Wind and current are significant parameters in the hydrodynamic processes, making a significant effect on the expansion of the Yangtze (Changjiang River) Diluted Water, sediment transport, resuspension and shelf circulation in the Yangtze Estuary. They are indispensable as input parameters in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) can acquire data with different resolutions (down to 1 m) and coverage (up to 400 km) over a site during day or night time under all weather conditions, being capable of providing ocean surface kinetic parameters with high resolution. SAR images were collected to verify and improve the validity of wind direction retrieval by 2D fast Fourier transformation (FFT) method, wind speed by CMOD4 model and current by Doppler frequency method. These SAR-retrieved wind and current results were analyzed and assessed against in situ data and corresponding numerically simulated surface wind and current fields. Comparisons to the in situ and simulations show that 1) SAR can measure sea surface wind fields with a high resolution at sub-km scales and provide a powerful complement to conventional wind measurement techniques. 2) The Doppler shift anomaly measurements from SAR images are able to capture quantitative surface currents, thus are helpful to reveal the multi-scale upper layer dynamics around the East China Sea.
Part of the book: Sea Level Rise and Coastal Infrastructure
Coastal disaster is abnormal changes caused by climate change, human activities, geological movement or natural environment changes. According to formation cause, marine disasters as storm surges, waves, Tsunami coastal erosion, sea-level rise, red tide, seawater intrusion, marine oil spill and soil salinization. Remote sensing technology has real-time and large-area advantages in promoting the monitoring and forecast ability of coastal disaster. Relative to natural disasters, ones caused by human factors are more likely to be monitored and prevented. In this paper, we use several remote sensing methods to monitor or forecast three kinds of coastal disaster cause by human factors including red tide, sea-level rise and oil spilling, and make proposals for infrastructure based on the research results. The chosen method of monitoring red tide by inversing chlorophyll-a concentration is improved OC3M Model, which is more suitable for the coastal zone and higher spatial resolution than the MODIS chlorophyll-a production. We monitor the sea-level rise in coastal zone through coastline changes without artificial modifications. The improved Lagrangian model can simulate the trajectory of oil slick efficiently. Making the infrastructure planning according the coastal disasters and features of coastline contributes to prevent coastal disaster and coastal ecosystem protection. Multi-source remote sensing data can effectively monitor and prevent coastal disaster, and provide planning advices for coastal infrastructure construction.
Part of the book: Sea Level Rise and Coastal Infrastructure