, etc. To set a limit and to increase the scope of the book, author(s) are encouraged to send the chapters that include selected examples with practical applications and good yielding reactions reported within the past decade. Older topics with significant findings or their essence to prepare the foundation may be included in the chapter are welcomed as well.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f3bbbd989d0896f142d317ccb8abcc35",bookSignature:"Dr. Prashant S Deore",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8807.jpg",keywords:"Natural Product Synthesis, Organic Reaction Mechanism, Stereoselective synthesis, Chirality, C-H Functionalization, Cross-Coupling Reactions, Heterogeneous Catalysis, Homogeneous Catalysis, Green Synthesis, Green Solvents and Reagents, Bioorganic synthesis, Click Chemistry",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 10th 2018",dateEndSecondStepPublish:"January 14th 2019",dateEndThirdStepPublish:"March 15th 2019",dateEndFourthStepPublish:"May 20th 2019",dateEndFifthStepPublish:"July 19th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251769",title:"Dr.",name:"Prashant",middleName:"S",surname:"Deore",slug:"prashant-deore",fullName:"Prashant Deore",profilePictureURL:"https://mts.intechopen.com/storage/users/251769/images/system/251769.png",biography:"Dr. Prashant S. Deore was born in India. He received a Master’s degree in organic chemistry from Pune University in 2007. In the same year, he qualified with the SET and CSIR-NET (JRF) and joined in the group of Prof. Narshinha P. Argade for the doctoral studies in National Chemical Laboratory, India. In 2014, he awarded with a Ph. D. in Chemistry and was a recipient of the 2nd prize in “2014 Eli Lilly and Company Asia Outstanding Thesis Awards”. In July 2014 he moved to Canada and joined as a postdoctoral researcher in the group of Prof. Richard Manderville at the University of Guelph, Canada. Presently, Dr. Deore is working on the collaborative project between the University of Guelph and Aterica health Inc., and providing consulting to the company. His research interest includes organic synthesis, fluorescent probes development, nucleic acid synthesis and modifications, and aptasensor development for proteins and food toxins.",institutionString:"University of Guelph",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270935",firstName:"Rozmari",lastName:"Marijan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270935/images/7974_n.png",email:"rozmari@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67172",title:"Electron Donor-Acceptor Organic Polymers by “Click” Type Cycloaddition/Retroelectrocyclization Reaction",doi:"10.5772/intechopen.85775",slug:"electron-donor-acceptor-organic-polymers-by-click-type-cycloaddition-retroelectrocyclization-reactio",body:'The “click” chemistries such as Diels-Alder cycloaddition, Cu-catalyzed azide/alkyne cycloaddition (CuAAC), and thiol-ene reaction have revolutionized the polymer science over the past two decades and have become an indispensable tool in synthesizing new polymers or incorporating new functionality into macromolecules [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In recent years, a new “click” chemistry of cycloaddition/retroelectrocyclization reaction has gained momentum in both organic synthesis and polymer synthesis. The “click” type cycloaddition/retroelectrocyclization reaction was first discovered by Bruce et al. [11] for the synthesis of metal acetylides in the 1980s. The first step of cycloaddition/retroelectrocyclization reaction involves the reaction of electron-rich alkynes activated by strong electron-donating groups (EDGs) with a strong electron-accepting cyanoolefinic molecule via a [2+2] cycloaddition to form the cyclobutene rings, and in the subsequent step, these cyclobutene rings are spontaneously opened to produce the donor-acceptor type chromophores in quantitative yields under mild conditions [12]. The currently available electron-donating groups for almost quantitative yields include aromatic amines [13, 14, 15, 16], ferrocene [17, 18], azulene, and organometallic derivatives [19, 20]. Examples of electron-accepting cyanoolefinic molecules are tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its derivatives [21, 22, 23, 24], as well as dicyanovinyl and tricyanovinyl derivatives [25, 26]. Among these electron-accepting molecules, TCNE is one of the strongest organic electron acceptors, and its high chemical reactivity toward nucleophiles or electron-rich reagents is frequently used to introduce strong acceptor moieties, for example, 1,1,4,4-tetracyanobuta-1,3-diene (TCBD), into organic molecules [27, 28]. The cycloaddition/retroelectrocyclization reaction mechanism between TCNE and electron-rich alkynes activated by an electron-donating group (EDG) is illustrated in Figure 1. By leveraging the same chemistry, TCNQ can also react with electron-donating group substituted alkynes to exclusively yield the thermodynamically stable Z-isomer, as demonstrated in Figure 2 [29].
Cycloaddition/retroelectrocyclization reaction mechanism between tetracyanoethylene and electron-rich alkynes activated by an electron-donating group (EDG).
Cycloaddition/retroelectrocyclization reaction mechanism between 7,7,8,8-tetracyanoquinodimethane and electron-rich alkynes activated by an electron-donating group (EDG).
Over the past decade, this “click” chemistry of cycloaddition/retroelectrocyclization reaction has been extensively used to synthesize electron donor-acceptor type organic molecules or dendrimers, which exhibit many interesting electrical, electrochemical, or nonlinear optical properties [30, 31, 32, 33]. Very recently, this synthetic protocol has been generalized into macromolecular systems through step-growth polymerization or postfunctionalization due to the high reactivity of this reaction [12]. In particular, most of these polymers were realized by the postfunctionalization reaction of precursor polymers containing activated alkynes with TCNE or TCNQ. These electron donor-acceptor polymers can be classified into two major categories, namely, main chain and side chain, depending on the location of electron donor-acceptor chromophores in the macromolecular chain. For main-chain electron donor-acceptor conjugated polymers, the precursor polyyne polymers often contain electron-donating moieties such as ferrocene [34], carbazole [35], thiophene [36], and metal acetylide [37]. However, only partial adduction of TCNE or TCNQ occurred, which was attributed to the low electron-donating property of electron donors as well as the high steric hindrance in the main chain [38]. To address this challenge, Huang [38] synthesized a poly(arylene ethynylene) having dialkylanilino groups in the para-position relative to the ethynyl groups, which possess the strongest electron-donating effect on alkynes and thus enable the complete reaction of all alkynes in the main chain with TCNE to afford alternating electron donor-acceptor main-chain polymers. On the other hand, main-chain donor-acceptor nonconjugated polymers often involve a TCNQ-containing molecule and an aniline-activated alkyne molecule by cycloaddition/retroelectrocyclization reaction [39]. Furthermore, side-chain electron donor-acceptor polymers were generally synthesized from precursor polymers bearing dialkylaniline-substituted alkyne side chains [40, 41]. In contrast to main-chain alkynes, side-chain alkynes showed reactivity as high as the corresponding small molecules, probably due to the lowered steric hindrance [40]. Thus, the full TCNE (or TCNQ) addition to the polymer side chains could be achieved.
One of the striking features of cycloaddition/retroelectrocyclization reaction is that it does not involve any metal catalysts, and this reaction typically proceeds rapidly under mild conditions with very good yields [28]. Furthermore, the resulting molecular structure shows not only tunable redox activities in both the cathodic and anodic directions but also strong charge-transfer bands in the visible absorption region [39]. The TCNQ adducts exhibited a more bathochromically shifted absorption (usually a green color) as compared to the counter TCNE adducts (usually a red color) because of the extended π-conjugation [39, 42, 43]. The characteristics of click chemistry meet all the prerequisites required by the polymer synthesis. A very high yield of cycloaddition/retroelectrocyclization reaction is one of the essential parameters to obtain high-molecular-weight polymers by the step-growth polymerization [42]. In addition, a lack of side products for cycloaddition/retroelectrocyclization reaction is desirable. Generally, the synthesis of small molecules can be purified by distillation or chromatography techniques. Unfortunately, it is rather difficult to separate undesired subunits from polymers caused by side reactions. These donor-acceptor polymers display an enhanced thermal stability compared with the precursor polymer, which was attributed to the reinforced intermolecular interactions caused by the cyano groups [38].
The low bandgap energy of π-conjugated polymers is vital for their applications in many emerging areas such as organic photovoltaic devices, light-emitting diodes, and nonlinear optical devices [41]. The bandgap energy (Eg) of π-conjugated polymers may be defined by Eg = ELUMO − EHOMO [44, 45], in which EHOMO is the highest occupied molecular orbital (HOMO) energy and ELUMO is the lowest unoccupied molecular orbital (LUMO) energy. Eg can be effectively reduced by enhancing the strength of electron donors and/or acceptors through the intramolecular charge-transfer interactions. As a result, the EHOMO level of the donor and the ELUMO level of the acceptor are closer than those in pristine systems, leading to narrower Eg [41]. In order to achieve a lower Eg of conjugated polymers, the strength of both electron-donating and electron-accepting units must be further improved, which can be accomplished by employing stronger electron-donating groups like dialkylamine on the donor to raise the EHOMO as well as stronger electron-withdrawing groups such as –CN group on the acceptor to reduce the ELUMO [44, 45].
Furthermore, another important application of electron donor-acceptor polymers synthesized by cycloaddition/retroelectrocyclization reaction is for the use as colorimetric ion sensors, although their detection limits are usually inferior to those of fluorescent ion sensors. The nonplanar donor-acceptor chromophores in these polymers displayed the selective recognition of certain ions such as Fe3+, Fe2+, Sn2+, and Ag+ ions for the TCNE adducts and Fe3+, Cu2+, Ti4+, Sc3+, and Ag+ ions for the TCNQ adducts [46, 47]. The recognition usually occurs at the aniline nitrogen, resulting in a decrease in the charge-transfer bands accompanied by visual color changes.
This chapter aims to provide an overview of the state-of-the-art development of electron donor-acceptor organic polymers synthesized by the “click” type cycloaddition/retroelectrocyclization reaction, thereby elaborating on the synthetic approaches for both main-chain and side-chain polymers as well as their applications.
Over the past decade, a wide variety of functional polymers have been synthesized by cycloaddition/retroelectrocyclization reaction [48]. Among the synthetic protocols, postfunctionalization of precursor polymers bearing electron-rich alkynes with a strong electron acceptor is the most extensively employed technique for preparing electron donor-acceptor polymers because of the high reactivity and high yield of cycloaddition/retroelectrocyclization reaction [12].
Low bandgaps of conjugated polymers are highly preferred for many important applications such as solar cells, light-emitting diodes, field-effect transistors, and supercapacitors [49, 50, 51, 52, 53]. The bandgap energy of conjugated polymers can be effectively reduced by introducing electron donor-acceptor chromophores into these polymers, primarily arising from the intramolecular charge-transfer interactions between electron donor and acceptor [44, 45]. TCNE and TCNQ are among the strongest electron acceptors [54], but they are sparsely employed for synthesizing donor-acceptor type conjugated polymers. The underlying reason lies in the difficulty in synthesizing TCNE or TCNQ derivatives that are suitable for polymerization. In addition, many conventional approaches for synthesizing conjugated polymers, especially those involved with the use of metal ion catalysts (e.g., palladium or nickel), are not appropriate for the use in synthesizing polymers having TCNE or TCNQ derivatives, because these TCNE or TCNQ derivatives would always form strong complexes with these metal ion catalysts leading to the reduction in their catalytic performance [55]. As a result, electron donor-acceptor conjugated polymers involving TCNE and TCNQ must be done by the postfunctionalization approach.
The postfunctionalization approach was first explored by Michinobu for ferrocene-containing poly(aryleneethynylene)s [34]. Slow heating to 120°C for 3 h was required to facilitate the cycloaddition/retroelectrocyclization reaction between ferrocene-containing poly(aryleneethynylene)s and TCNE, and the completion of reaction was evidenced by the color change of the reaction solution from orange to green. However, only partial adduction of TCNE occurred, for example, the TCNE addition amounted to 0.75 and 0.62 for P1 and P2, respectively. This was attributed to the decreased electron-donating power of the ferrocene donor substituted by the TCBD acceptor as well as the high steric hindrance in the main chain. The excess of TCNE did not cause any undesired side reactions and was removed by sublimation or reprecipitation. Both P1 and P2 featured well-defined intramolecular charge-transfer absorption bands and redox activities in both anodic and cathodic directions.
Furthermore, carbazole was selected as an electron-donating group, and the corresponding poly(arylenebutadiynylene)s were prepared by the acetylenic oxidative polymerization [56]. The substitution pattern of carbazole had a significant influence in the efficiency of the cycloaddition/retroelectrocyclization reaction. For example, 3,6-carbazole-based poly(arylenebutadiynylene) was successfully converted into the donor-acceptor type conjugated polymer, whereas the 2,7-carbazole-based counterpart polymer did not react with TCNE due to the insufficient activation of alkyne moieties. Upon the optimization of reaction conditions, 0.75–0.8 equiv. of TCNE was successfully reacted with main-chain alkynes of 3,6-carbazole-based poly(arylenebutadiynylene), resulting in the donor-acceptor conjugated polymer, P3. This conjugated polymer showed strong intramolecular charge-transfer interactions as well as higher thermal stability having a thermal degradation temperature above 350°C.
Thiophene is another important electron-donating moiety, and it has been incorporated into poly(thienyleneethynylene) by the Sonogashira polycondensation of 2-bromo-5-ethynyl-3-hexylthiophene [36, 56]. TCNE and TCNQ were employed to react with poly(thienyleneethynylene) in the presence of microwave irradiation to afford P4 and P5, respectively. These two donor-acceptor conjugated polymers displayed an enhanced thermal stability as compared with the precursor polymer, arising from the reinforced intermolecular interactions caused by the cyano groups. UV-Vis-NIR spectroscopy revealed charge-transfer bands in the low-energy region, while electrochemistry confirmed the narrower bandgaps with the elevated HOMO and lower LUMO levels relative to the precursor polymer. After doping, these polymers showed room temperature conductivities of as high as 4.5 × 10−5 S/cm, which was about ten times greater than that of the precursor polymer.
Ohshita et al. [57] reported the reaction of poly(disilanyleneethynyleneoligothienyleneethynylene)s with TCNE to yield new donor-acceptor type organosilicon polymers (P6) bearing oligothienylene and tetracyanobutadienylene units as the donor and acceptor units, respectively. These polymers exhibited red-shifted absorption bands at λmax = 513–565 nm in UV-Vis spectrum, whose edges reached approximately 800 nm, indicative of the strong charge-transfer interaction between electron donor and acceptor in the macromolecular backbone. These polymers also displayed solvatochromic behaviors. Specifically, the UV-Vis absorption maxima moved to the longer wavelengths with increasing solvent polarity. P6 was photoactive because irradiation of TiO2 electrodes in the polymer solutions resulted in the attachment of the polymer onto the TiO2 surface via the formation of Si▬O▬Ti anchor bonds.
The cycloaddition/retroelectrocyclization reaction was first demonstrated in metal acetylide compounds [11], and thus metal-polyyne polymers may also be good candidates for the cycloaddition/retroelectrocyclization postfunctionalization to synthesize metal-containing donor-acceptor conjugated polymers. Yuan and Michinobu [37] synthesized a main-chain thiophene-based platinum-polyyne conjugated polymer, which was further reacted with TCNE to yield electron donor-acceptor polymer P7. The use of the thiophene and platinum (II) donors in the precursor polymer efficiently improved the reactivity of main-chain alkynes. As a result, P7 was obtained under mild heating at 70°C. Moreover, this thiophene-based platinum (II)-polyyne precursor polymer was explored to react with TCNQ to afford P8. P8 displayed stronger electron-accepting feature than P7, as revealed by the more bathochromically shifted charge-transfer band and the lower first reduction potential. In order to enhance the electron-withdrawing property of electron donor-acceptor polymers, diketopyrrolopyrrole and benzothiadiazole were incorporated into P9 and P10, respectively [58]. The LUMO levels decreased significantly to about −4.2 to −4.5 eV after postfunctionalization with TCNE.
Huang [38] reported a facile synthetic route for synthesizing a main-chain donor-acceptor type polymer containing strong electron-donating dialkylamino groups and strong electron-accepting 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) units. The precursor polymer has a dialkylanilino group in the para-position on each main-chain alkyne, affording the strongest electron-donating effect for promoting the highest reactivity between TCNE and main-chain alkynes [36]. This molecular design overcomes difficulty in successfully implementing the postfunctionalization of main-chain ethynyl groups along the macromolecular chain in a complete manner. Specifically, an electron-donating monomer 4,6-diethynyl-N,N,N,N-tetrahexylbenzene-1,3-diamine was successfully synthesized by converting two carbaldehyde groups in the corresponding monomer into acetylene groups using lithium trimethylsilyldiazomethane via a Colvin rearrangement. This electron-donating monomer was then polymerized with a carbonyl-activated diiodide monomer to afford an electron-donating π-conjugated precursor polymer with a reasonably high molecular weight, which was further reacted with TCNE via cycloaddition/retroelectrocyclization reaction under mild conditions to afford the target polymer (P11). P11 shows a very low bandgap energy (
Washio and Michinobu et al. [39] reported postfunctionalization of TCNQ-containing polyester by cycloaddition/retroelectrocyclization reaction with a small-molecule aniline-activated alkyne to yield a polyester containing electron donor-acceptor chromophores (P12). P12 possessed the colorimetric chemosensor ability, as evidenced by well-defined color changes of the charge-transfer band) due to the recognition of Ag+ and Fe3+ ions. In contrast, the precursor TCNQ-containing polyester did not show any spectral changes upon the addition of Ag+ and Fe3+ ions. Specifically, the Ag+ ion was recognized by the cyano nitrogen atoms as a result of the effective multivalent coordination, leading to a bathochromic shift in the charge-transfer band. On the other hand, the Fe3+ ion was recognized by the aniline nitrogen atoms, as evidenced by the disappearance of the charge-transfer band.
By using a similar method to the synthesis of P12, polymeric electro-optic materials (P13) were synthesized by simple heating of a mixed thin film of TCNQ-containing polyester and an aniline-activated dialkyne molecule to 140°C under electric poling [59]. A thermal addition reaction between electron-rich alkynes and TCNQ moieties enabled the formation of donor-acceptor chromophores as well as cross-linking networks throughout the polymer film to effectively fix the dipolar orientation induced by electrical poling. It took about 13 h to complete the reaction, and the electro-optic coefficient (deff) showed the maximum value of 0.609 pm/V after 2.5 h.
Washino and Michinobu [42] described the polyaddition polymerization between electron-rich alkynes and a TCNQ-containing molecule to yield electron donor-acceptor non-conjugated polymers (P14). The electron-donating monomer possesses two dialkylaniline-substituted alkynes, while the electron-accepting monomer contains two TCNQ moieties. The aforementioned two monomers were then reacted in 1,2-dichloroethane under mild heating conditions to produce the desired linear polymers with high molecular weights. It was reported that high molecular weight polymers were preferentially formed at high monomer concentrations; however, cyclic compounds dominated when the monomer concentration was low. In both cases, the degree of reaction could be readily monitored by observing the shift of the charge-transfer band in UV-Vis spectra. The presence of terminal groups in the polymers were determined by the cyclic voltammetry, demonstrating the linear polymer structures of P14. P14 showed an excellent thermal stability with the decomposition temperature exceeding 300°C. It also exhibited strong charge-transfer bands and redox activities due to the produced donor-acceptor moieties.
Furthermore, Washino and Michinobu [60] synthesized sequence-regulated linear polymers by multiple click chemistry reactions, which could include cycloaddition/retroelectrocyclization reaction along with other click chemistry reactions such as copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and Diels-Alder cycloaddition to create electron donor-acceptor polymers. The orthogonality with CuAAC was explored by investigating the reaction orders. It was only possible to complete the metal-free double click reactions in the order of the Diels-Alder cycloaddition followed by the alkyne-TCNQ addition. The resulting donor-acceptor chromophores in P15 gave rise to optical metal ion sensing, a colorimetric chemosensor behavior toward the Ag+ ion and electrochemical properties.
In contrast to main-chain alkynes, side-chain alkynes showed a reactivity as high as the corresponding small molecules, probably due to the lowered steric hindrance. Thus, the full TCNE addition to the polymer side chains could be achieved. Since click postfunctionalization does not require any tedious purification process, such as column chromatography and reprecipitation, a series of side-chain electron donor-acceptor polymers have been synthesized by this approach [40, 41, 61].
Michinobu [40] first synthesized a precursor polyamine bearing the electron-rich alkynes in the side chain, which was subsequently reacted with TCNE and TCNQ to give side-chain electron donor-acceptor conjugated polymers, P16 and P17, respectively [62]. The successful addition of TCNE or TCNQ to the precursor polyamine was confirmed by the matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectra and the absence of the acetylene peak signals in the 13C NMR spectrum. The π-conjugation length of P16 and P17 was enhanced in the presence of electron-accepting moieties, thus leading to red shifts in their absorption spectra and significant reduction in their bandgaps. As the TCNE or TCNQ addition increased, both glass transition temperature and thermal decomposition temperature of the polyamines gradually increased. For example, the increment in the glass transition temperature was 27°C, while the increase in the thermal degradation temperature was 118°C for P16. These authors successfully fabricated thin film transistors based on P16 and P17 and established a clear correlation between the polymer energy levels and hole mobilities [63]. By using a similar strategy, a triphenylamine-based conjugated polymer (P18) with cyano-containing chromophore in the side chain was synthesized and used for probing Hg2+ ion. Specifically, fluorescence of P18 solution in tetrahydrofuran was specifically quenched by the introduction of I−, accompanied by the change of its apparent color from pale brown to light yellow. In the presence of Hg2+ ion, the fluorescence of P18/I− complex recovered very quickly and even exceeded the initial intensity of pristine P18 [64].
The click postfunctionalization of side-chain donor-acceptor conjugated polymers has been leveraged to other conjugated polymer systems, such as polythiophene, poly(p-phenyleneethynylene), and poly(phenylacetylene) derivatives. Yuan et al. [61] reported the synthesis of a polythiophene electron donor-acceptor polymer P19. The reaction started from the highly region-regular poly(3-hexylthiophene) prepared by the Grignard metathesis polymerization, bromination at the 4-position of the thiophene ring, and Stille coupling reaction, to TCNE addition to the side-chain alkynes. Chemical and electrochemical n-doping of the TCBD moieties of P19 resulted in the formation of poly(radical anion)s and poly(dianion)s. The temperature-dependent magnetic measurements were used to characterize the high spin state of the poly(radical anion)s, because regioregular polythiophene is classified as a non-Kekule and non-disjoint connectivity [61]. Furthermore, a regio-irregular polythiophene derivative with dialkylanilino-substituted alkyne side chains was synthesized by the Suzuki polycondensation, and then it was reacted with TCNE and TCNQ to afford P20 and P21, respectively [65]. The study on the poly(phenylacetylene)-based electron donor-acceptor polymers (P22) indicated that the click postfunctionalization had a significant impact on the intermolecular interactions [29, 66]. Upon the completion of cycloaddition/retroelectrocyclization click postfunctionalization of the precursor polymer with TCNE, the film morphology changed from an unstructured homogeneous surface to fibrous nanostructures. As a result, the diffusion coefficients of O2 and N2 were dramatically reduced, which was attributed to the decrease in the void spaces. Wang et al. [67] synthesized a series of poly(p-phenylenebutadiynylene) electron donor-acceptor polymers (P23), which were prepared by homocoupling polymerization of asymmetric bifunctional monomers, followed by the “click” chemistry with TCNE to introduce donor-acceptor chromophores in the side chain. The energy level and bandgap could be precisely controlled by the addition of acceptor molecules, as evidenced by the optical and electrochemical characterizations.
Huang and Chen [41] developed an effective approach to synthesizing a low bandgap poly(arylene ethynylene) (P24) having donor-acceptor type chromophores in both side chains. Specifically, a diacetylene monomer and a carbonyl-activated diiodide monomer were synthesized and then polymerized by palladium-catalyzed cross-coupling reaction to afford a π-conjugated precursor polymer, which has approximately 50 repeat units of alternating arylene and ethynylene. The dioctylanilino-activated alkynes in the side chains of the precursor polymer were able to selectively react with TCNE by click-type [2+2] cycloadditions and the subsequent retroelectrocyclization to form the donor-acceptor type chromophores. The deactivated alkynes in the main chain of the precursor polymer remained intact so that the unique features of poly(arylene ethynylene)s such as excellent thermal stability and photostability could be kept in the target polymer. This unique polymer exhibited strong intramolecular charge-transfer interactions as evidenced by UV-Vis spectroscopy and cyclic voltagrammetry. As a result, P24 has a low bandgap energy (Egopt = 1.59 eV and EgCV = 1.35 eV) and enhanced thermal stability.
Polystyrene-based polymers bearing dialkylanilino-substituted alkynes in the side chain are an important family of precursors for synthesizing electron donor-acceptor nonconjugated polymers by cycloaddition/retroelectrocyclization reaction. The “click” type reaction of TCNE and TCNQ with these polystyrene-based precursors afforded the corresponding new materials (P25 and P26) bearing electron donor-acceptor moiety in the side chain [46, 47]. Both P25 and P26 displayed well-defined charge-transfer bands in the visible region at ca. 480 and 730 nm, respectively, which enabled the visual detection of analytes. Specifically, P25 selectively detected Fe3+, Sn2+, and Fe2+ ions, while P26 preferred Fe3+, Sc3+, Ti4+, and Cu2+ ions. The decrease in the charge-transfer band in the visible–near-infrared region was a result of the recognition of these metal ions by anilino nitrogen atoms in the side chain of P25 and P26, and thus discoloration was a sign for visual recognition. On the other hand, only the Ag+ ion could interact with the cyano groups in the side chains of polymers through the multivalent coordination. As a result of this interaction, a bathochromic shift occurred in the charge-transfer bands, leading to the change of the visual colors.
The orthogonal reactivity is one of the key features of click reactions. In order to illustrate the orthogonal reactivity of the cycloaddition/retroelectrocyclization reaction, double click postfunctionalization of poly(4-azidomethylstyrene) was conducted by CuAAC, followed by a cycloaddition/retroelectrocyclization reaction with TCNE or TCNQ to yield polymers, P27 and P28, respectively [64, 68, 69, 70, 71, 72]. It should be noted that both click reactions proceeded rapidly without any side reactions, and carrying out the reactions in the reverse order also gave the same products. Upon the completion of electric poling, the second-order nonlinear optical responses of the polymer films were observed. Furthermore, all these polystyrene-based electron donor-acceptor nonconjugated polymers exhibited very specific colorimetric ion sensing behaviors [73, 74, 75, 76]. The hard basic aniline nitrogen atoms preferred to interact with hard acidic metal ions like Fe3+, leading to the decrease in the charge-transfer absorption band and thereby resulting in decolorization. On the other hand, soft basic cyano nitrogen atoms selectively captured the soft acidic Ag+ metal ion, which caused a bathochromic shift of the charge-transfer band wavelength, thus leading to well-defined color changes. Nevertheless, the recognition of Ag+ ions by the cyano groups was not possible for the corresponding monomeric electron donor-acceptor molecule, which was attributed to the fact that multiple cyano coordinations were essential for the selective recognition of the Ag+ ions.
Atom transfer radical polymerization (ATRP) of N,N-didodecyl-4-[(4-vinylphenyl)ethynyl]aniline was conducted with bromine-terminated polystyrene to synthesize block copolymers composed of unsubstituted polystyrene and electron-rich alkyne functionalized polystyrene segments. These block copolymers were then reacted with TCNE to introduce electron donor-acceptor chromophores into the side chains of polymers to produce TCNE-adducted polymers (P29). P29 exhibited intense charge-transfer bands, well-defined redox activities, and good thermal stability. In addition, polymer thin films based on P29 were prepared by spin coating on a glass slide. The second harmonic generation (SHG) of these thin films was measured before and after electric poling. The results showed that the SHG coefficient (d33) of the poled thin film was as high as 3.0 pm/V [70].
Fujita et al. reported the synthesis of a block copolymer (P30) by combining living polymerization techniques and cycloaddition/retroelectrocyclization reaction [77, 78]. This block copolymer contains a poly(3-hexylthiophene) block and a polystyrene block with an electron donor-acceptor chromophore. P30 was used as an interfacial compatibilizer for P3HT/PCBM (herein, P3HT = poly(3-hexylthiophene), and PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction organic photovoltaic cells in order to facilitate the nanophase separation of each semiconducting domain. The TCBD moiety in polystyrene block of P30 had higher affinity to the n-type semiconducting domain, while poly(3-hexylthiophene) block in P30 had good compatibility with poly(3-hexylthiophene) p-type polymer. Under the optimized blend ratio of the block copolymer, the power conversion efficiency was enhanced, which was attributed to the increased short-circuit current and fill factor. Also, the crystallinity of poly(3-hexylthiophene) polymer was improved upon the addition of P30. The efficient compatibilizing performance of P30 at the interface of P3HT/PCBM enlarged and fixed the interfacial area and in turn suppressed the recombination of the generated carriers.
The combination of cycloaddition/retroelectrocyclization “click” chemistry and specific Ag+ ion recognition was later leveraged to create multicolored polyurethanes [79]. Specifically, a colorless polyurethane derivative having electron-rich alkynes substituted by dialkylaniline donors at both sides was synthesized by polyaddition between a diol monomer and tolylene-2,4-diisocyanate. The side-chain alkynes in the precursor polyurethane were then reacted with TCNE and TCNQ to yield orange-colored and green-colored polymers, P31 and P32, respectively. P31 and P32 exhibited the intramolecular charge-transfer bands centered at 476 nm and 698 nm in CH2Cl2, respectively. After complexation of Ag+ ion with cyano groups in the side chains of P31 and P32, the colors of the postfunctionalized polyurethanes were further changed. This was related to the change of the strengths of the intramolecular donor-acceptor interactions. For example, the solution color of P31 changed to magenta and that of P32 to a yellowish-green upon the Ag+ ion addition. Furthermore, the electrochemical oxidation of the precursor polyurethane at >+ 0.25 V (versus Ag/AgCl in MeCN) gave a blue polymer. This color change was attributed to the formation of aromatic amine-based radical cations.
This chapter gives an overview of electron donor-acceptor organic polymers synthesized by the “click” type cycloaddition/retroelectrocyclization reaction between electron donor-activated alkynes and olefinic acceptors such as TCNE and TCNQ. This “click” chemistry has many unique characteristics including high yields, short reaction times, and without the need for a catalyst or even a solvent. The salient features of the resulting electron donor-acceptor polymers encompass strong intramolecular charger-transfer interactions with tunable electronic absorptions that extend into the near-infrared region, active redox behavior, potent electron acceptor characteristics, high third-order nonlinear optical properties, high thermal stability, good solubility, and sublimation without decomposition, thereby enabling the preparation of thin films by vapor deposition. These electron donor-acceptor moieties have been integrated into the main chain or the side chain of polymers. In particular, the narrower bandgap and unique electrochemical properties of the resulting electron donor-acceptor conjugated polymers showed great potential in various applications such as nonlinear optical devices, organic photovoltaic devices, and light-emitting diodes.
This “click” chemistry was also effective for the synthesis of functional polymers with beautiful colors and successfully furnished the ion sensing abilities by the nonplanar donor-acceptor chromophores. Chemosensors are mainly classified as colorimetric and fluorometric sensors. However, chemosensors with a dual detection ability are very rare. Nonconjugated polymers bearing side-chain electron donor-acceptor chromophores composed of dialkylanilino donor and cyano-based acceptor groups have demonstrated the dual colorimetric detection behavior of several metal ions based on the specific interactions with different nitrogen atoms. Hard to borderline metal ions, such as Fe3+, Fe2+, and Sn2+, are always recognized by the dialkylanilino nitrogen atom, resulting in a decrease in the charge-transfer band intensity of the donor-acceptor chromophores. On the other hand, the recognition site of a soft metal ion of Ag+ is the cyano nitrogen atom due to the readily formed multivalent coordination which produces formed multivalent coordination leading to the bathochromic shift of the charge-transfer band. Chemosensors that can detect specific metal ions based on ligand-metal interactions have attracted increasing attention because of their high selectivity and low cost compared to other precise analytical techniques, such as atomic absorption spectroscopy and mass spectrometry.
The successful stories of electron donor-acceptor polymers enabled by the cycloaddition/retroelectrocyclization “click” chemistry open up a new avenue toward the synthesis of advanced polymers such as low bandgap polymers, intrinsically molecule-based conductive and/or magnetic polymers, organic photovoltaics, molecular batteries, and many other future applications.
Hydraulic structures play an important role in drainage, irrigation, and hydraulic projects. If hydraulic structures fail, it may cause serious damages of wealth, properties, and environment as well as losses of life and injury to economy. The water related infrastructures are constructed at the aims to facilitate human needs/desires and enhance the quality of life such as drainage channel, river/channel, irrigation canal, bank/foot protection work, embankment, dam, spur dike/groyne, bridge/culvert, regulator, barrage/large regulator, aqueduct, pump station, siphon, and sluice. The details of some of the hydraulic structures are presented below.
Hydraulic structures are structures that are fully or partially submerged in water. The essence of building hydraulic structures is to either divert, disrupt, store, or completely stop the natural flow of water bodies. Based on the work they are designed to perform on streamflow, hydraulic structures are categorized as water-retaining structures (dams and barrages), water-conveying structures (artificial channels), and special-purpose structures (structures for hydropower generation or inland waterways) [1].
The dam is an essential hydraulic structure that all other structures directly or indirectly relied upon. Dams and barrages are typical water-retaining structures that are built purposely to impound water. The retained water behind dams and barrages could be used for other purposes such as irrigation, recreational activities, navigation, and a lot more. As of September 2019, there are 57,985 registered dams in the world [2]. Regardless of their size and type, dams demonstrate high complexity in their load response and interactive relationship with site hydrology and geology. Dams are of different sizes and shapes and made of various materials such as soil or rockfill embankment, mass concrete, reinforced concrete, masonry, and wood. However, based on the construction materials used, dams are broadly classified into concrete dams and embankment dams.
Concrete dams comprised of gravity (PG), arch (VA), buttress (CB), barrage (BM), and multiple-arch dams (MV) as shown in Figure 1a–e. All these dams are constructed of mass concrete and sometimes of masonry with appropriate structural quality [1, 2]. Recent statistics show that concrete dams occupied only 20–22%, while embankment dams accounted for 78–80%.
Embankment dams are of two types, earthfill (TE) and rockfill (ER), both of which are constructed by mass filling of naturally existing ground materials (soil and rocks). The construction materials are graded and well compacted to resist seepage and sliding. Embankment dams are characterized by having similar moderate face slopes at both upstream and downstream. This feature gives rise to a broad trapezoidal cross section and a high construction volume, which is relative to the dams’ height that can cover >300 m [2].
(a) Gravity dam, (b) arch dam, (c) buttress dam, (d) multiple-arch dam, (e) earthfill and rockfill dam. Source: [3].
Any artificial facility cut in the ground with the sole purpose of transporting water diverted from main sources (river and dams) is termed as the water-conveying structure. These types of structures are comprised of canals (Figure 2a) and tunnels (Figure 2b) (usually made from soil and rocks) or siphons, aqueducts (Figure 2c), flumes (Figure 2d), and pipelines (usually made from concrete and metals) [1]. Before the construction of any water-conveying structure, a detailed geotechnical soil test and analysis is recommended to avail the surface and subsurface properties of the soil on which the structure is upon rest. The same soil test and analysis also applies to other types and classes of hydraulic structures to ensure safety and to save resources.
(a) Canals, (b) tunnels, (c) aqueducts, and (d) flumes. Source: [4, 5, 6].
As the name implies, special-purpose hydraulic structures are built as an integral part of hydraulic project to meet a special purpose such as hydropower generation (e.g., surge towers and shafts, forebays, and head ponds), navigation (e.g., landings, berths, substations for ship repair, etc.), fishing (e.g., fish nursery ponds, fish lifts and locks, fishways, etc.), water supply for domestic and industrial uses (e.g., water intakes to treatment plant, pumping stations, etc.), waste disposal/sewerage (e.g., sewage headers, pumping stations, channels after treatment plant to water bodies, etc.), and land reclamation (e.g., irrigation canals, drainage systems, silt tanks, etc.) [1, 7].
Hydraulic structures are purposely for managing and controlling the flow of water in natural and built environment systems. Moreover, the primary purposes may include the following flood control, water conveyance, irrigation, navigation, power generation, domestic and industrial purposes, environment protection, and recreation, among others.
Flooding is a geophysical hazard that nonuniformly dispersed in both space and time. Over a decade, several watershed areas are frequently suffering from flood disaster, which causes massive destruction and loss of lives, farmlands, crops, access roads, and houses [8]. The effective way of flood control and reducing its negative impacts is by the construction of dams, water conveyance structures, culverts, canals, and reservoirs [9]. Many control structures are not solely constructed mainly for dealing with flood control only. However, sometimes, hydraulic structures are purposely built for flood control only. In the designing and building of flood control structures, some vital point of views must be taken into consideration in such that the cost of construction of such a project structure should be of benefit, concerning the damage reduction and the public interest when comparing to similar benefits to be derived by the alternative means. Also, the flood control structures should be reliable and effective as predicted. Even in some instance, the methods of controlling floods should rather be automatic, not manual.
Hydropower generation is the production of electrical energy from running water through turbines without reducing its quantity. The flexibility; long-lasting, storing capability; less environmental pollution; and the cost-effectiveness of hydropower plants make it attract more investment as a renewable energy source and role as a way of drought mitigation [10]. It has been demonstrated that hydropower generated about 16.4% of the global total electricity supply equivalent to the installed capacity of about 1064 GW [9]. The hydropower system is the leading global source of an estimated 71% of total renewable energy. Furthermore, hydropower plant reservoirs can also be used as a tool in minimizing the adverse impacts of climate change and in achieving sustainable development goals [11].
Inland water transportation plays a significant role in the national and global markets. Building dams and draining of river streams will considerably raise the capacity of inland water transportation, thereby allowing the smooth movement of a shipping vessel. An important point to note is that a chain of storage reservoirs would advance navigation depth, straightening out navigation channels, and support the passage of both small, medium, and even large ships. However, it is recommended to provide pathways or locks for vessels when dam structures are built on a large river stream for easy navigation from upstream to the downstream. Also, the topography of the surrounding environment should be taken into consideration. Hence, the pathways might be an integral part of the dam or a completely different structure.
Recently, it was reported that about 20% of the global total arable land is under different forms of irrigation schemes. More than 70% of freshwater withdrawn from rivers is utilized for irrigating crops, and 75% of the total water hardly returns to the rivers [1]. In many regions of the world, with water scarcity, farming without irrigation would not be possible. The quantity of water kept in the storage reservoirs and the power required for water pumping are provided by hydropower plants, which are integral parts of the multipurpose hydraulic structure. In the present world, irrigation projects depend on the supply from multipurpose hydraulic dams, reservoirs, and rivers. For irrigation schemes to be successful, the water supply from sources must be adequately available whenever needed and at a reasonable cost of investment. Also, the operation and maintenance of such a structure should be smooth and cost-effective.
A large quantity of freshwater is being consumed daily by food processing; mineral mining and processing; textile, paper, and pulps; nuclear and thermal power plants; and drugs and pharmaceutical, petrochemical, and metallurgical industries, among others. However, some of the major industries that use a large volume of water are nuclear and thermal power plants. To meet both domestic and industrial needs, due to the higher demand for water by many industries, especially in industrially developed nations, large capacity storage structures are always built to store local rainfall runoff and water diverted from other river basins. Multipurpose hydraulic structures are the primary storage and sources of most water supply for domestic and industrial purposes. Although public water consumption constitutes nearly only 10% of the water consumed by the industries, still the immediate needs of public water supply must be taken seriously [12]. The water supply from hydraulic projects should always meet the standards of quality required for domestic and industrial uses in terms of its color, test, hardness, odor, and bacterial purity. Also, the treatment methods for the water should be cost-effective and daily available all year round. Necessary control and protection measures should be provided in the river basin areas where the hydraulic project is sited which are mainly for the municipal water supply. The need for hydraulic projects is also in a region with the seasonal variation of rainfall distribution of the year.
Another vital reason for hydraulic projects is for environmental protection and water management, which may include farmland improvement by controlling soil erosion; environmentally friendly hydropower supply; improved quality water supply for human, animal, and industrial consumption; aquatic food supply; and recreational development [8]. Nevertheless, the negative impacts posed by the massive hydraulic structures on the environment and public safety should always be considered in the course of design and construction processes [1]. The essential environmental issues are for the well-being of people living around the hydraulic projects and to the other plants and animals for the social needs of humankind.
Many hydraulic projects also serve as a place for tourism, recreational, and sports activities. In fact, in some countries, sometimes hydraulic projects are specially constructed for recreation purposes. Some recreational activities carried out at the hydraulic project sites might include swimming, fishing, boating, canoeing, scuba diving, and lakeside walking. Recreational activities provide job opportunities to the teeming population and generate incomes to the government and, at the same time, conserve the natural environment.
Strategies for sustainable operation and maintenance of hydraulic structures are initiated before design and are optimized during its service life for the safety of lives and properties, which stabilizes the environment and the national economy. Consequently, improper hydraulic structures’ operation and maintenance may lead to loss of life, properties, economy, and the environment. The responsibilities for the operation and maintenance of hydraulic systems vary in different countries, depending on the ownership and purposes. In Nigeria, the responsibilities rest on the central government, coordinated by the department of water resources. This section has highlighted the necessary strategies for safe operation, maintenance, and consequences due to failure. The strategies can be long term, seasonal, frequent, and daily. The primary tasks to exemplary operation and maintenance of hydraulic structures according to Chen [1] are as follows: hydrologic monitoring and forecasting, detection and mitigation of aging of structures, safety surveillance and instrumentations, and remedial actions.
Safe operation and management of hydraulic structure primarily depend on the efficiency of metrological stations to provide independent data of water regime and observation. The data obtained can be used during the analysis and prediction of future hydrologic events. Nowadays, automated facilities are installed at various locations in the catchment area to provide hydrologic data. After the analysis of the data, the forecasted value and period must be provided with some reliable accuracy. The short-term forecasting, developed on runoff and other fundamental theories, provides the basis of flood controls in the catchment. Mid- and long-term forecasting give essential information to the hydropower sector [1].
The continuous, systematic assessments of the physical condition of hydraulic structures without compromise are encouraged. The large capacity hydraulic structures constitute a more significant threat to downstream life and properties. Mostly, failure arises from extreme flood events and inter- or obvious structural distress, which necessitates safety surveillance and instrumentation programs to detect the possible symptom and specific problem at an early stage in hydraulic structures and create strategies for the solution to the possible abnormalities [1, 13]. The selection and installation of equipment or instrumentation at appropriate locations in the surveillance area, adequate interpretation of the surveillance data, and immediate actions are more important than the number of instruments installed.
The safety inspection is a regular inspection of some deteriorations to determine the current state of hydraulic structures based on purposes related to the operation. Safety inspections are categorized into routine, specialized, and periodic inspections. Specifically, the embankments of large capacity structures should be closely and routinely examined against any physical defect [13]. This inspection is categorized into routine, specialized, and periodic inspections [1], and thus, their cumulative records determine whether a defect is new, gradual, and/or rapidly changing in the structures [13]. The routine inspection aims to identify the physical deficiencies of the hydraulic structures during day-to-day operations. Periodic inspections are carried out by experienced technical crews at an interval of 2–3 years and are meant to detect physical defects on the structures by visual examination so that strategic remedial actions can be taken. Specialized inspections include earthquake and check-flood inspections. Earthquake and check-flood are identified as a potential threat to hydraulic structures. Their inspection is carried out by experienced and well-trained dam engineers. Thus, the documented reports for mitigations are then put into the remedial action plan.
Surveillance is the continuous monitoring of physical conditions through medium to large instruments. It is being done to check the deterioration concerning the actual performance of the hydraulic structure and its trends for compliance with the design expectations. In this operation, the collection, presentation, and evaluation of data from the equipment installed in the system are paramount. The equipment must cover critical components and should be installed at positions where normal behavior is anticipated. It is a good practice to draft an ideal instrumentational plan at an early stage to eliminate the less essential provisions until an adequate, balanced, and affordable plan is determined. In large-scale structures such as a dam, surveillance through high-level technology should be enhanced. Monitoring of change in temperature and cracks occurring in the embankments are used to reveal seepage and sediments during operations.
Remedial actions are meant to prevent failures of hydraulic structures, especially the large capacity structures that pose a significant threat to lives and properties. The deficiencies are classified as minor, moderate, and major accidents [1]. Their remedial actions are necessary before the failure of the entire structure. The defects may earlier be detected through surveillance, and the defects may probably be design-related, such as improper design capacity, or construction-related such as inappropriate choice of materials. The common and challenging operation- and maintenance-related incidents are the rapid rises in seepage, overtopping of earth embankment, excessive beaching, erosion of spillway and embankments, cracking in the concrete dam and spillway, and fractured gates. The remedial actions to be considered depend on the condition of structures and hydrologic events. The remedial measures included:
Preventive control to reduce the condition from escalation
Short-term actions to modify the nearby catchment conditions, such as increasing surveillance, emergency evacuations, and lowering the overtopping
Long-term remedies in the structures, such as reinforcements, gates, dredging, and abdication
Erosion control: During floods, the use of polyethylene sheeting and sandbag controls the erosion of the slope embankment [1].
Overtopping control: Overtopping must be avoided, and the provision of temporary barrier above the predicted altitude is applied.
Seepage control: The seepage must not be allowed to saturate the downstream slope, and if saturated, the provision of permeable material to reduce pressure buildup on the embankment is needed.
Aging of a hydraulic structure is referring to the time-related deformations in the properties of the material and its foundation used during construction of the hydraulic structures, which developed within at least 5 years of working period. Also, it is the entire lifespan of hydraulic structure before abdication or decommissions. The deterioration of the structures may be due to the defects developed through unusual events such as an earthquake or a result of environmental factors during service life.
Detection of aging should start during the operation and maintenance of hydraulic structures. Factors that influence the degradation of the structural properties of hydraulic systems should be identified and must immediately be managed. Alternatively, nondestructive examinations could be essential to detect the aging of hydraulic structures. The nondestructive examinations are the direct and indirect evaluation of information regarding the state of the hydraulic structure. This is to allow for immediate interventions in the situation and avoid severe consequences. Indirect assessment of aging should be accomplished by monitoring the effects and consequences of aging.
On the other hand, the direct assessment is performed by inspecting and testing the data of the structural properties of the hydraulic structures. The laboratory experiments and the in situ assessments, where the physical and mechanical properties of the sediment, including concrete, are extracted and analyzed, are examples of destructive examination. According to Chen [1], the destructive examination with in situ tests may or may not be destructive. The destructive examinations may include (i) hydraulic pumping tests for porosity and (ii) permeability and leak detection through a physical and chemical test of catchment and leakage, among others.
Similarly, a nondestructive examination is designed to ascertain the flows of materials while it protects the object’s usability, successfully nondestructive tests, and requires an understanding of its limitations and data manipulation. Various methods, such as electromagnetic, resistivity, acoustic, induce polarization, and visual assessment, are employed.
Adequate mitigations of aging of hydraulic structures start during the designs, effected during construction, which continues through monitoring and surveillance in operation and maintenance stages. The prior understanding of the factors that influence the degradation of the structural properties of the materials used in the constructions of the hydraulic structures must be scrutinized. Also, the provision of extra quality to meet the designed lifespan of the system must be put into consideration during the constructions. Alternatively, the following mitigations steps are commendable:
Analysis: The analysis of the aging process is carried out to ascertain its severity to the safety of life, properties, national economy, and environment.
Prevention: It is well known that all structural materials have a finite lifespan and can be affected by the environment. The prevention stage to mitigate aging of a hydraulic structure is proceeded by detailed analysis to know the structure’s safety and its economic condition. If the effect is infinite, immediate remedial action such as an emergency action plan is necessary. However, if the effect is finite, and the structure has an economic lifespan, then, provision of concrete structures from uniquely selected materials is encouraged.
Rehabilitations: Many physical and chemical methods like geomembrane are employed to enhance waterproof. Additionally, the repair and replacement of corroded steels and the use of excellent impermeable materials are also administered for overlay operations.
The importance of hydraulic structures cannot be overemphasized, and therefore their maintenance and safe utilization are critical. The structures should neither leak nor erode; channels and structures should be clean and free from siltation with noncorrosive or rotten moving parts. The breakdown or failure of these hydraulic structures can lead to a disastrous situation within the surrounding areas. For instance, a catastrophic dam collapse could lead to flooding and erosion.
The challenges of maintaining hydraulic structures at the initial stage can be achieved by managing the characteristic of the flow to meet the desired goal of the project needs. According to Chen [1], this can be realized by considering the public safety and ecological, environmental, and the design objectives of each structure. Some of the challenges facing hydraulic structures and the way they can be addressed are further discussed in the subsequent section.
Soil is a nonrenewable resource that supports human and animal life. Soil provides living beings with food, fiber, and protection from harsh environmental conditions such as high temperatures and heavy rainfall. Soil is lost due to erosion as a result of continuous cultivation of land, drastic reduction in vegetation, and collapsing of hydraulic structures such as dams. Erosion is the washing away of the topmost soil layer by the agents of erosion, including water, wind, and human activities [14]. Erosion by water is caused by overland flow and transport of sediments due to the interactive action of water flow and heavy rain droplets. In hydraulic structures, erosion can occur in canals, for example, in an unlined canal at downstream or lined canal section that receives water jet flow from a gate or pipe or water that spills over a weir. This type of erosion can be remediated by dissipating the energy of the incoming water through the construction of a stilling basin as part of the hydraulic structure immediately downstream of the pipe or weir [15]. Another critical point of canals that is prone to erosion is the intersection of a lined and unlined canal, that is, the transition point from a lined canal to the unlined canal, as shown in Figure 3. This type of problem is called undermining and, if not taken care of, can cause a collapse of the lining and destruction of the structure [16]. So, periodic maintenance should be observed to solve this problem. Undermining can be avoided or controlled by the provision of cutoff that will protect the foundation of the structure.
Points of transition between a lined and unlined canal.
Leakage in hydraulic structures refers to the ability of confined or upstream water bodies to exploit the least available exit, space, or crack underneath or along the structure to escape to the downstream or unconfined surrounding area. The moment the water found these small spaces, then there is a leakage problem, which is the beginning of erosion in the area. These small openings and cracks are widened with time and intensity of leakage. Thus, the soil is washed away as time goes on and the structure will collapse. At this point, preventing the collapse of such a structure will be very difficult. Take a dam, for instance, the water level is very high at the upstream. Water can flow along the dam embankment; if no measure is taken to save the structure, it can be undermined and collapse due to erosion [17].
It has been recommended by van den Bosch and Snellen [16] to observe and identify leakages at their initial stage and correct them. Leakages in the crack can be repaired by cleaning the wall or the floor where the crack is located. Then remove any sand, clay, plant growth, or debris. Open up the crack to become broader and more in-depth. Prepare cement-sand mortar to fill the hole and smoothen it with a trowel. Provide adequate curing to the repaired crack.
On the other hand, vertical cutoffs can be constructed on the structures to obstruct the flow of water underneath and along with the structure. An example of a cutoff wall in a dam is showcased in Figure 4a. Similarly, drop structures can also be equipped with cutoffs to block the water flow along and underneath the structure (Figure 4b). The cutoffs are part of the structure, driven into the embankments of a canal by digging deep into the banks of the canal and canal bed. During the installation, the earth around the canal banks and the cutoffs must be well compacted.
(a) The function of the cutoff here was to prevent piping failure and reduce leakage or seepage. The cutoff was constructed parallel to the centerline of the dam (b) intake structure provided with a concrete cutoff wall.
Siltation is the process of deposition of debris and sand particles and their buildup in hydraulic structures that obstruct the full functioning of the structures. The problems caused by siltation are usually the changes in water flow, changes in velocities and water levels, decreased energy dissipation, and so on. Examples of these problems include deposition of large volumes of sand in the intake chamber of pumps, which usually causes damage to the pumps and subsequent silting of the canals by sand particles. Another instance is siltation at the stilling basin. This type of sand deposits reduces the energy dissipation of the structure. Similarly, the changes in flow and velocities of water inflow division box are affected by sand particles deposited in the structure [16]. Because of these problems, large sand traps are usually constructed at the end of the upper main canal to collect the sand deposits and remove them by periodic cleaning.
Hydraulic structures are made from different materials, including concrete, wood, or steel. These structures are liable to deterioration with time and with alternating wet and dry conditions subjected. The wooden parts in the structure, for instance, rot and decompose, whereas the steel parts corrode, as a rule, causing their expansion, and get jammed in the sliding slots. Such a condition affects the smooth operation of the structures. Routine maintenance is necessary to curtail the problems and reduce their effects. Painting of the affected parts can preserve them against corrosion. Lubrication of moving parts (steel) such as sluice gates and valves can prevent jamming.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"193",title:"Pathology",slug:"medicine-pathology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:12,numberOfAuthorsAndEditors:366,numberOfWosCitations:78,numberOfCrossrefCitations:80,numberOfDimensionsCitations:177,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-pathology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9135",title:"Rare Diseases",subtitle:null,isOpenForSubmission:!1,hash:"607a44edc1c494df4d5d126af71ca89c",slug:"rare-diseases",bookSignature:"Zhan He Wu",coverURL:"https://cdn.intechopen.com/books/images_new/9135.jpg",editedByType:"Edited by",editors:[{id:"226446",title:"Dr.",name:"Zhan He",middleName:null,surname:"Wu",slug:"zhan-he-wu",fullName:"Zhan He Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6790",title:"Fluid and Electrolyte Disorders",subtitle:null,isOpenForSubmission:!1,hash:"5f74d43da90463b17a26bbf2fb7a09ed",slug:"fluid-and-electrolyte-disorders",bookSignature:"Usman Mahmood",coverURL:"https://cdn.intechopen.com/books/images_new/6790.jpg",editedByType:"Edited by",editors:[{id:"183337",title:"Dr.",name:"Usman",middleName:null,surname:"Mahmood",slug:"usman-mahmood",fullName:"Usman Mahmood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7009",title:"Hypoxia and Anoxia",subtitle:null,isOpenForSubmission:!1,hash:"80148bd84e86e5fe1c7527637e8e3be8",slug:"hypoxia-and-anoxia",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6297",title:"Histopathology",subtitle:"An Update",isOpenForSubmission:!1,hash:"395c889b2d2cc4f452fe7e1ad8226fe4",slug:"histopathology-an-update",bookSignature:"Supriya Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6297.jpg",editedByType:"Edited by",editors:[{id:"85273",title:"Dr.",name:"Supriya",middleName:null,surname:"Srivastava",slug:"supriya-srivastava",fullName:"Supriya Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5906",title:"Pathophysiology",subtitle:"Altered Physiological States",isOpenForSubmission:!1,hash:"b277409ee570d9c47798ff5b42638603",slug:"pathophysiology-altered-physiological-states",bookSignature:"David C. Gaze",coverURL:"https://cdn.intechopen.com/books/images_new/5906.jpg",editedByType:"Edited by",editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6025",title:"Temporomandibular Joint Pathology",subtitle:"Current Approaches and Understanding",isOpenForSubmission:!1,hash:"6663d492aea23855b9fdcf753089981e",slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",bookSignature:"Yusuf Emes, Buket Aybar and Gühan Dergin",coverURL:"https://cdn.intechopen.com/books/images_new/6025.jpg",editedByType:"Edited by",editors:[{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5955",title:"Chronic Kidney Disease",subtitle:"from Pathophysiology to Clinical Improvements",isOpenForSubmission:!1,hash:"b371e3b8f0d78aa871934011fa0860c7",slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",bookSignature:"Thomas Rath",coverURL:"https://cdn.intechopen.com/books/images_new/5955.jpg",editedByType:"Edited by",editors:[{id:"67436",title:"Dr.",name:"Thomas",middleName:null,surname:"Rath",slug:"thomas-rath",fullName:"Thomas Rath"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2619",title:"Histopathology",subtitle:"Reviews and Recent Advances",isOpenForSubmission:!1,hash:"fe380d20a204de277654d4d89459cfc4",slug:"histopathology-reviews-and-recent-advances",bookSignature:"Enrique Poblet Martinez",coverURL:"https://cdn.intechopen.com/books/images_new/2619.jpg",editedByType:"Edited by",editors:[{id:"157748",title:"Dr.",name:"Enrique",middleName:null,surname:"Poblet",slug:"enrique-poblet",fullName:"Enrique Poblet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"788",title:"Topics in Renal Biopsy and Pathology",subtitle:null,isOpenForSubmission:!1,hash:"ff37da307f4471516e16d5801fbb9164",slug:"topics-in-renal-biopsy-and-pathology",bookSignature:"Muhammed Mubarak and Javed I. Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/788.jpg",editedByType:"Edited by",editors:[{id:"119854",title:"Dr.",name:"Muhammed",middleName:null,surname:"Mubarak",slug:"muhammed-mubarak",fullName:"Muhammed Mubarak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"733",title:"Muscle Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"6d793e898675e9191a913e63cfebab37",slug:"muscle-biopsy",bookSignature:"Challa Sundaram",coverURL:"https://cdn.intechopen.com/books/images_new/733.jpg",editedByType:"Edited by",editors:[{id:"75812",title:"Dr.",name:"Challa",middleName:null,surname:"Sundaram",slug:"challa-sundaram",fullName:"Challa Sundaram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"985",title:"Prostate Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"2d821ee10598f9f1022eda0fe588f035",slug:"prostate-biopsy",bookSignature:"Nabil Kaddis Bissada",coverURL:"https://cdn.intechopen.com/books/images_new/985.jpg",editedByType:"Edited by",editors:[{id:"92564",title:"Dr.",name:"Nabil K.",middleName:null,surname:"Bissada",slug:"nabil-k.-bissada",fullName:"Nabil K. Bissada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"287",title:"Liver Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"9856c3e2c382494e27f34c5264f50fd4",slug:"liver-biopsy",bookSignature:"Hirokazu Takahashi",coverURL:"https://cdn.intechopen.com/books/images_new/287.jpg",editedByType:"Edited by",editors:[{id:"40534",title:"Dr",name:"Hirokazu",middleName:null,surname:"Takahashi",slug:"hirokazu-takahashi",fullName:"Hirokazu Takahashi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:12,mostCitedChapters:[{id:"18773",doi:"10.5772/20110",title:"Ishak versus METAVIR: Terminology, Convertibility and Correlation with Laboratory Changes in Chronic Hepatitis C",slug:"ishak-versus-metavir-terminology-convertibility-and-correlation-with-laboratory-changes-in-chronic-h",totalDownloads:33114,totalCrossrefCites:9,totalDimensionsCites:18,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Gamal Shiha and Khaled Zalata",authors:[{id:"37453",title:"Prof.",name:"Gamal",middleName:null,surname:"Shiha",slug:"gamal-shiha",fullName:"Gamal Shiha"}]},{id:"18781",doi:"10.5772/19224",title:"Transient Elastography for Assessment of Non-Alcoholic Fatty Liver Disease",slug:"transient-elastography-for-assessment-of-non-alcoholic-fatty-liver-disease",totalDownloads:2559,totalCrossrefCites:0,totalDimensionsCites:9,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Ludovico Abenavoli",authors:[{id:"34117",title:"Prof.",name:"Ludovico",middleName:null,surname:"Abenavoli",slug:"ludovico-abenavoli",fullName:"Ludovico Abenavoli"}]},{id:"25595",doi:"10.5772/33534",title:"Generation and Use of Cultured Human Primary Myotubes",slug:"generation-and-use-of-cultured-human-primary-myotubes",totalDownloads:2954,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"muscle-biopsy",title:"Muscle Biopsy",fullTitle:"Muscle Biopsy"},signatures:"Lauren Cornall, Deanne Hryciw, Michael Mathai and Andrew McAinch",authors:[{id:"96027",title:"Dr.",name:"Andrew",middleName:null,surname:"McAinch",slug:"andrew-mcainch",fullName:"Andrew McAinch"}]}],mostDownloadedChaptersLast30Days:[{id:"59286",title:"Surgical Approaches to the Temporomandibular Joint",slug:"surgical-approaches-to-the-temporomandibular-joint",totalDownloads:5359,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",title:"Temporomandibular Joint Pathology",fullTitle:"Temporomandibular Joint Pathology - Current Approaches and Understanding"},signatures:"Mohammad Esmaeelinejad and Maryam Sohrabi",authors:[{id:"172188",title:"Dr.",name:"Mohammad",middleName:null,surname:"Esmaeelinejad",slug:"mohammad-esmaeelinejad",fullName:"Mohammad Esmaeelinejad"},{id:"240723",title:"Dr.",name:"Maryam",middleName:null,surname:"Sohrabi",slug:"maryam-sohrabi",fullName:"Maryam Sohrabi"}]},{id:"41363",title:"Molecular Histopathology",slug:"molecular-histopathology",totalDownloads:6047,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Hussein A. Kaoud",authors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}]},{id:"58358",title:"Internal Derangements of the Temporomandibular Joint: Diagnosis and Management",slug:"internal-derangements-of-the-temporomandibular-joint-diagnosis-and-management",totalDownloads:2059,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",title:"Temporomandibular Joint Pathology",fullTitle:"Temporomandibular Joint Pathology - Current Approaches and Understanding"},signatures:"Ufuk Tatli and Vladimir Machon",authors:[{id:"203864",title:"Associate Prof.",name:"Ufuk",middleName:null,surname:"Tatli",slug:"ufuk-tatli",fullName:"Ufuk Tatli"},{id:"204401",title:"Dr.",name:"Vladimir",middleName:null,surname:"Machon",slug:"vladimir-machon",fullName:"Vladimir Machon"}]},{id:"58425",title:"Inflammation and Chronic Kidney Disease: Current Approaches and Recent Advances",slug:"inflammation-and-chronic-kidney-disease-current-approaches-and-recent-advances",totalDownloads:1503,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",title:"Chronic Kidney Disease",fullTitle:"Chronic Kidney Disease - from Pathophysiology to Clinical Improvements"},signatures:"Simona Mihai, Elena Codrici, Ionela Daniela Popescu, Ana-Maria\nEnciu, Laura Georgiana Necula, Gabriela Anton and Cristiana\nTanase",authors:[{id:"76152",title:"Dr.",name:"Cristiana",middleName:null,surname:"Pistol-Tanase",slug:"cristiana-pistol-tanase",fullName:"Cristiana Pistol-Tanase"},{id:"80114",title:"Dr.",name:"Gabriela",middleName:null,surname:"Anton",slug:"gabriela-anton",fullName:"Gabriela Anton"},{id:"215418",title:"Dr.",name:"Ana-Maria",middleName:null,surname:"Enciu",slug:"ana-maria-enciu",fullName:"Ana-Maria Enciu"},{id:"216223",title:"Dr.",name:"Elena",middleName:null,surname:"Codrici",slug:"elena-codrici",fullName:"Elena Codrici"},{id:"216226",title:"Dr.",name:"Ionela Daniela",middleName:null,surname:"Popescu",slug:"ionela-daniela-popescu",fullName:"Ionela Daniela Popescu"},{id:"216227",title:"Dr.",name:"Simona",middleName:null,surname:"Mihai",slug:"simona-mihai",fullName:"Simona Mihai"},{id:"223988",title:"Dr.",name:"Laura Georgiana",middleName:null,surname:"Necula",slug:"laura-georgiana-necula",fullName:"Laura Georgiana Necula"}]},{id:"41355",title:"Ossifying Fibromas of the Craniofacial Skeleton",slug:"ossifying-fibromas-of-the-craniofacial-skeleton",totalDownloads:3180,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Bruno Carvalho, Manuel Pontes, Helena Garcia, Paulo Linhares and Rui Vaz",authors:[{id:"140061",title:"Dr.",name:"Bruno",middleName:null,surname:"Carvalho",slug:"bruno-carvalho",fullName:"Bruno Carvalho"},{id:"142266",title:"Dr.",name:"Manuel",middleName:null,surname:"Pontes",slug:"manuel-pontes",fullName:"Manuel Pontes"},{id:"142267",title:"Dr.",name:"Paulo",middleName:null,surname:"Linhares",slug:"paulo-linhares",fullName:"Paulo Linhares"},{id:"142268",title:"Prof.",name:"Rui",middleName:null,surname:"Vaz",slug:"rui-vaz",fullName:"Rui Vaz"},{id:"142958",title:"Dr.",name:"Helena",middleName:null,surname:"Garcia",slug:"helena-garcia",fullName:"Helena Garcia"}]},{id:"62184",title:"Hyponatremia and Psychotropic Drugs",slug:"hyponatremia-and-psychotropic-drugs",totalDownloads:1011,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fluid-and-electrolyte-disorders",title:"Fluid and Electrolyte Disorders",fullTitle:"Fluid and Electrolyte Disorders"},signatures:"Mireia Martínez Cortés and Pedro Gurillo Muñoz",authors:null},{id:"18778",title:"The Current Status of Non-Invasive Assessment of Liver Fibrosis: Real Time Tissue Elastography",slug:"the-current-status-of-non-invasive-assessment-of-liver-fibrosis-real-time-tissue-elastography",totalDownloads:3115,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Hiroyasu Morikawa and Norifumi Kawada",authors:[{id:"34696",title:"Prof.",name:"Norifumi",middleName:null,surname:"Kawada",slug:"norifumi-kawada",fullName:"Norifumi Kawada"},{id:"53289",title:"Dr.",name:"Hiroyasu",middleName:null,surname:"Morikawa",slug:"hiroyasu-morikawa",fullName:"Hiroyasu Morikawa"}]},{id:"62764",title:"Thyroid Nodules in Diagnostic Pathology: From Classic Concepts to Innovations",slug:"thyroid-nodules-in-diagnostic-pathology-from-classic-concepts-to-innovations",totalDownloads:841,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"histopathology-an-update",title:"Histopathology",fullTitle:"Histopathology - An Update"},signatures:"Ilze Fridrihsone, Ilze Strumfa, Boriss Strumfs, Andrejs Vanags, Dainis\nBalodis, Arvids Jakovlevs, Arnis Abolins and Janis Gardovskis",authors:[{id:"54021",title:"Prof.",name:"Ilze",middleName:null,surname:"Strumfa",slug:"ilze-strumfa",fullName:"Ilze Strumfa"},{id:"159998",title:"Dr.",name:"Arnis",middleName:null,surname:"Abolins",slug:"arnis-abolins",fullName:"Arnis Abolins"},{id:"160000",title:"Prof.",name:"Janis",middleName:null,surname:"Gardovskis",slug:"janis-gardovskis",fullName:"Janis Gardovskis"},{id:"174929",title:"Dr.",name:"Andrejs",middleName:null,surname:"Vanags",slug:"andrejs-vanags",fullName:"Andrejs Vanags"},{id:"202252",title:"Dr.",name:"Arvids",middleName:null,surname:"Jakovlevs",slug:"arvids-jakovlevs",fullName:"Arvids Jakovlevs"},{id:"202253",title:"Dr.",name:"Dainis",middleName:null,surname:"Balodis",slug:"dainis-balodis",fullName:"Dainis Balodis"},{id:"203012",title:"Dr.",name:"Ilze",middleName:null,surname:"Fridrihsone",slug:"ilze-fridrihsone",fullName:"Ilze Fridrihsone"},{id:"205692",title:"MSc.",name:"Boriss",middleName:null,surname:"Strumfs",slug:"boriss-strumfs",fullName:"Boriss Strumfs"}]},{id:"55576",title:"The Roles of Indoxyl Sulphate and p-Cresyl Sulphate in Patients with Chronic Kidney Disease: A Review of Therapeutic Options",slug:"the-roles-of-indoxyl-sulphate-and-p-cresyl-sulphate-in-patients-with-chronic-kidney-disease-a-review",totalDownloads:782,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",title:"Chronic Kidney Disease",fullTitle:"Chronic Kidney Disease - from Pathophysiology to Clinical Improvements"},signatures:"Melissa Nataatmadja, Yeoungjee Cho, Katrina Campbell and David\nW. Johnson",authors:[{id:"50425",title:"Prof.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"183338",title:"Dr.",name:"Yeoungjee",middleName:null,surname:"Cho",slug:"yeoungjee-cho",fullName:"Yeoungjee Cho"},{id:"205845",title:"Dr.",name:"Melissa",middleName:null,surname:"Nataatmadja",slug:"melissa-nataatmadja",fullName:"Melissa Nataatmadja"},{id:"205846",title:"Dr.",name:"Katrina",middleName:null,surname:"Campbell",slug:"katrina-campbell",fullName:"Katrina Campbell"}]},{id:"41354",title:"Neuronal and Mixed Neuronal-Glial Tumors of the Central Nervous System",slug:"neuronal-and-mixed-neuronal-glial-tumors-of-the-central-nervous-system",totalDownloads:3810,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Mohammed M.A. Al Barbarawi, Mohammed Z. Allouh and Suhair M.A. Qudsieh",authors:[{id:"139562",title:"Dr.",name:"Mohammed",middleName:null,surname:"Barbarawi",slug:"mohammed-barbarawi",fullName:"Mohammed Barbarawi"},{id:"141645",title:"Dr.",name:"Suhair",middleName:null,surname:"Qudsieh",slug:"suhair-qudsieh",fullName:"Suhair Qudsieh"},{id:"154721",title:"Dr.",name:"Mohammed",middleName:null,surname:"Allouh",slug:"mohammed-allouh",fullName:"Mohammed Allouh"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-pathology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/162896/ronald-ugel",hash:"",query:{},params:{id:"162896",slug:"ronald-ugel"},fullPath:"/profiles/162896/ronald-ugel",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()