Perennial grasses species with potential as energy crop.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"7563",leadTitle:null,fullTitle:"Lead Free Solders",title:"Lead Free Solders",subtitle:null,reviewType:"peer-reviewed",abstract:"This book provides some of the most advanced research observations and in-depth knowledge behind lead-free soldering. Readers will find a description of different cutting-edge techniques used for improving the reliability of interconnects manufacturing. Some of the most unconventional topics covered in this book include solder joint formation for microelectronic devices at room temperature and the possibility of soldering ceramic materials, which is limited due to the poor wettability of ceramic substrates with commercial solders following classical soldering techniques. We also discuss the possibilities of nanoscale preparation of solder joints for bringing down the processing temperature so that it does not affect the packaging technologies. Readers will find that precise, systematic discussion of solder joint formation and its interfacial characterization has been depicted for each technique used in different chapters. This book is of interest to both fundamental researchers and also to practicing scientists and will prove invaluable to all those working in industry and academia.",isbn:"978-1-78985-460-2",printIsbn:"978-1-78985-459-6",pdfIsbn:"978-1-83962-278-6",doi:"10.5772/intechopen.76955",price:100,priceEur:109,priceUsd:129,slug:"lead-free-solders",numberOfPages:94,isOpenForSubmission:!1,isInWos:null,hash:"fa9e966728c9c936c095b75b3c94526d",bookSignature:"Abhijit Kar",publishedDate:"October 2nd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7563.jpg",numberOfDownloads:2134,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 11th 2018",dateEndSecondStepPublish:"August 16th 2018",dateEndThirdStepPublish:"October 15th 2018",dateEndFourthStepPublish:"January 3rd 2019",dateEndFifthStepPublish:"March 4th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"111049",title:"Dr.",name:"Abhijit",middleName:null,surname:"Kar",slug:"abhijit-kar",fullName:"Abhijit Kar",profilePictureURL:"https://mts.intechopen.com/storage/users/111049/images/system/111049.png",biography:"Dr. Abhijit Kar received his PhD in Chemistry-Materials Science from Jadavpur University, India. Dr. Kar has carried out his postdoctoral research in different parts of the world e.g. Sungkyunkwan University, South Korea, Swiss Federal Laboratory at Zürich, Switzerland; visiting scientist at Rϋhr Universität, Germany. Dr. Kar has about 17 years of research & teaching experience. His current research interest comprises of Application of Nanotechnology for Advanced Materials. He has worked on different similar and dissimilar materials joining methods & techniques, He is one of the first and pioneer research scientist worked on lead free solder for electronics/microelectronics applications from India. He has developed expertise on Different Materials Characterization Techniques, Mechanical & Functional Property Evaluation of Materials. Dr. Kar has published ~40 research papers in Journals; edited book “Nanoelectronics and Materials Development” and contributed in book chapter on Electron Microscopy. He serves as reviewer of many International Peer Reviewed Journals from Elsevier, Springer. He represented as editorial board member of Journal of Materials Sciences and Applications, American Association for Science & Technology, Journal of Energy and Natural Resources etc.",institutionString:"Jagadis Bose National Science Talent Search",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"944",title:"Metallurgy",slug:"metals-and-nonmetals-metallurgy"}],chapters:[{id:"67564",title:"Introductory Chapter: Overview of Pb-Free Solders and Effect of Multilayered Thin Film of Sn on the Lead-Free Solder Joint Interface",doi:"10.5772/intechopen.86713",slug:"introductory-chapter-overview-of-pb-free-solders-and-effect-of-multilayered-thin-film-of-sn-on-the-l",totalDownloads:334,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Monalisa Char and Abhijit Kar",downloadPdfUrl:"/chapter/pdf-download/67564",previewPdfUrl:"/chapter/pdf-preview/67564",authors:[{id:"111049",title:"Dr.",name:"Abhijit",surname:"Kar",slug:"abhijit-kar",fullName:"Abhijit Kar"},{id:"252435",title:"Ms.",name:"Monalisa",surname:"Char",slug:"monalisa-char",fullName:"Monalisa Char"}],corrections:null},{id:"66653",title:"Role of Intermetallics in Lead-Free Alloys",doi:"10.5772/intechopen.85515",slug:"role-of-intermetallics-in-lead-free-alloys",totalDownloads:471,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Dattaguru Ananthapadmanaban and Arun Vasantha Geethan",downloadPdfUrl:"/chapter/pdf-download/66653",previewPdfUrl:"/chapter/pdf-preview/66653",authors:[{id:"263076",title:"Dr.",name:"Anantha",surname:"Padmanaban D",slug:"anantha-padmanaban-d",fullName:"Anantha Padmanaban D"},{id:"276027",title:"Dr.",name:"Arun",surname:"Vasantha Geethan",slug:"arun-vasantha-geethan",fullName:"Arun Vasantha Geethan"}],corrections:null},{id:"63700",title:"Soldering by the Active Lead-Free Tin and Bismuth-Based Solders",doi:"10.5772/intechopen.81169",slug:"soldering-by-the-active-lead-free-tin-and-bismuth-based-solders",totalDownloads:523,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Roman Koleňák, Martin Provazník and Igor Kostolný",downloadPdfUrl:"/chapter/pdf-download/63700",previewPdfUrl:"/chapter/pdf-preview/63700",authors:[{id:"201684",title:"Prof.",name:"Roman",surname:"Koleňák",slug:"roman-kolenak",fullName:"Roman Koleňák"},{id:"255537",title:"Dr.",name:"Martin",surname:"Provazník",slug:"martin-provaznik",fullName:"Martin Provazník"},{id:"255538",title:"Dr.",name:"Igor",surname:"Kostolný",slug:"igor-kostolny",fullName:"Igor Kostolný"}],corrections:null},{id:"65512",title:"Room-Temperature Formation of Intermixing Layer for Adhesion Improvement of Cu/Glass Stacks",doi:"10.5772/intechopen.84362",slug:"room-temperature-formation-of-intermixing-layer-for-adhesion-improvement-of-cu-glass-stacks",totalDownloads:370,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mitsuhiro Watanabe and Eiichi Kondoh",downloadPdfUrl:"/chapter/pdf-download/65512",previewPdfUrl:"/chapter/pdf-preview/65512",authors:[{id:"257999",title:"Prof.",name:"Eiichi",surname:"Kondoh",slug:"eiichi-kondoh",fullName:"Eiichi Kondoh"},{id:"270785",title:"Dr.",name:"Mitsuhiro",surname:"Watanabe",slug:"mitsuhiro-watanabe",fullName:"Mitsuhiro Watanabe"}],corrections:null},{id:"65041",title:"A Review: Solder Joint Cracks at Sn-Bi58 Solder ACFs Joints",doi:"10.5772/intechopen.83298",slug:"a-review-solder-joint-cracks-at-sn-bi58-solder-acfs-joints",totalDownloads:437,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Shuye Zhang, Tiesong Lin, Peng He and Kyung-Wook Paik",downloadPdfUrl:"/chapter/pdf-download/65041",previewPdfUrl:"/chapter/pdf-preview/65041",authors:[{id:"255004",title:"Dr.",name:"Shuye",surname:"Zhang",slug:"shuye-zhang",fullName:"Shuye Zhang"},{id:"288536",title:"Prof.",name:"Tiesong",surname:"Lin",slug:"tiesong-lin",fullName:"Tiesong Lin"},{id:"288537",title:"Prof.",name:"Peng",surname:"He",slug:"peng-he",fullName:"Peng He"},{id:"288608",title:"Prof.",name:"Kyung-Wook",surname:"Paik",slug:"kyung-wook-paik",fullName:"Kyung-Wook Paik"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5212",title:"Nanoelectronics and Materials Development",subtitle:null,isOpenForSubmission:!1,hash:"1443360fed1db17ffb6e0047e6687519",slug:"nanoelectronics-and-materials-development",bookSignature:"Abhijit Kar",coverURL:"https://cdn.intechopen.com/books/images_new/5212.jpg",editedByType:"Edited by",editors:[{id:"111049",title:"Dr.",name:"Abhijit",surname:"Kar",slug:"abhijit-kar",fullName:"Abhijit Kar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3817",title:"Developments in Corrosion Protection",subtitle:null,isOpenForSubmission:!1,hash:"8ff86fac7ac8bce142fdc3c0e5a79f30",slug:"developments-in-corrosion-protection",bookSignature:"M. Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3817.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"27",title:"Magnesium Alloys",subtitle:"Design, Processing and Properties",isOpenForSubmission:!1,hash:null,slug:"magnesium-alloys-design-processing-and-properties",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/27.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3494",title:"Titanium Alloys",subtitle:"Advances in Properties Control",isOpenForSubmission:!1,hash:"83dc0b49b280c4df33cb4cac06fc3660",slug:"titanium-alloys-advances-in-properties-control",bookSignature:"Jan Sieniawski and Waldemar Ziaja",coverURL:"https://cdn.intechopen.com/books/images_new/3494.jpg",editedByType:"Edited by",editors:[{id:"109232",title:"Prof.",name:"Jan",surname:"Sieniawski",slug:"jan-sieniawski",fullName:"Jan Sieniawski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3844",title:"Light Metal Alloys Applications",subtitle:null,isOpenForSubmission:!1,hash:"6ddeae36c90447289dd3320146d31861",slug:"light-metal-alloys-applications",bookSignature:"Waldemar A. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/3844.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"217",title:"Recent Trends in Processing and Degradation of Aluminium Alloys",subtitle:null,isOpenForSubmission:!1,hash:"6b334709c43320a6e92eb9c574a8d44d",slug:"recent-trends-in-processing-and-degradation-of-aluminium-alloys",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/217.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"920",title:"Magnesium Alloys",subtitle:"Corrosion and Surface Treatments",isOpenForSubmission:!1,hash:"33740111d2545ae64a3b2c3d938fc432",slug:"magnesium-alloys-corrosion-and-surface-treatments",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/920.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"44",title:"Aluminium Alloys",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"aluminium-alloys-theory-and-applications",bookSignature:"Tibor Kvackaj",coverURL:"https://cdn.intechopen.com/books/images_new/44.jpg",editedByType:"Edited by",editors:[{id:"17752",title:"Prof.",name:"Tibor",surname:"Kvackaj",slug:"tibor-kvackaj",fullName:"Tibor Kvackaj"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1471",title:"Titanium Alloys",subtitle:"Towards Achieving Enhanced Properties for Diversified Applications",isOpenForSubmission:!1,hash:"dcdcf80b9cadfb4e2797127a5cf85700",slug:"titanium-alloys-towards-achieving-enhanced-properties-for-diversified-applications",bookSignature:"A.K.M. Nurul Amin",coverURL:"https://cdn.intechopen.com/books/images_new/1471.jpg",editedByType:"Edited by",editors:[{id:"112624",title:"Dr.",name:"A.K.M. Nurul",surname:"Amin",slug:"a.k.m.-nurul-amin",fullName:"A.K.M. Nurul Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3053",title:"Aluminium Alloys",subtitle:"New Trends in Fabrication and Applications",isOpenForSubmission:!1,hash:"2b3d8fcf0bcf5e05087c7fce9c799ecf",slug:"aluminium-alloys-new-trends-in-fabrication-and-applications",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/3053.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71364",slug:"erratum-the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",title:"Erratum - The Mechanism of Misalignment of Saw Cutting Crack of Concrete Pavement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71364.pdf",downloadPdfUrl:"/chapter/pdf-download/71364",previewPdfUrl:"/chapter/pdf-preview/71364",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71364",risUrl:"/chapter/ris/71364",chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]}},chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]},book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9841",leadTitle:null,title:"Agroforestry - Small Landholder’s Tool for Climate Change Resiliency and Mitigation",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tFarming of agricultural crops and livestock integrated with tree components is known as agroforestry. It is practiced by farming communities of all over world since time immemorial, but its appreciation as a science is practically four decades old. The scientific and systematic research approach is applicable in land, water, and energy utilization, in order to improve the overall production and productivity of food gain. Apart from the above mentioned, agroforestry is also a helpful tool for climate change impact mitigation through location-specific agroforestry models and enhancing the economic status and livelihood of the related farming communities. In the present day context, agroforestry acts a viable option for carbon capture and agroecosystems health restoration with the involvement of nitrogen-fixing plants, at the same time providing multiple products. With this background, agroforestry land use should become an important strategy option for policy makers which should be considered for climate change mitigation actions applied to climate-smart farming and sustainable development. However, agroforestry research carried out until today is unfortunately not on hand for the farming communities who are the backbone and pioneer in community development, particularly the ones in developing countries. In this view, the volume “Agroforestry - Small Landholder’s Tool for Climate Change Resiliency and Mitigation” is proposed.
",isbn:"978-1-83962-730-9",printIsbn:"978-1-83962-729-3",pdfIsbn:"978-1-83962-731-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ec5444e2a12dcd63ab9e7246d93a63ab",bookSignature:"Dr. Gopal Shukla, Dr. Sumit Chakravarty, Dr. Pankaj Panwar and Dr. Jahangeer A. Bhat",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9841.jpg",keywords:"Agroforestry, Food Production, Medicinal Plants, Livestock, Climate Change, Soil Improvement, Moisture Conservation, Carbon Sequestration, Water Conservation, GIS and Remote Sensing, Region-Specific Models, Sustainable Development",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 27th 2020",dateEndSecondStepPublish:"September 24th 2020",dateEndThirdStepPublish:"November 23rd 2020",dateEndFourthStepPublish:"February 11th 2021",dateEndFifthStepPublish:"April 12th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"As an expert in forestry ecology and conservation, Dr. Shukla is affiliated with the North Bengal Agricultural University and was engaged in NAIP, NICRA, and SERB projects.",coeditorOneBiosketch:"Dr. Chakravarty has a wide experience in forestry training, research and development and is currently working as a Professor in Uttar Banga Krishi Viswavidyalaya, India.",coeditorTwoBiosketch:"Dr. Pankaj Panwar is the Principal Scientist in Forestry and Agroforestry with research experience in both temperate and dry subtropical and humid subtropical climates. He has over 80 publications including 7 books.",coeditorThreeBiosketch:"Dr. Bhat has been instrumental for developing HE and TVET streams of forestry and allied programs and he has worked closely in the area of accreditation with the Fiji Higher Education Commission and forestry stakeholders.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla",profilePictureURL:"https://mts.intechopen.com/storage/users/101105/images/system/101105.jpg",biography:"Dr. Gopal Shukla is currently working as a Assistant Professor of Forestry at Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds M.Sc and Ph.D. degrees in forestry from Uttar Banga Krishi Viswavidyalaya. Prior to joining the university job he has worked under NAIP, NICRA and SERB projects. The focus of his research and development work is forest ecology and conservation. He is currently engaged in forestry training and development, especially in the aspects of forestry, agroforestry, medicinal plants, and climate change.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}}],coeditorOne:{id:"94999",title:"Dr.",name:"Sumit",middleName:null,surname:"Chakravarty",slug:"sumit-chakravarty",fullName:"Sumit Chakravarty",profilePictureURL:"https://mts.intechopen.com/storage/users/94999/images/system/94999.jpg",biography:"Dr. Sumit Chakravarty has a wide experience in forestry training, research, and development. He is currently working as a Professor at Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds a M.Sc. degree in forestry and Ph.D. degree in agronomy from Punjab Agricultural University, Ludhiana, India. He has conducted research on several aspects of forestry, agroforestry, medicinal plants, and climate change. He has trained many students in these fields. The focus of his research and development work is forest ecology and conservation.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorTwo:{id:"55494",title:"Dr.",name:"Pankaj",middleName:null,surname:"Panwar",slug:"pankaj-panwar",fullName:"Pankaj Panwar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYUpcQAG/Profile_Picture_1599139072937",biography:"Dr. Pankaj Panwar is the Principal Scientist (Forestry/Agroforestry) having research experience in both temperate and dry subtropical and humid subtropical climates. He did his senior secondary from Jawahar Navodaya Vidyalaya, Theog (Shimla) followed by B.Sc (forestry), M.Sc (forestry) and Ph.D (forestry) from Dr. Y.S. Parmar University of Horticulture and Forestry, Solan (Himachal Pradesh). Dr. Panwar started his career in 2002 as an Assistant Professor (Forestry) in Uttar Banga Krishi Viswavidyalaya, West Bengal. Later he joined as a Senior Scientist (Forestry) at ICAR Research Complex for Eastern Region, Ranchi Centre in 2008 and served there up to 2009. He is presently working as a Principal Scientist (Forestry/Agroforestry) at ICAR-Indian Institute of Soil and Water Conservation, Research Centre- Chandigarh since 2014. He has to his credit 80 research publications along with seven books, few among those are “Handbook on Practical Forestry”, “Practical Manual on Plantation Forestry”, “Practical Manual on Agroforestry” and “Agroforestry Systems and Practices”. He has also published eight technical bulleting/brochures and one policy paper. He is a life member of Indian Society of Agroforestry, Range Management and Agroforestry, Indian Association of Soil and Water Conservationists and Indian Society of Hill Agriculture. At present Dr. Panwar is working on tree-crop interactions in agroforestry and in developing land use technologies for Shivalik Himalayas. He has handled projects on Agroforestry, climate change, bamboo and jatropha from external funding agencies like the Ministry of Rural Development, DST and DBT.",institutionString:"Indian Institute of Soil and Water Conservation",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Indian Institute of Soil and Water Conservation",institutionURL:null,country:{name:"India"}}},coeditorThree:{id:"329967",title:"Dr.",name:"Jahangeer A.",middleName:null,surname:"Bhat",slug:"jahangeer-a.-bhat",fullName:"Jahangeer A. Bhat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030zCfhQAE/Profile_Picture_1599199812252",biography:"Presently a faculty member at Rani LakshmiBai Central Agricultural University, India. Before joining the present University, Dr. Jahangeer was the Head of Department of Forestry at College of Agriculture, Fisheries and Forestry, Fiji National University, Republic of Fiji Islands. Dr. Jahangeer has worked as counselor, mentor and coordinator for forestry academic programmes. He has been instrumental for developing HE and TVET streams of forestry and allied programmes and he worked closely in the area of accreditation with the Fiji Higher Education Commission and forestry stakeholders. Before joining Fiji National University, Dr. Jahangeerhas worked for HNB Garhwal University and has eleven years of research and eight years of teaching experience with a publication record of more than 50, which includes research articles, review papers, conference papers and books with national and international repute. Dr.Jahangeer is reviewing research articles for a number of scientific journals and has handled research projects in his capacity as PI and Co Pi. His major interests lie in emerging issues in forestry including conservation of biodiversity, traditional knowledge of plants and sustainable management of forest resources with main focus of research on vegetation ecology, ethnobotany, and evaluation of ecosystem services, forest plant biodiversity, climate change and sociocultural issues in forestry.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Central Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5539",title:"Forest Ecology and Conservation",subtitle:null,isOpenForSubmission:!1,hash:"6bd160f6d1da73fc253dfe6c4df7c095",slug:"forest-ecology-and-conservation",bookSignature:"Sumit Chakravarty and Gopal Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/5539.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6264",title:"Forest Biomass and Carbon",subtitle:null,isOpenForSubmission:!1,hash:"964f96c9209ff2a3eaf3c5c6a54d81c3",slug:"forest-biomass-and-carbon",bookSignature:"Gopal Shukla and Sumit Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/6264.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59551",title:"Bioenergy from Perennial Grasses",doi:"10.5772/intechopen.74014",slug:"bioenergy-from-perennial-grasses",body:'The search for an alternative fuel due to environmental concerns and depletion of fossil fuels has raised interest in sustainable energy systems. The utilization of biomass as renewable energy source is becoming increasingly important in the light of its potential for lowering global warming effects and sustainably securing fuel supply [1]. The main challenge in utilization of biomass as fuels would be a stable supply of raw materials [2]. In Europe, wood fuels (e.g., log wood, wood chips, and wood pellets) are the predominant biomass fuels for small-scale heating. However, in several regions, the rapid increase in wood pellet production resulted in shortage of raw materials [3, 4]. Wood assortments are also considered as promising raw materials for the growing biorefinery sector; therefore, this competition is expected to significantly increase in the future, resulting in an increase in raw material costs [5]. Thus, to fulfill the anticipated growth of biomass utilization, expected worldwide, a wider assortment of raw materials will be required including low-quality wood fuels (e.g., logging residues, short rotation coppice) and nonwoody biomasses [6]. Within the available biomass sources, there has been an increasing interest in the use of perennial grasses as energy crops. In order to achieve a positive energy balance, the condition for a plant species to be a potential energy crop is that its bioenergy yield must be produced with a low level of inputs that require minimal energy for their own production and utilization [7]. In this context, perennial rhizomatous grasses display several positive attributes as suitable energy crops. The characteristics which make perennial grasses attractive for biomass production are their high-yield potential and the high contents of lignin and cellulose of their biomass. The biomass of perennial grasses has higher lignin and cellulose contents than the biomass of annual crops [8]. These characteristics are desirable when used as solid biofuels, mainly because they have a high heating value associated with the high carbon content in lignin and, also, strongly lignified crops have the advantage of remaining stand upright with low water content. Therefore, its biomass has lower water content and a late harvest is possible to improve the quality of the biomass. From the point of view of crop management, high yields of biomass from perennial grasses are possible, but the quality of combustion is lower than that of wood products. Compared to stem wood, all these materials are usually characterized by higher ash content and a large variation in the composition of ash-forming elements. Therefore, the use of perennial grasses as fuel usually requires a greater maintenance of the boiler due to the particular characteristics of this type of biomass [9]. The chemical composition of the biomass is highly influenced by the date of harvest as well as by the procedure to make the bales, the condition of the soil, and the population of the plant. High ash content in the raw material will increase slagging tendency during combustion and also will cause high abrasions during the processes of grinding and densification. High contents of N, Cl, and S are mainly related to technical problems during the combustion process and to the increase of polluting emissions [9].
Compared to other biomass sources, like woody crops and other C3 crops, C4 grasses may be able to provide more than twice the annual biomass yield in warm and temperate regions because of their more efficient photosynthetic pathway [10]. Furthermore, the need for soil tillage in perennial grasses is limited to the year in which the crops are established, which is an advantage over annual crops. The advantages of the long periods without tilling are reduced risk of soil erosion and a likely increase in soil organic matter content. In addition, due to nutrient recycling by their rhizome systems, perennial grasses have a low nutrient demand [11]. Since they are affected by few natural pests, they may also be produced with little or no pesticide use. Furthermore, there are many environmental benefits expected from the production and use of perennial grasses. The substitution of fossil fuels by biomass is an important contribution to reduce CO2 emissions.
Perennial grasses have many benefits as an energy crop. They are easy to grow, harvest, and process. Grasses is a “traditional agricultural crop” that does not need any special equipment, and the same could be used as for hay production. Perennial grasses are long-lived and thus do not need to be planted each year. In addition, it is not necessary to plow the soil every year, which leads to less soil disturbance. Grasses have several advantages as raw materials for fuels, since they conveniently occur throughout the world in a wide range of climates, geographies, and types of soils, and additionally, they sequester and store large amounts of carbon in the root systems and in the soil. Grasses can be grown on marginal lands unsuitable for continuous crop production or on open rural lands that currently are abandoned or underutilized. They yield more biomass per hectare and require much fewer inputs compared to annual crops that require more fertilizers, pesticides, and fuels. Perennial grasses are being used as a solid fuel in co-fired coal power plants and are also selected as the raw material for advanced biofuels such as cellulosic ethanol. The dry biomass of perennial grasses can also be densified and transformed into pellets and briquettes, which have uses as heating fuel to replace or supplement fuels made of wood fibers. The inclusion of a thermal component in the use of solid biomass for energy increases the efficiency of the combustion system more than three times [12].
In general, grasses grown as energy crop are managed for biomass yield rather than forage or nutritive quality. Grass biofuel requires minimum management expertise. It is as well suited to small farms as it is to large farming operations, and also works for all levels of management intensity. In fact, lower levels of nutrients such as N, S, K, and Cl may improve fuel quality and reduce emissions. The growth and yield of the grass crop depends significantly on several factors such as soil conditions, fertility, moisture, weed as well as pest control, and the timing of harvest. During the growing season of the grasses, the moderate use of fertilizers may be necessary to maintain soil fertility and to improve crop biomass production [13].
Good weed control in the first year of an establishment is critical to achieve a successful establishment. For example, switchgrass (Panicum virgatum L.) seedlings are slow to establish and are susceptible to competition from weeds. Emergence can take several weeks, depending on soil temperatures and moisture. It is critical that perennial weeds are eliminated from the fields prior to planting. To prevent competition from these species, it is important that cultural or chemical weed control is performed to ensure that the field is free of weeds. Nitrogen fertilizer is not recommended in the first year to reduce grass weed competition. Manure nutrients can be applied in the spring or anytime following grass harvest, as long as the grass is still actively growing.
The grass biomass should be harvested once per year, for which standard hay production equipment can be used. Grasses cut in the fall and left to overwinter produce less biomass, but have the advantage of leaching potassium and chlorine, two minerals that may create issues during combustion [13].
The combustion of grasses normally produces more ashes than the combustion of wood. The range in total ash content of grasses can be very wide, from 2% to greater than 20% [14]. Ash values higher than 10% in mature grasses are generally the result of excessive surface soil contamination. The issue of primary concern when burning grass is mineral composition that determines the melting point of ash and the potential for corrosion [15] and also elevated gaseous and particulate emission levels contributing to deposit formation or high-temperature corrosion as well as operational problems resulting from low ash-melting temperatures. High ash content or low ash-melting temperature poses technical issues through deposition, sintering, fouling, slagging, and corrosion. The latter can damage boilers and increase maintenance costs and can cause severe operation problems usually above 850–1000°C [14, 16]. Several indicators affect the ash-melting temperature such as nitrogen fertilizer used on the crop, meteorological conditions, and chemical composition [17]. The ash-forming elements potassium (K), phosphorus (P), chloride (Cl), silicon (Si), calcium (Ca), and sulfur (S) contribute to the abovementioned ash-related mechanical problems [18, 19, 20]. Silica is the major component of ash and is found in much higher concentrations in the leaf and inflorescence, compared to the grass stem [21], and the silicon content of the biomass ash may sum up to more than 90 wt% [18, 22, 23]. Silica can combine with alkali metals to form silicates that melt at lower temperatures [16]. K and Cl are the most problematic minerals, and both are consumed in high concentrations by the grasses. K is the most abundant alkali metal in grass biomass [24, 25]. This mineral reduces the melting temperature of the fuel and also contributes significantly to corrosion potential. Chlorine is a particularly undesirable component of grass biomass, as it acts as a catalyst for corrosion reactions and also increases the potential of chlorinated hydrocarbon emissions [26]. Sulfur reacts with alkali metals and forms deposits on heat transfer surfaces, and nitrogen content directly increases NOx emissions. Therefore, reduced concentration of all the abovementioned minerals in grass biomass is highly convenient. To enable and facilitate the utilization of a wide range of grasses in combustion systems, several strategies to mitigate the ash- and emission-related problems have been employed [25]. Appropriate harvesting time and fertilization application can all contribute significantly toward improvement of ash-melting behavior [27]. Potassium and chlorine can be reduced by controlling fertilization of these elements or by leaching them out of grass biomass [28, 29]. The content of some critical elements in fresh grass can be substantially reduced by mechanic dewatering [30]. Nitrogen concentration can be reduced by harvesting mature or overwintered forage. On the other hand, silica can be minimized by using warm-season grasses or by growing grass biomass on a sandy soil. Reduction of ash content and relative amount of critical elements can also be achieved by blending with less problematic biomass fuels such as wood, miscanthus, or peat [31].
Usually, additives are used in addressing the low ash-melting temperatures and the release of critical elements in the flue gas [32]. Using this strategy, slagging is reduced by the introduction of compounds that capture problematic ash components forming higher melting compounds or by diluting the ash with inert, high melting materials [33]. Zeng et al. [34] stated that significant reduction of the slagging risk during combustion of herbaceous fuels can only be achieved for high blending ratios with more than 70 wt% wood.
Grasses have low energy density (MJ m−3) and low yield per unit area (dry tons ha−1). Volumetric energy content of grasses used for biofuels is considerably lower than traditional fossil fuel sources, and this low energy density is due to low bulk densities of biomass materials [8]. Often, long distances have to be bridged between the biomass place of origin and the place of its utilization, resulting in expensive handling and transportation. Transportation costs of low-density grasses which increase the total cost of biomass processing are an important limitation to their use as an energy source [35]. To increase the bulk density of grasses, they can be densified into pellets using a mechanical process [35, 36]. Therefore, the densification of grasses is an important issue to improve the transport, storage, and handling capabilities of this lignocellulosic material. Densified biomass, especially pellets, has drawn attention due to its superiority over raw biomass in terms of its physical and combustion characteristics. With the international quality standard [37] for nonwoody biomass pellets, the foundation for an increasing commercial utilization of a wide range of biomass such as grasses was laid in 2014. Pellets have multiple end-use applications which range from smaller scale combustion for residential heating to an industrial scale where grass pellets could be co-fired with coal at power plants [38]. The increased demand of pelleted fuel sources in Europe and North America could allow for more nonwoody biomass resources such as perennial grasses to be used for pelletization. One of the most important variables in pellet production is moisture content, since this property will finally determine the durability and density of pellets [36, 39]. A less-expensive method of densification method (higher yield per hour) is by forming the grass into larger briquettes, also called tablets or cubes, which allows to manipulate and store the material easily, and they can also be transported economically and burned efficiently.
It has been largely reported that miscanthus originated in East Asia, where it is found throughout a wide climatic range from tropical, subtropical, and warm temperate areas of Southeast Asia to the Pacific Islands as well as at both high and low altitudes [40]. The genotype widely used in Europe for biomass production is Miscanthus × giganteus, a natural hybrid of Miscanthus sinensis and M. sacchariflorus. This natural hybrid is a giant, perennial warm-season grass native to Asia that is generating much enthusiasm for extremely high yields and very high cold tolerance.
Miscanthus × giganteus is a sterile hybrid that does not produce viable seed and therefore propagates vegetatively underground through its rhizomes (by planting underground stems). The rhizomatous C4 grass has been considered as a strong candidate as an energy crop due to its potential to deliver high biomass yields (up to 30 ton ha−1) under low input conditions, and its economic as well as environmental benefits [41, 42, 43, 44].
Because of its C4 photosynthetic pathway and perennial rhizome, M. giganteus exhibits a very good combination of radiation, water, and N-use efficiencies for biomass production [44]. Boehmel et al. [45] compared the N-use efficiency of different annual and perennial energy crops and concluded that M. giganteus showed a higher N-use efficiency value of 526 kg DM kg−1 when compared to the N-use efficiency of maize (65 kg DM kg−1). M. giganteus can be grown on a wide range of soils. The most important soil characteristic is the water holding capacity; therefore, sites with stagnant water are unsuitable. The highest yields have been reported in soils with a good water holding capacity. M. giganteus begins growth from the dormant winter rhizome when soil reaches temperatures of 10–12°C [46].
The production of aerial biomass depends on the duration of the growth period. After the first year, the start of the growing season depends on the last frost of spring. On the other hand, the end of the growing season depends on the flowering or the first autumn or winter, according to the date of harvest or location [47].
The lifetime of the crop lasts approximately 20 and 25 years [11], during which biomass is produced during two phases: a yield-building phase, which lasts for 2–5 years, depending on climate and plant densities, and a plateau phase where the yield is maintained [48]. When crop water supplies are not limiting, maximum crop yields are reached more rapidly in warmer climates than in cooler climates [47].
Miscanthus stands need between 3 and 5 years to become fully established and reach the maximum yield level [11]. Biomass yields above 30 t DM ha−1 have been reported in southern European locations with a high incidence of annual global radiation and high average temperatures, but only under irrigation conditions. Maximum yields of up to 49 t DM ha−1 have been observed in Europe during an autumn harvest of mature crops with irrigation. Harvestable yields in the spring are 27–50% lower than those in the autumn [49].
The main characteristics of miscanthus biomass as a fuel are listed in Table 1. The main problem of miscanthus biomass as fuel is its relatively low ash-melting point (1020°C). Biomass characteristics and quality of miscanthus are mainly a function of location and genotypes. For example, Lewandowski et al. [11] found that the ash contents of the biomass are correlated with high silt and clay content of the soil. In central Europe, miscanthus is harvested at the beginning of spring because the stems are dried during the winter and part of the ash, Cl, and K are leached by precipitation, which substantially improves the quality of the combustion. The most important management tool to improve biomass quality in miscanthus as a fuel is a delayed harvest.
Common name | Giant Miscanthus | Switchgrass | Reed canarygrass | Giant reed |
---|---|---|---|---|
Scientific name | Miscanthus x giganteus | Panicum virgatum L. | Phalaris arundinacea L. | Arundo donax L. |
Photosynthetic pathway | C4 | C4 | C3 | C3 |
Soils | Wide range. Not tolerant to flooding. No soil compactation | Wide range. Drought tolerant. Does not grow well in wet areas | Wide range. Drought tolerant, tolerant to wet areas | Wide range. Prefers well-drained soils with good water supply; also on saline soils |
Day length | Long-day plant | Short-day plant | Long-day plant | Long-day plant |
Biomass yields (t ha −1)* | 5–40 | 5–34 | 7–14 | 3–37 |
Moisture content at harvest (%) | 15–60 | 15–20 | 10–23 | |
High heating value (MJ Kg −1)* | 17–20 | 17 | 17–19 | 15–19 |
Ash fusion temperature (°C) | 1020 | 1016 | 1100–1650 | 1100 |
Ash (%)* | 1.6–4.0 | 4.5–10.5 | 1.9–11.5 | 4.8–7.8 |
Perennial grasses species with potential as energy crop.
Dry matter
The main advantages of M. giganteus as an energy crop are exceptional adaptability to different edaphoclimatic conditions; feasibility for growing on poor quality soils; high dry matter yields per unit surface; outstanding disease and pest resistance (application of pesticides is not necessary); very low fertilization requirements; herbicides are applied only during the first 2 years of establishment of the crop; and can be grown without any pest or weed control management once the crop is established [50, 51]. The main constrains of M. giganteus are its high establishment costs, its poor overwintering at some sites, and the insufficient supplies of water available in southern regions of Europe. It has been found that M. giganteus shows very little genetic diversity due to its sterility and vegetative mode of propagation. Most of the clones found in this species were obtained directly from the “Aksel Olsen” clone, as shown by isozyme and DNA studies [52, 53]. The small genetic base of M. giganteus is responsible for the fact that the same clone has almost always been used in most studies or for cultivation. The sterility of M. giganteus is particularly interesting because it prevents the risk of invasion of the species; but on the other hand, it is a limitation to improve biomass production and to adapt it to a wide range of climatic conditions [47]. The sterile hybrid M. giganteus has to be propagated asexually using plantlets produced in tissue culture (micropropagation) or by rhizome divisions (macropropagation). The optimal planting density is one to two plants per square meter [11]. It has been reported that irrigation during the first growing season significantly improves the establishment rates.
Miscanthus does not respond to N fertilization at several sites in Europe; therefore, N fertilization is necessary only on soils with low N contents. Weed control in miscanthus in the year of planting is crucial for establishing a successful and healthy stand. The first 2 years are most critical, with little weed management thereafter. There are very few labeled herbicides for use on miscanthus crop, but various herbicides suitable for use in maize or other cereals can be used. It can be harvested only once a year, and the harvest window depends on the local conditions. The later the harvest can be made, the better the quality of the combustion, since it will decrease the moisture content and the mineral content of the biomass.
However, there is a trade-off between improving the quality and yield, since yield losses of up to 35% can occur between maximum yield and late harvest in early spring [54]. From an economic point of view, a late harvest with biomass water content lower than 30% is recommended in order to reduce the costs for harvesting and drying of the biomass [55]. Bilandzija et al. [1] state that harvest delays, from autumn to spring, had statistically significant influence on moisture, C, H, O, N, and S contents. They found that delayed harvest enhanced the quality of biomass in terms of combustion process, primarily through lowering moisture content, which is particularly important if biomass producers do not have drying systems.
Given its potential to be exploited for energy purpose, Miscanthus × giganteus is presently used mostly for electricity or heat generation in direct combustion [56], mostly in the form of wood chips, pellets/briquettes, and bales [57]. It is estimated that replacing fossil fuels with biomass from Miscanthus × giganteus can enable reducing the CO2 emission by 75–93% [48]. However, because there is presently only one commercially available clone, Miscanthus × giganteus, it has some limitations such as a lack of winter hardiness during the establishment period [7] and it needs to be propagated vegetatively resulting in high field plantation costs.
Switchgrass (Panicum virgatum L.) belongs to the Gramineae family. It is native to the North American tall grass prairies. Although generally associated with the natural vegetation of Great Plains and the western Corn Belt, it occurs widely in grasslands and nonforested areas throughout North America east of the Rocky Mountains and from southern Canada down to Mexico and Central America [58].
Switchgrass is one of the best herbaceous energy crops due to its habit of perennial growth, high yield potential on a wide variety of soil conditions, and compatibility with conventional agricultural practices [59]. Switchgrass has a deep rooting system that contributes to the accumulation of organic matter in the soil and, therefore, carbon sequestration [60]. In full development of the plant, the underground biomass is similar or even greater than the aerial biomass.
Switchgrass can be established through seeds; therefore, it has lower production costs that make it a practical option among the energy crops. However, the switchgrass biomass yield is considered to be lower than that of miscanthus [11].
Switchgrass can grow to more than 3 m height and develop roots to a depth of more than 3.5 m. The inflorescence is a typical open and diffuse panicle of 15–55 cm long. Each panicle consists of many to hundreds of spikelets at the end of long branches, with two dissimilar florets in each spikelet [61]. The expected life of a pasture would be 10 years or more if properly managed. Switchgrass is a cross-pollinated plant that is largely self-incompatible, and most cultivars are tetraploid or hexaploid [62].
Switchgrass will grow best on well-drained good quality soils but will also sustain lower quality soils and shallow rocky soils. It can grow on sand to clay loam soils and tolerates soils with pH values ranging from 4.9 to 7.6 [63]. It is drought tolerant, but the grass does not grow in locations where precipitation is below 300 mm per year. Switchgrass can tolerate short-term waterlogging.
Switchgrass can be categorized into two groups or ecotypes classified by their habitat preference: the upland ecotype and the lowland ecotype. Upland ecotypes occur in upland areas that are not subject to flooding, while lowland ecotypes are found on floodplains and other areas that receive run-on water.
The upland ecotype is generally thinner stemmed and shorter than lowland ecotypes, is adapted to drier and wetter environments, and is generally derived from accessions collected in the northern regions of North America. Lowland plants have a later heading date and are taller with larger and thicker stems. Lowland ecotypes are tetraploids, while upland ecotypes are either octoploids or tetraploids. There are ecotypical differences among switchgrass ecotypes for important compositional features, such as fiber, nitrogen, and ash, among others. Dry matter produced by lowland ecotypes has higher cellulose and hemicellulose contents and lower N and ash contents than upland ecotypes, and dry matter produced by upland ecotypes contains higher lignin contents [64]. Upland and lowland tetraploids have been crossed to produce F1 hybrids that have an increase in yield of 30–50% over the parental lines. These hybrids are promising sources of high yield biomass cultivars [64]. Most seedlings of switchgrass will germinate after 3 days at 29.5°C. However, they germinate very slowly when the soil temperature is below 15.5°C [63].
The highest biomass yields per hectare can be obtained when switchgrass is harvested once or twice per year. In fact, one- or two-cut systems often provide similar average yields [65]. Wullschleger et al. [66] compiled 1190 biomass yield observations for both lowland and upland types of switchgrass grown on 39 sites across the USA, from field trials in 17 states, from Texas to North Dakota to Pennsylvania. In this study, it was found that much of the differences in biomass yields could be explained by the variation in the growing season, precipitation, annual temperature, nitrogen fertilization, and the type of switchgrass grown in a specific region. Annual yields averaged 12.9 t DM ha−1 for lowland and 8.7 t DM ha−1 for upland ecotypes. Some field sites in Texas, Oklahoma, and Alabama reported biomass yields greater than 28 t DM ha−1 using the lowland cultivars “Kanlow” and “Alamo.”
The main characteristics of switchgrass biomass are listed in Table 1. Sladden et al. [67] compared eight switchgrass genotypes that were cut at the same maturity and found the six upland types did not vary much in their biomass composition. However, “Alamo” and “Kanlow” showed significantly lower N contents and higher fiber contents in their biomass which is explained by the later harvest date at maturity instead of differences in nutrient partitioning.
Switchgrass is established mainly by seeding. Successful stand establishment during the seeding year is essential for economically viable switchgrass as a bioenergy crop [68]. Stand failure as a result of poor seed quality or seedling physiology will have important implications on the cost of switchgrass biomass. However, weed competition is the major reason for switchgrass stand failure. Acceptable switchgrass production can be delayed by one or more years due to poor weed management and deficient stand establishment [69]. Switchgrass is readily established when high-quality seed of an adapted cultivar is used with the appropriate planting date, seeding rate, seeding method, and proper weed control. Switchgrass can be drilled in a conventional seedbed or by direct seeding methods. According to Sladden et al. [67], a row spacing of 80 cm is recommended because this led to higher yields in the second and third years than row spacing of 20 cm. Before planting, soil tests are recommended. N fertilizer is not recommended during the planting year since it will promote weed growth, increase competition for establishing seedlings, and increase economic risk and cost associated with establishment if stands should fail [70]. Economically viable yields will require N fertilization rates between 50 and 100 kg ha−1 yr.−1 [71]. N fertilizer should be given in late spring. P and K can be applied before seeding to promote root growth and encourage rapid establishment. Switchgrass can tolerate moderately acid soils, but optimum germination of the seed occurs when the soil pH is between 6 and 8 [72].
Weeds can be an important obstacle for switchgrass establishment, especially summer annuals. Spraying herbicides to control broadleaf weeds is usually needed only once or twice every 10 years in established and well-managed switchgrass stands. One year before planting, the field must be plowed or chiseled [63]. A reduction of weed competition can also be achieved by cutting infrequently at 10 cm. In order to control grasshoppers, crickets, and other insects which may affect the new seedlings of switchgrass an insecticide may be needed [63].
Generally, a single harvest during the growing season maximizes biomass recovery, but harvest after a killing frost will ensure stand productivity and persistence, particularly when drought conditions occur, and reduce requirements of nitrogen fertilizers. Delaying the harvest until spring will reduce moisture and ash contents of the biomass; however, the yield loss can be as high as 40% compared to an autumn harvest [73]. With proper management, productive stands can be maintained for more than 10 years. It is not recommended to harvest switchgrass in summer or after flowering when there are drought conditions.
Reed canarygrass (Phalaris arundinacea L.) is a member of the Poaceae family. It is a cool-season grass that is less productive than warm-season grasses. It is a sod-forming, perennial wetland grass, native to the temperate regions of Europe, Asia, and North America. It is usually found in wet areas such as lake shores and along the rivers.
Reed canarygrass is a tall, coarse, and erect grass with a C3 photosynthetic pathway, which reaches a canopy height of up to 300 cm. This grass has vigorous rhizomes that form 1 cm thick and short branches and a root system that reaches to more than 3 m [74].
Its inflorescence is a narrow and compressed panicle. The leaves are wide and flat with prominent nodes. The stems are robust, smooth, and occasionally branching at the nodes. Its ligules are membrane-shaped and obtuse and have a pointed-folded tip. Seeds are shiny brown. The seed production of the species is unreliable due to the seed shattering and occasionally the production of deficient panicles [11]. The presence of several types and concentrations of poisonous alkaloids has restricted the use of reed canarygrass as a forage crop [75]. The estimated life time of a reed canarygrass plantation is approximately 10 years [76].
Reed canarygrass is a persistent species, which grows well on most types of soils, except droughty sands. It is one of the best grass species for poorly drained soils and tolerates floods better than other cold-season grasses. However, the highest yield can be obtained on organic soils. Reed canarygrass is adapted to and grows very well in a cool temperate climate and has also good winter hardiness. In order to induce flowering, this grass requires exposure to short days (primary induction) followed by long days for initiation of floral primordial and inflorescence development (secondary induction) [77].
There are considerable differences in yield between different soils. Kukk et al. [77] reported that soils with low N content produce yields of almost 1 t DM ha−1 in years with unsuitable weather conditions for plant growth. On the other hand, it is possible to achieve an average dry matter production of up to 6–7 t DM ha−1 within limited years on soils with N contents of more than 0.6%. They found that fertilization increases the yield as well as decreases yield variability in soils with low organic matter content, but soils with high N content show an increase in production risks when fertilizer applications increase. Pociene et al. [78] have reported that under favorable climatic conditions reed canarygrass yields are 7–11 t DM ha−1. Moreover, reed canary grass can produce over 15 t DM ha−1 in Canada [79], from 6 to 11 t DM ha−1 in Sweden [80].
The main biomass characteristics of reed canarygrass are listed in Table 1. During the combustion of the reed canarygrass biomass, problems of ash fusion or corrosion have been detected. However, in the delayed harvest system, these problems are almost eradicated. During the winter, there is a decrease in the content of elements such as K, Ca, Mg, P, and Cl. This change in chemical composition is mainly caused by leaching and loss of leaves during the winter, which significantly modifies the chemical and physical characteristics of the ash. It has been reported that the ash content and ash composition show considerable differences between different locations. The type of soil has a great influence on the quality of the biomass. For example, high ash contents have been found in reed canarygrass biomass grown on heavy clay soils and low contents of ash in biomass grown on humus-rich and organic soils [74].
Reed canarygrass is established mainly by seeding. The recommended seeding rate is 15–20 kg ha−1. Seeds of reed canarygrass generally have a slow germination and show varying degrees of dormancy. Therefore, weed competition can reduce crop yields during the first year. Broadleaf weeds can be controlled with common herbicides. From the second year on, an established reed canarygrass stand becomes quite competitive, and as a result, weeds are no longer a problem. The number and timing of harvests during a growing season directly affect biomass yield of reed canarygrass and biofuel quality. Several studies have shown that reed canarygrass has higher than acceptable levels of silica [81], chlorine, and nitrogen [74]. However, delaying harvest of biomass from autumn to late winter or early spring, before regrowth begins can reduce the levels of undesirable components [76].
Giant reed (Arundo donax L.), also called giant cane, is a tall perennial grass of the family Poaceae. The area of origin of giant reed has been a subject of debate because the biogeographic and evolutionary origin of this species has been obscured through ancient and widespread cultivation [82]. As a result, there is no agreement on the location of the area where it originated. Botanical and historical evidence supports the hypothesis that the origin started from a pool of wild plants native to the Mediterranean region [83]. On the other hand, some authors suggest that Arundo genus originated in East Asia [84]. However, giant reed has been cultivated in Asia, Southern Europe, Southern Africa, Australia, and the Middle East for thousands of years [85]. The rapid spread of this species is probably attributed to its high productivity and multiple uses.
Giant reed is a tall, perennial C3 grass, and it is one of the largest of the herbaceous grasses that is widespread in the riparian areas of the Mediterranean and found over a wide range of subtropical and warm-temperate areas of the world [11]. The root system consists of tough, fibrous, lateral rhizomes and deep roots. The rhizomes form compact masses from which arise tough fibrous roots that penetrate deeply into the soil. The rhizomes usually lie close to the soil surface, while the roots are more than 100 cm long [86]. The stems arise during the whole period of growth from the large knotty rhizomes. It is reported that primary reproduction is asexual (sprouts from disturbed stems or rhizomes), due to seed sterility, caused by the failure of the megaspore mother cell to divide [87]. Due to the vegetative reproduction of giant reed, its genetic variability and the chances for finding new genotypes or varieties are low. However, according to the results from electrophoresis tests on some giant reed populations, there was a clustering of the selected populations in relation to their geographical origin, reflecting restricted migration of germplasm [11].
Giant reed forms dense, monocultural stands and often crowds out native vegetation for soil moisture, nutrients, and space. It tolerates a wide variety of ecological conditions and, however, prefers well-drained soils with abundant soil moisture. It tolerates a pH in the range of 5.5–8.3 and soils of low quality such as saline ones. It can grow in all types of soils from heavy clays to loose sands and gravelly soils, but prefer wet drained soils [88]. Giant reed is a warm-temperate or subtropical species; however, it has little tolerance to survive frost, but when frosts occur after the initiation of spring growth, it is subject to serious damage [89].
Giant reed is commonly known as a drought-resistant species due to its ability to tolerate long periods of severe drought accompanied by low atmospheric humidity. This ability is attributed to the development of thick drought-resistant rhizomes and deeply penetrating roots that reach deep water sources [11].
Biomass yields in a study conducted in Spain showed 45.9 t DM ha−1 on average, ranging from 29.6 to 63.1 t DM ha−1 [90]. Angelini et al. [91] reported an average biomass yield of 37.7 t DM ha−1 in a study conducted in coastal Tuscany (Central Italy), and Di Candilo et al. [92] reported an average biomass of 39.6 t DM ha−1 in a study carried out in the Low Po Valley (Northern Italy). In Greece, the recorded average dry matter yields on irrigated plots for the first, second, third, and fourth growing periods were 15, 20, 30, and 39 t ha−1, respectively. The high heating value of different aerial parts of a number of giant reed populations grown in Greece ranged from 14.8 to 18.8 MJ kg−1. Depending upon the population and the growing period, the contents of ash ranged from 4.8 to 7.8%.
Due to seed sterility, giant reed has to be vegetatively propagated from fragments of stems and rhizomes. This may limit large-scale cultivation, since it involves considerable cost and effort and is time-consuming. Tissue culture is an alternative to conventional methods of vegetative propagation and may represent a useful tool for large-scale propagation in a bioenergy crop [93].
Giant reed has been reported to grow without irrigation under semiarid Southern European conditions [94]. However, it has been reported that irrigation had considerable effects on growth and biomass production since the plant used effectively any possible amount of water [95].
If the nutrient status of the soil is poor, a sufficient amount of K and P should be applied before establishing the giant reed plantation. Otherwise, moderate N fertilization of giant reed is favorable for both economic and environmental reasons. Due to its high growth rates, giant reed does not face significant weed competition from the second year onwards. However, herbicide application is recommended during the first year. Biomass can be harvested each year or every second year, depending on its use [86].
Perennial rhizomatous grasses can contribute significantly to the sustainable biomass production due to their high yield potential, low input demands, and multiple ecological benefits. Yields of more than 30 t DM ha−1 have been obtained from rhizomatous grasses. However, biomass yields strongly depend on local soil and climatic conditions.
The issue of primary concern when burning grasses is mineral composition that determines the melting point of ash and the potential for corrosion. Ash content needs to be minimized to avoid fouling problems. Appropriate harvesting time and fertilization application can contribute significantly toward improvement of ash content and ash-melting behavior. There is the possibility of using grasses biomass by blending it with other biomasses with low ash, K, and Cl contents. Further research is required to find the optimal blend of biomass.
Industrial heritage provides one of the most important records of urban development and progress of human civilization in the last two centuries. Monumental industrial buildings reflect the extraordinary technical and economical development and the progress in science and technology. Even after the termination of their original function, industrial heritage buildings and equipment with their architecture are still significantly participating in the character of each city. A global problem is the decreasing interest of young people in studying natural sciences and engineering, which is a prerequisite for further technological progress and socio-economic development of the life of inhabitants. This lack of interest is justified by the high abstraction and lack of clarity in the scientific and technical fields which are separated from people’s everyday lives. Therefore the current trend nowadays is developing an interactive mixed reality model of presentations—those are able to make more attractive inspirational use of this rich source of knowledge and experiences [1].
\nThe interdisciplinary research team at the Faculty of Architecture STU BA systematically focuses its work on applications of mixed reality by merging different sensorial inputs from real and virtual environment. This chapter aimed to explore opportunities for collaboration between theoretical research, monument preservation, virtual reality and architectural practice. It deals with the identified key factors that conditionally affect the quality and efficiency of architectural design and mixed reality process. For this purpose, the chapter examines case studies and describes possible applications on the basis of the operational research model so-called ‘Educational Polygon’ [2]. This model is used as a tool for identification of industrial heritage potential and it also serves as an effective communication and educational instrument throughout the active development process. Effectiveness of used procedures of the system Educational Polygon (EP) has been verified within the research KEGA and in the main case study reconstruction of Old Power Plant in city Piešťany and in the education and design process in Bratislava.
\nIndustrial heritage consists of the remains of industrial culture that are of historical, technological, social, architectural or scientific value. These remains consist of buildings and machinery, workshops, mills and factories, mines and sites for processing and refining, warehouses and stores, places where energy is generated, transmitted and used, transport and its entire infrastructure [3]. Industrial heritage represents a considerable qualitative and quantitative economic potential for future development. In this context an architectural profession often finds itself in the role of mediator between investors, government, municipality, scientific community and general public.
\nThis happens during the whole process of industrial heritage restoration, when in the given circumstances architects requires Mixed Reality to present the design changes of industrial heritage to the public.
\nIn order to clarify terms in this article, Mixed Reality is a term used to cover all concepts of reality as shown in the classification of MR technologies in the Figure 1. For the presentation of industrial heritage in the case studies, augmented reality (AR) and virtual reality (VR) were used mainly. Displayed types of realities differ according to degree of reality, on the left side there is real reality with the highest degree of reality. On the other side of the scope is placed VR, which could be understood as complete absence of real world.
\nOrder of reality concepts ranging from reality to virtuality (Schnabel et al., 2008) [4].
The crucial difference between AR and VR is that AR in contrast to VR does not abstract completely from the physical world; virtual objects interact with the physical world and are placed into the context of real world. Furthermore, AR represents a less invasive concept as it is based on real physical laws, which does not have to be the case with VR. Technological progress erases the borders between reality and virtual reality. Perception of the world can be manipulated through the technology. Various illusions can be fabricated in real world through the physical installations or in mixed reality. New mixed reality devices are coming to the commercial market and enable more dynamic and realistic perception of the computer-designed world. The possibility to create photo-realistic scenes in game engines plays important advance in design of projects and applications in virtual and mixed reality in the presentation of industrial heritage [5].
\nThis research is based on Steed’s revisiting of virtual continuum by extending the notions of virtual and real environment, building on Milgram’s and Kishino’s diagram. Steed explained that even within a ‘standard’ VR, there are links to the real world, and what one sees in the virtual environment might reflect some aspects of the current state of the real world. This situation could be observed by using body avatars or real object’s representations in the virtual environment.
\nThis blend between real and virtual has long been objective of studies by the real-time graphics communities. In 1994, Milgram and Kishino created a diagram, which has framed these concepts and provided the description for virtuality continuum (Figure 2). ‘Milgram and Kishino have placed real environments and virtual environments at the opposite ends of a spectrum that includes various levels of “mixing” of realities, hence the generic term mixed reality (MR). This is a rough description that shows that one can add virtual elements to a real scene to create an “augmented reality” (AR), or real elements to a virtual environment to create an “augmented virtuality” (AV). Some authors just use the term AR, without using the term augmented virtuality’ [6].
\nVirtuality continuum diagram by Milgram and Kishino [6].
The taxonomy of Milgram and Kishino provides a way of contrasting different types of mixed reality. Complementing their taxonomy, Steed introduces two further considerations that distinguish between different systems: primary environment and immediacy of representation. The primary environment is always one of three things: a pure virtual environment, the local real environment or a remote real environment. Immediacy of representation is a simple concept, which refers to the age of the represented content in the mixed reality and thus its veracity [6]. Steed is describing those terms mainly on visual situations and examples. Besides mixing of visual elements from real and virtual, the experimental work described in this chapter is focused also on various fusions of other different sensorial inputs from real world such as touch, smell and hearing with virtual environment.
\nDidactic theory confirms that the senses are portals of information. One learns by hearing, sight or by activity (Figure 3). We all use these methods and each of us prefers a different way of teaching. The use of the senses and their combinations is typical for mixing learning styles.
\nGraph of sensory reception and picture of Senzulor (Scheme: Ganobjak and Hain, 2017) [8].
With every sense, we receive a different percentage of information and we remember it differently. A distinction needs to be made between receiving and remembering information. We receive most information visually and less by hearing. We remember 20% of what we hear, 30% of what we see in visual form and 90% of what we are actively doing [7].
\nMixed reality also actively uses the first two senses through which we receive the most information, sight and hearing. Kinesthetic style uses activity and engages all (other) senses without preference. It is proven that the greatest learning effectiveness is the way of learning through a combination of learning styles. In this way, one can remember up to 80–90% of what one hears, sees and does at once. Although the representation of other senses versus sight and hearing is negligible in receiving information, it appears that combinations of activating multiple senses are highly effective. The sensory overlap with which the information was captured, creates stronger links between them for remembering, which is absent in the case of selective perceptions.
\nAmong us, there are several cases of people with visual, hearing or other disabilities that should not be forgotten. In such a situation, one or more of the senses are lacking and are therefore replaced, represented and compensated by another. Each is unique and different, it would be appropriate to pay special attention to each person with regard to its properties. However, it is not possible to set up a specific exposure for each, either spatially or financially. Here, universal design rules are offered, as if they are the opposite of barrier-free design. It is not a design for a narrowly specified group, but rather for the widest possible range of users. All you have to do is create one quality exposure that is universal for everyone. One solution to achieve such a balanced state is to create an exposure and at the same time every single exhibit perceived by multiple senses simultaneously. Thus, anyone will be provided with full information. Moreover, such a Mixed Reality exposition allows the situation to be better, more clearly, imagined, understood and remembered not only for children but also for people with limited abilities.
\nWhen we create an exposition, it is necessary to focus not only on the collection of objects that can be seen, but also to make the exhibits available in a non-visual way for universal design. Such an exhibition focused on other senses than sight, will bring a new experience, allowing visitors to get to know nature often from another side. An inseparable part is also a fun factor. The fun factor is always pleasant refreshment in the amount of testimonial information that seeks our attention.
\nThe sensor image (Figure 4) shows the reach of our senses. At the same time, it shows the radius of information that we are able to take in that sense. While our eyes catch most of the information, we are also saturated with visual information, so it is possible to use the way of inverse engagement of the senses. Not many educational exhibitions are conceived in taste, tact, smell or acoustically. Just as we perceive the stimulus closer to the body, it may leave a larger memory footprint.
\nInverse sensory orientation of exposure. Combinations of sensory perception affect the overall impression (scheme: Ganobjak and Hain, 2017) [8].
One subconsciously favours those impulses and stimuli from the environment that act closer to the surface of the body. This proximity gives rise to an approximatively defined sequence of its sensory zones from the tactile zone to the thermal zone, the olfactory zone, the acoustical zone, to the human dominant visual zone. The irritation of our receptors affects the perception of the surroundings, the orientation and behaviour in space and the overall relation to the environment. By the centre of gravity are activated sensory organs determine to the size and nature of individual spatial frames of human zones. This dependency is expressed by the sensor.
\nThe sensory organs provide the brain with information about the specificities of the external environment. Different organized sensory organs, with different sensitivity and complexity, can either receive one and the same information or multiple information at the same time. These combinations of sensory perception affect the overall impression, feeling or condition of a person in a variety of situations. These phenomena are positively or negatively manifested especially in the perception of the exhibition and therefore it is important to address them also when designing Mixed Reality.
\nBased on the results of the FA STU research and the KEGA grant [8], an industrial heritage visitor will best understand the information with a logical structure where the individual themes and exhibits are linked to one another. Therefore, when designing Mixed Reality, it is crucial to organize the exposure with the exhibits into a system with a logical (semantic) structure that clearly implies what is primary, principal, essential, and secondary, complementary, which are the main and secondary elements of the exposure and what are the relationships between them.
\nThe average person remembers approximately:
10% of what he/she reads,
20% of what he/she hears,
30% of what he/she sees in visual form,
70% of what he/she sees and hears at the same time,
80% of what he/she sees, hears and speaks at the same time,
90% of what he/she is actively doing.
It follows from the above that it is important to include and combine the perception of multiple senses during exposure, to change the senses several times during the exhibit and to repeat the new stimuli [8].
\nThe fluency/continuity of the exposure is achieved by its spatial and thematic continuity. This can be done by linearly designing the exposure, by its loop, or by multiple looping. Linearity means: ‘A loop allowing the linearity and sequence of exposure to be maintained, giving the possibility of returning to the previous point where the rest zone can be situated’. Combining exposure helps achieve spatial compactness. On the smallest scale, a single room can also be a loop. It is not advisable to create blind offshoots of exposure with longer and deeper spaces, after which visitors must go back in the same way as in virtual reality (Figure 5).
\nRounding the exposure helps to achieve spatial compactness and prevent muscular fatigue syndrome (scheme: Ganobjak and Hain, 2017) [8].
This augmentation of virtual by senses is related to the understanding of virtuality and its perception. As Calleja indicates, media can create the phenomenon described by the notions of presence and immersion in them [9]. This phenomenon could be seen as degree of ‘realness’ of medium. In the heritage presentations and architectural design, we can presume that building plans have different degree of immersion as the physical and digital models. The immersion rises with quantity and nature of information received by the user. By involving various sensory stimuli, the information stream is widened and thus it is easier to compare user experience to the real situation [10], which is closer to our innate learning by experience, and to gather relevant data about the users. These data are used as feedback from the users, which could improve future designs of the next presentations and environments.
\nFor this purpose, there are several techniques of how to process spatial information. It is possible to 3D scan the space or measure it with routine techniques and to compare it with suitable historical documentation. Then to model it accordingly in form of a digital mesh model, individual characteristic surfaces need to be photographed to create textures with appropriate qualities such as colour, reflections, structure etc. For unpreserved surfaces, it is possible to use retouched techniques or replace them with equivalent textures from similar spaces.
\nThe choice of theme, exhibits, choice of methods of mixed reality presentation, organizational forms and material means should be guided by didactic principles.
\n\n
The principle of creating optimal conditions for the observation and educational process of exposure
The principle of adequacy of exposure to target groups and individual treatment of visitors
Principle of science
The principle of connection of scientific exhibits with life, theory and practice
Principle of illustration
The principle of motivation, awareness and activity
Principle of continuity and sequence of teaching
Principle of durability and operability of the educational process of exposure
Its essence is that the knowledge and skills of users should be the result of their own thinking. All modern concepts agree that the visitor should be motivated and active in getting to know museums or expositions of industrial heritage. To do this, a clear and comprehensive specification of exposure and education objectives is needed, and the following principles serve to create a mixed reality design.
\nMixed reality is an interesting option for representation of objects within heritage conservation. Objects are exhibited in augmented or virtual reality and aspect of interactivity produces greater immersion for users. Representation of objects within heritage conservation through mixed reality creates an opportunity to rediscover history in new and exciting way. However, it is a complex scheme of organized design process (Figure 6) with key educational elements of Educational Polygon, which is divided into several phases:
Defining the target user of mixed reality: for the needs of the Educational Polygon, we can basically divide all participants of the process into five main groups of stakeholders: 1. architect, 2. investor, 3. municipality, 4. professional community and 5. general public—NGOs, people living in the neighbourhood, former employees and important stakeholders in local development—potential users (Figure 6).
Key elements for definition of optimization problem of mixed reality:
accessibility: 1. personal, 2. local, 3. regional, 4. continental and 5. worldwide.
aspects that represent creation of the mixed reality model—6 limits (6E) which represent legitimate requests for creation of the mixed reality model: economic, 2. ecological, 3. ethical, 4. effective, 5. aesthetic and 6. educational.
the target we want to optimize by mixed reality—this objective must be measurable (max/min): maximize the potential of the industrial heritage presentation; and minimize the loss in value of industrial heritage.
the period for which is designated the result of presentation: 1. past, 2. present and 3. future (short term, medium term and long term).
Scheme of organized design process with key educational elements and interdisciplinary cooperation (scheme: Hain, 2014) [2].
The scheme includes criteria and aspects generating ‘matrix of externalities’ [11].
\nThe matrix of externalities reflects a combination of all possible decisions. By the interaction of all these elements, an educational benefit for all subjects could be received.
\nUsing the principles of Educational Polygon ensures a certain flexibility, cross-checking feedback as well as analysis of the results (Figure 7), which is a prerequisite for setting qualitative conversion process of industrial heritage [12].
\nEducational Polygon-managing team in dynamic model in the process of industrial heritage maintenance and presentation. Various relations emerge between the subjects by the presentation of the different time periods of the project [13] (scheme and photo of Educational Polygon: Hain).
The case study ‘the reconstruction of Old Power Plant in city Piešťany’ is an example of how to organize work in interdisciplinary partnership in order to integrate and implement Educational Polygon into practice within the existing structure of the restoration process. In addition, the study shows how it is possible to learn and discover new values and possibilities for designing architectures through the Operational research [14] and Mixed mediated reality [15] (Figure 8).
\nEducational Polygon and Operations research in practice—case study ‘Reconstruction of Old Power Plant Piešťany 2014’ (scheme: Hain [2]).
The first case study described in this chapter is representative by implementation of mentioned methodology from the previous sections. Additionally the research is focused on the use of Mixed reality as an analytical tool of design. This way, the exploration of the new simulation techniques and educational qualities of industrial spaces is connected to the gathering information about users.
\nThe power plant for heavy oil burning in Piešťany was built in 1906 as one of the first of its kind in the former Austro-Hungarian Empire. Later, the plant only provided distribution and energy transformation till the 1990s. The original engine equipment was sold off and the main hall became empty [16] (Figure 9).
\nPicture of the virtual machinery hall with machine equipment—at the first stage of the power plant in 1906 and the machinery hall in 2014 (Archival images: Hain).
After conversion, the building is now used as a technical science museum, which interactively educates about the energy and electricity sector. The machinery hall, which originally had six diesel engines and generators, is now a multifunctional room for exhibitions, scientific devices and social events. Retained documents about the original state of the machinery hall allowed the exact appearance to be replicated through VR (Figure 10).
\nTypological power plant and archival documents of the building, changes from the National Archive in Trnava from 1906 to 1938 (Archival images: Hain).
In the Mixed reality, the part of real world represents the old industrial building and the virtual part digital objects of original engine equipment that are already gone. Thanks to that, the building itself can be used for multifunctional cultural purposes and at the same time the visitors could find out a lot of interesting additional information about the history of electricity. The exhibition is a hybrid of augmented reality, virtual reality, 3D models and physical industrial artefacts and creates ‘mediated reality’ about industrial heritage. The presentation of a hypothetical reconstruction by VR can serve to bring the history, culture and technology closer to the public.
\nAfter creating a spatial scheme of exposure and optimizing the distribution of individual exhibits according to the above-mentioned didactic principles, it was decided within the interdisciplinary team of experts in what form of Mixed Reality the individual parts will be presented. A realistic 3D model was then created for VR (Figure 11).
\nThe spatial scheme and final results of reconstructed building with realistic virtual presentation—output of Unreal Engine 4 by O. Virág (Archival images: Hain) [16].
Model solutions are defined according to the restoration value of the monument [17]. The materials, proportions and details have been derived from preserved and functional historic diesel engines from the Technical Museum in Vienna through 3D scanning. Photogrammetric processes took 3 days. A 3D remodel of the historic 1906 engine was then created. Based on the interdisciplinary cooperation of STU experts and the analysis of historical documents, the historic appearance and hypothetical scene of the power plant machinery hall was hypothesized, presented via VR and later fully animated.
\nThe movie was accompanied by sound taken from similar diesel engines recorded at the Technical Museum in Vienna (permission granted 2014). The sound was recorded using a camera Canon Eos 20D and Nikon D7000 with microphone (after permission was granted in 2014) and then optimized and purified via Adobe Premiere Pro and Agisoft.
\nThis model serves as a 1:1 reference from which it was possible to analogically capture the proportions of the details (Figure 12) and draw them in new precise 3D model. Based on the archival research and the measurements in situ, we sought to find out whether the initial building was built according to plan in 1906. The next research identified all periods of the building’s construction additions and removals and various stages of the finished look (1920–1945). For this case study, it was decided to visualize the first and oldest period from 1906 [16].
\nHistorical diesel engine from Vienna Technical Museum and Photogrammetry via software Reality Capture and Agisoft by O. Virág. (Archival images: Hain) [16].
The digital 3D model of the building was created in accordance with the current measurements and compared with historical plans and identified construction phases. Some standard components of the models (Industry Props Pack, Handyman Tool Pack) are from UE marketplace & Turbosquid (screws, watering-can), and graphic works have been carried out with texturing, UV mapping (UV Layout), animation and programming (Textured: Quixel NDO, DDO, Substance Painter & Designer).
\nThe final application runs via the Unreal Engine (Figure 13). Initially the scene was tested with Oculus Rift, which had delays in the synchronization of head movements and caused dizziness of VR users. Finally the new more developed version is compatible with HTC Vive as well [16].
\nFinal VR 3D model of the virtual presentation was presented by VR headset Oculus Rift in the Power Plant Piešťany, where it was possible to compare the current and historical status on-site—an overlay of physical and virtual reality (Archival images: Hain [16]).
At this point, a user can see an atmosphere of characteristic historical design of space in the original, photo-realistic quality, along with animations and sounds in real time. The 3D model and VR objects were prepared in Unreal Engine 4, which provides photo-realistic images with high-quality textures and lighting. Outcomes are suitable for all these chosen devices: Oculus Rift, HTC Vive, Cyberith, etc. [1].
\nThe VR scene for the Old Power Plant created in 1906 (Figure 13) is designed for the visual communication of technical information, but it also ties in with the diversity of the educational and multisensory exhibition, which is more universal (e.g., for people with disabilities). The target audience represents all the visitors to the hands-on science centre EP (Elektrárňa Piešťany—Power Plant Piešťany), who can not only be entertained but also educated by an exhibition created in this way. The project target group consists of professionals and the general public. Primary school pupils can gain additional educational support from the exhibition. Animators, tutors, lecturers, heritage methodologists, curators, artists and culture administrators can present new findings from the interactive history in practice, in addition to mediating facts from the world of science and technology history.
\nThe created VR 3D model of the machinery hall seeks to eliminate the extreme situations of negative emotions of the space; it is ‘phobia free’. VR respects the senses and aims to eliminate negative emotions, thereby becoming universally appropriate. VR evokes feelings from this environment supplemented by authentic sounds of diesel engines that invoke an industrial atmosphere. At the event that took place on Friday 13 May 2016, the virtual reality project was presented for the first time in the Old Power Plant Piešťany through Oculus glasses (
The presentation in animated Virtual Reality with the possibility of synchronized movement in space is interactive and creates a subjective experience. It uses an audiovisual design, and in the original Old Power Plant hall it is sensually complemented by the historically present smell of black oil (unrefined diesel). This affects the imagination of the observer. It allows him to better immerse, so-called ‘deep-rooted’ and the potential for long-term information storage. At the same time, the presentation of the premises through the VR is a more interesting form for a wider audience of different ages and for people with some forms of disability.
\nThe VR is able to appeal to an age-wide and professional audience, thus ensuring the transmission of the legacy of the non-preserved cultural values of the buildings of the past. Virtual reality has proven to be a suitable tool for commemorating the extinct heritage and reinterpreting its significance for the present (Figure 14).
\nVR application testing at the Researchers’ Night 2019 in Bratislava and testing by students of the University of the Third Age of the Faculty of Architecture in Bratislava (photo: Hain).
The virtual machinery hall was tested at the European Researchers’ Night in Bratislava, where it was explored by tracked visitors. The motivation, which induced natural behaviour was taking photos of subjectively interesting motives. Supportive reward system with the impact on the real was publishing of their photos and motions on the second screen. Additionally, the users’ photos were valuable feedback information describing the most attractive exhibition places and motives. After the visit, users were asked to fill short questionnaires about the exhibition’s quality and feelings in VR [18].
\nMixed reality a presentation is suitable for people with various disabilities—the possibility of virtual movement without physical movement for people in wheelchairs, for the deaf a visual scene, for the visually impaired an intensive contrast of colours and brightness, and for the blind, a sound experience.
\nThe exhibition itself allows arbitrary graphical design, expression dynamics while saving space and adaptability. Authentic unavailable spaces shall be made available to the public and the diagrams shall explain the operation of the cooling water and fuel pipes to the generators in the engine room. The original equipment is complemented by LCD touch panels with educational presentation schemes in different languages explaining their function and operation during operation, as well as other options for generating electricity. Complemented reality is utilized on an example of an interactive timeline of electricity milestones. The individual points of the axis are traceable via tablets bound to a specific power plant background (wall or floor) by visitors independently. The exhibition space is complemented by an impressive Tesla coil, which is suspended on steel ropes and throws lightning over the heads of visitors. At the bottom of the turret room is a Van der Graaf generator in the form of a stainless-steel ball that bristles the hair of the person who touches it (Figure 15).
\nMixed reality exhibition in the Old Power Plant Piešťany with augmented reality, virtual reality and of original engine equipment (mixed reality design: Hain, Ganobjak).
The absence of a virtual avatar body in the VR as reported by visitors was a strange experience with feelings of disorientation and confusion, although it is disputable if the presence of an avatar body in VR would have avoided those feelings. Augmented reality, accompanied with the use of physical reality as an anchor for position and navigation, appears to be a further tool for effective education, with the brain effectively distinguishing the essence of a variety of information at a real place. Virtual reality has also shown in this case study to be useful for presentations at several events outside the industrial heritage site.
\nThe Mixed reality visit of the industrial space teleports the viewer into a virtual scene where it is also still possible to look around in a traditional manner. Virtual reality allows the handicapped to perform virtual movements without physical effort to places/through place where it would otherwise be impossible to go.
\nIn this case, Oculus was more useful than HTC Vive (depending on the mobility of physically impaired persons). The same virtual scene is perceptible from the perspective of a pedestrian. The perception of users and feeling of size could be changed (the visitor is like a giant and the scene is only a scaled model, or vice versa).
\nThe opportunity to experience a future, fictional world, to take a walk in the past or virtually teleport to other points of interest is opened up through VR presentations. Visual perception is supported with realistic materials and textures. Experience in a VR scene installed in the original Machinery Hall is supported by the real in situ scent of heavy oil that is still possible to smell in the existing premises.
\nVirtual reality with synchronized movement enables the visitors to view the exhibition from anywhere, even from outside Piešťany, it is possible to walk in the historic yet nonexisting interior of the Machinery Hall of 1906. Synchronized movement in virtual and physical reality is compelling and confirms the meaningful use of Mixed reality as a vehicle for presenting the defunct cultural (industrial) heritage against the backdrop of a direct comparison of the contemporary and the original state [18].
\nThe further studies show other attempts to present the revitalization of heritage and future architectural designs by mixed reality. The subsequent study has compared mixed reality by combination of virtual environment, sound and smell of real exterior environment. The presentation was an outcome of the interdisciplinary cooperation of FA STU, Pixel Federation and Eurosense. For that study, three students’ projects have been prepared for different types of virtual reality: Oculus Rift, Google Cardboard and HTC Vive in Unity Engine. The presented projects included the proposals for revitalization of Danube River bank and old industrial bridge, near the forested site in Bratislava. In the study, the involvement of the visitors, their willingness to discuss and their ability to link the projects with the real site were observed.
\nThe visitors participated when the projects were presented in situ, near the forest and in the university building, away from the real site. When presenting in situ, the primary environment was the local real environment, but when the presentation took place in the university, the primary environment was the remote real environment (Figure 16). The projects were presented in situ with Oculus Rift and Google Cardboard. Away from site, the projects were presented with included sounds from site by these technologies and with HTC Vive, which allowed users to move more naturally.
\nLeft—Presenting the projects in situ. Right—Presenting in the university (photo: Hajtmanek, 2016).
The three projects were similar in the means of orientation; the main dominants (main building, old industrial bridge and Bratislava Castle) were on the same places with the same visual and road connections, but the projects differentiated in the way of displaying and architectural form. One of the projects was displayed monoscopically (both eyes had the same image), the other two projects were displayed stereoscopically. All the projects were included in one exhibition application used on all mentioned VR technologies, so every user could visit all projects successively. One of the stereoscopically displayed projects had fluid architectural form, without recognizable architectural elements as columns, windows and doors. The other projects had more usual form with recognizable architectural elements. The summarized projects with their properties are shown in Figure 17.
\nPresented projects. Left—Project with recognizable architectural elements, presented monoscopically. Middle and right—Projects presented stereoscopically, the project on the right was the one with fluid form (Archival images: Hajtmanek).
The study showed that users did not notice that the one of the projects was presented monoscopically; but in this project and in the project without recognizable architectural elements, the users had problems with orientation. On the other hand, the problems with the orientation were lesser while presenting in situ. The comparison of the users’ ability to orient in the projects is summarized in the Table 1.
\n\n | Presented in situ | \nPresented in the remote environment | \n
---|---|---|
Project with familiar architectural elements, monoscopically presented | \nLesser problems with orientation | \nProblems with orientation | \n
Project with familiar architectural elements, stereoscopically presented | \nNo problems with orientation | \nLesser problems with orientation | \n
Project without familiar architectural elements, stereoscopically presented | \nLesser problems with orientation | \nProblems with orientation | \n
Comparison of the projects with different ways of presentation by users’ ability to orient in them (author: Hajtmanek).
The ability to see, smell and hear the sounds from the local real environment helped to better blend and understand the proposals with the reality. The visitors of in situ presentation were also more attracted and open to discussion by the proposals as they could directly compare it to the real situation.
\nUsed different technologies of VR for such a presentation showed that they did not have the effect on the orientation, but they influenced natural behaviour of the users. The HTC Vive was shown to be most suitable tool for similar presentations, because it allowed the users to move more freely in real and virtual space simultaneously.
\nThe Mixed connection between virtual and real was shown to be a proper tool to present the future proposals of new use of other historical heritage. The subsequent study examined the presentation in scaled physical model by augmenting it with the virtual layer, thus combining touch and visual senses. The combination of visual senses from real and virtual to improve the perception of scale and proportions on physical model of the designed environment has a long history. One of the first attempts to achieve the correct perception of scale of the physical model was filming it by special camera simulating the first-person movement [19]. The setup for this filming is shown in Figure 18.
\nLaboratory for model simulation FA STU in Bratislava (Kardoš, 1999) [19].
Today, it is possible to merge the virtual and real by using the tools for augmented reality and augmented virtuality. In cooperation with Studio Hani Rashid, University of Applied Arts in Vienna the augmented model of speculative proposal for Museum of Futures on Heldenplatz was made and presented on Vienna Speculative Futures Exhibition. The virtual layer was mapped on the physical model by tablet and Vuforia for Unity. The system precisely showed kinetic and programmatic capabilities of the building (Figure 19).
\nAugmented model of Museum of Future on Heldenplatz. Left—Setup of the exhibition with the marker. Right—Running of the application on tablet in the exhibition without any markers (Archival images: Hajtmanek).
This way of presenting showed its weaknesses, when it was compared to the mixing of the visual senses from virtual reality with local real surrounding environment. The interaction with the augumented reality model can be observed and interacted by more users together. However, the scale was not understood completely in the comparison to the visiting the model through the augmented virtuality. On the other hand, visitors comprehended the bigger picture of the building’s program and its surroundings. Nevertheless, this way of presentation attracted the attention of visitors and showed potential for detailly presenting the smaller objects in product design and building context with its surroundings in architectural design.
\nInviting the observers to visit the old and future spaces in augmented virtuality proved that they behaved very similar to the real situations, because they intuitively related the virtual environment to the real one. This relation between the real and virtual was further explored to use the user’s behaviour as feedback for designing the new presentations and future spaces. In one of the studies of Old Power Plant Piešťany, the users’ movements and gaze were recorded to predict their behaviour in new exhibitions by machine learning model [18].
\nSimilar approach was applied to evaluation of co-working offices of Hub Hub in Bratislava. The digital representation of offices was modelled, prepared for VR and presented in the real offices. It was visited and evaluated by the local co-workers, who had the best knowledge of the real space, which they were using (Figure 20).
\nLeft—Virtual model of the offices. Right—Evaluating of the space in situ (3D model and photo: Hajtmanek, 2019) [20].
The users had the task to choose the best place in the spaces and subjectively evaluate its openness, height, contact with exterior and illumination. The evaluation was recorded via gradient spots, creating heat maps in the plan of the building. The evaluation was expressed by white colour—nevertheless the spot was, the evaluation was more positive. In the virtual model, the same evaluated properties of space (openness, height contact with exterior and illumination) were precisely measured in every position from the grid in module of 60 by 60 cm. This information was noted via RGB channels to small textures—samples of size 16 by 16 pixels (Figure 21).
\nLeft—Users’ evaluation of the space. Right—Measured parameters of the space noted via small textures (Hajtmanek, 2019) [20].
This way, every position in the grid had the values of subjective evaluation and measured properties of the space. On these data, the artificial neural network (ANN) was trained by supervised learning. ANN learned on data from small offices and terrace and then it was tested on the space in the middle. The comparison between the original and the predicted evaluation on the testing space proved that the final model could predict the evaluation of the users from new given spatial parameters. The evaluation of the openness was most effectively predicted with accuracy of 90, 25% (Figure 22).
\nComparison of original and predicted evaluation of the openness of the tested space. Evaluations are coloured (blue—positive evaluation, black—negative evaluation) and blurred to blend sampling (Hajtmanek, 2019) [20].
The study showed that the relation in between the simultaneous perception of virtual and real by all senses is possible to learn by machine learning model and use it as evaluation tool in architectural design of future spaces, which are similar to the evaluated one in the study. This feedback loop between the designer and users could bring the more effective and better suited future environment.
\nIn the multiple studies, the relation between virtual and real was explored by combining different sensorial stimuli. Combination of the senses of smelling, hearing and touching the real environment with the visual sense of virtual environment showed that viewers behaved more usually, because they easily related the virtual environment to the real one.
\nIn such presentations, they realized and perceived the scale and proportions of the presented objects more properly as seeing on the plans, scaled physical models or screens. On the other hand, combining of touch and visual stimuli from real environment and visual stimulus from virtual environment on the scaled physical model showed that perception of scale was not trivial.
\nTo provide the better idea of scale in this combination of stimuli from real and virtual, it would be better to see the physical model, choose the position and then visit it from the first-person view in virtual reality or by the camera, which implies that in these studies, the use of augmented virtuality could be suited better than application of augmented reality.
\nThe research raises questions about VR’s usefulness, relevance, controversy and entertaining applications. Numerous psychologists also suggest that inappropriately applied VR may constitute a risk: being cut-off from the real world and creating a brain fallacy by optical illusion is unnatural and in the long-term risky. In this case study, VR as a practical tool enables the public to learn about by-gone heritage. Even with the numerous controversial VR uses, this example of VR could be considered meaningful and beneficial in practice [21].
\nMixed reality (MR) in the presentation of industrial heritage requires thorough knowledge and evaluation of the subject, causality—with a strong theoretical background and a target-oriented assessment perspective of the presentation and education level.
\nThe principle of interdisciplinary cooperation is not only synergistic element in a complex scheme of organized design process, but also a key educational element in mixed reality.
\nThe case study through MR has reinterpreted the history of the cultural industrial heritage, which was not possible to recover in physical reality, and has brought it to a contemporary audience. Through this practical interactive tool, the general public can learn about lost heritage. Interactive virtual parts can be embedded in conventional channels and animations controlled by focusing on specific objects.
\nUser tracking and the whole principle of interdisciplinary cooperation is not only a synergistic element in a complex organized design process, but also a key educational element in the protection of the local industrial heritage for involved participants.
\nHowever, each case of heritage management requires a specific and detailed study of the subject. Therefore, the study aims to serve as an initial model for further studies on the application of Mixed reality in the preservation and educational management of industrial and cultural heritage.
\nThis project has been supported with public funds provided by the Slovak Arts Council FPU 16-362-03415, by the subsidy project Supportive Program for Young Researchers SUPNVN and project KEGA 038STU-4/2017.
\nThe Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"107",title:"Sedimentology",slug:"sedimentology",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:6,numberOfAuthorsAndEditors:127,numberOfWosCitations:132,numberOfCrossrefCitations:94,numberOfDimensionsCitations:225,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"sedimentology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7768",title:"Sedimentary Processes",subtitle:"Examples from Asia, Turkey and Nigeria",isOpenForSubmission:!1,hash:"e66ff69a772c2913167e9987180d7279",slug:"sedimentary-processes-examples-from-asia-turkey-and-nigeria",bookSignature:"Gemma Aiello",coverURL:"https://cdn.intechopen.com/books/images_new/7768.jpg",editedByType:"Edited by",editors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8845",title:"Current Practice in Fluvial Geomorphology",subtitle:"Dynamics and Diversity",isOpenForSubmission:!1,hash:"72732a62f51bb7f257431f49d95a1a1c",slug:"current-practice-in-fluvial-geomorphology-dynamics-and-diversity",bookSignature:"Krishna Gopal Ghosh and Sutapa Mukhopadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/8845.jpg",editedByType:"Edited by",editors:[{id:"257980",title:"Dr.",name:"Krishna Gopal",middleName:null,surname:"Ghosh",slug:"krishna-gopal-ghosh",fullName:"Krishna Gopal Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5690",title:"Dynamics of Arc Migration and Amalgamation",subtitle:"Architectural Examples from the NW Pacific Margin",isOpenForSubmission:!1,hash:"fd5d7ea19c6bceff9299bb14d167d3a8",slug:"dynamics-of-arc-migration-and-amalgamation-architectural-examples-from-the-nw-pacific-margin",bookSignature:"Yasuto Itoh, Osamu Takano, Reishi Takashima, Hiroshi Nishi and Takeyoshi Yoshida",coverURL:"https://cdn.intechopen.com/books/images_new/5690.jpg",editedByType:"Authored by",editors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3500",title:"Mechanism of Sedimentary Basin Formation",subtitle:"Multidisciplinary Approach on Active Plate Margins",isOpenForSubmission:!1,hash:"2fd3f21dd336e27a0dd0eb68d6165921",slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",bookSignature:"Yasuto Itoh",coverURL:"https://cdn.intechopen.com/books/images_new/3500.jpg",editedByType:"Edited by",editors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3100",title:"Sediment Transport",subtitle:"Processes and Their Modelling Applications",isOpenForSubmission:!1,hash:"a1aae9d236b0fa1150b6bc2a98fd0ce0",slug:"sediment-transport-processes-and-their-modelling-applications",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/3100.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew James",middleName:null,surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"127",title:"Sediment Transport",subtitle:null,isOpenForSubmission:!1,hash:"969069afb1cafb6c17b4ec7b35e19364",slug:"sediment-transport",bookSignature:"Silvia Susana Ginsberg",coverURL:"https://cdn.intechopen.com/books/images_new/127.jpg",editedByType:"Edited by",editors:[{id:"21615",title:"Dr.",name:"Silvia Susana",middleName:null,surname:"Ginsberg",slug:"silvia-susana-ginsberg",fullName:"Silvia Susana Ginsberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"45477",doi:"10.5772/56751",title:"Variation in Forearc Basin Configuration and Basin-filling Depositional Systems as a Function of Trench Slope Break Development and Strike-Slip Movement: Examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc Basins, Japan",slug:"variation-in-forearc-basin-configuration-and-basin-filling-depositional-systems-as-a-function-of-tre",totalDownloads:4486,totalCrossrefCites:11,totalDimensionsCites:32,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Osamu Takano, Yasuto Itoh and Shigekazu Kusumoto",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"51974",title:"Dr.",name:"Shigekazu",middleName:null,surname:"Kusumoto",slug:"shigekazu-kusumoto",fullName:"Shigekazu Kusumoto"},{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"}]},{id:"45449",doi:"10.5772/56706",title:"Late Cenozoic Tectonic Events and Intra-Arc Basin Development in Northeast Japan",slug:"late-cenozoic-tectonic-events-and-intra-arc-basin-development-in-northeast-japan",totalDownloads:2593,totalCrossrefCites:13,totalDimensionsCites:18,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Takeshi Nakajima",authors:[{id:"161971",title:"Dr.",name:"Takeshi",middleName:null,surname:"Nakajima",slug:"takeshi-nakajima",fullName:"Takeshi Nakajima"}]},{id:"15517",doi:"10.5772/16055",title:"Cohesive Sediment Flocculation and the Application to Settling Flux Modelling",slug:"cohesive-sediment-flocculation-and-the-application-to-settling-flux-modelling",totalDownloads:7363,totalCrossrefCites:4,totalDimensionsCites:15,book:{slug:"sediment-transport",title:"Sediment Transport",fullTitle:"Sediment Transport"},signatures:"A. J. Manning, J. V. Baugh, R. L. Soulsby, J. R. Spearman and R. J. S. Whitehouse",authors:[{id:"23008",title:"Prof.",name:"Andrew James",middleName:null,surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"},{id:"23010",title:"Prof",name:"Richard",middleName:null,surname:"Soulsby",slug:"richard-soulsby",fullName:"Richard Soulsby"},{id:"23011",title:"Prof",name:"Richard",middleName:null,surname:"Whitehouse",slug:"richard-whitehouse",fullName:"Richard Whitehouse"},{id:"23012",title:"Dr.",name:"Jeremy",middleName:null,surname:"Spearman",slug:"jeremy-spearman",fullName:"Jeremy Spearman"},{id:"23013",title:"Mr",name:"John",middleName:null,surname:"Baugh",slug:"john-baugh",fullName:"John Baugh"}]}],mostDownloadedChaptersLast30Days:[{id:"45342",title:"Strike-Slip Basin – Its Configuration and Sedimentary Facies",slug:"strike-slip-basin-its-configuration-and-sedimentary-facies",totalDownloads:6634,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Atsushi Noda",authors:[{id:"161716",title:"Dr.",name:"Atsushi",middleName:null,surname:"Noda",slug:"atsushi-noda",fullName:"Atsushi Noda"}]},{id:"45402",title:"Foreland Basins at the Miocene Arc-Arc Junction, Central Hokkaido, Northern Japan",slug:"foreland-basins-at-the-miocene-arc-arc-junction-central-hokkaido-northern-japan",totalDownloads:2234,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Gentaro Kawakami",authors:[{id:"162858",title:"Dr.",name:"Gentaro",middleName:null,surname:"Kawakami",slug:"gentaro-kawakami",fullName:"Gentaro Kawakami"}]},{id:"45304",title:"Neotectonic Intra-Arc Basins Within Southwest Japan — Conspicuous Basin-Forming Process Related to Differential Motion of Crustal Blocks",slug:"neotectonic-intra-arc-basins-within-southwest-japan-conspicuous-basin-forming-process-related-to-dif",totalDownloads:2443,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Yasuto Itoh, Keiji Takemura and Shigekazu Kusumoto",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}]},{id:"45477",title:"Variation in Forearc Basin Configuration and Basin-filling Depositional Systems as a Function of Trench Slope Break Development and Strike-Slip Movement: Examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc Basins, Japan",slug:"variation-in-forearc-basin-configuration-and-basin-filling-depositional-systems-as-a-function-of-tre",totalDownloads:4486,totalCrossrefCites:11,totalDimensionsCites:32,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Osamu Takano, Yasuto Itoh and Shigekazu Kusumoto",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"51974",title:"Dr.",name:"Shigekazu",middleName:null,surname:"Kusumoto",slug:"shigekazu-kusumoto",fullName:"Shigekazu Kusumoto"},{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"}]},{id:"43609",title:"Sediment Transport Dynamics in Ports, Estuaries and Other Coastal Environments",slug:"sediment-transport-dynamics-in-ports-estuaries-and-other-coastal-environments",totalDownloads:3223,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"sediment-transport-processes-and-their-modelling-applications",title:"Sediment Transport",fullTitle:"Sediment Transport Processes and Their Modelling Applications"},signatures:"X. H. Wang and F. P. Andutta",authors:[{id:"151466",title:"Dr.",name:"Xiao Hua",middleName:null,surname:"Wang",slug:"xiao-hua-wang",fullName:"Xiao Hua Wang"},{id:"154792",title:"Dr.",name:"Fernando",middleName:"Pinheiro",surname:"Andutta",slug:"fernando-andutta",fullName:"Fernando Andutta"}]},{id:"45499",title:"Tectonic Process of the Sedimentary Basin Formation and Evolution in the Late Cenozoic Arc-Arc Collision Zone, Central Japan",slug:"tectonic-process-of-the-sedimentary-basin-formation-and-evolution-in-the-late-cenozoic-arc-arc-colli",totalDownloads:3288,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Akira Takeuchi",authors:[{id:"164278",title:"Prof.",name:"Akira",middleName:null,surname:"Takeuchi",slug:"akira-takeuchi",fullName:"Akira Takeuchi"}]},{id:"45500",title:"Early Continental Rift Basin Stratigraphy, Depositional Facies and Tectonics in Volcaniclastic System: Examples from the Miocene Successions Along the Japan Sea and in the East African Rift Valley (Kenya)",slug:"early-continental-rift-basin-stratigraphy-depositional-facies-and-tectonics-in-volcaniclastic-system",totalDownloads:3320,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Tetsuya Sakai, Mototaka Saneyoshi, Yoshihiro Sawada, Masato\nNakatsukasa, Yutaka Kunimtatsu and Emma Mbua",authors:[{id:"167627",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Sakai",slug:"tetsuya-sakai",fullName:"Tetsuya Sakai"},{id:"168875",title:"Prof.",name:"Mototaka",middleName:null,surname:"Saneyoshi",slug:"mototaka-saneyoshi",fullName:"Mototaka Saneyoshi"},{id:"168876",title:"Prof.",name:"Yoshihiro",middleName:null,surname:"Sawada",slug:"yoshihiro-sawada",fullName:"Yoshihiro Sawada"},{id:"168877",title:"Prof.",name:"Masato",middleName:null,surname:"Nakatsukasa",slug:"masato-nakatsukasa",fullName:"Masato Nakatsukasa"},{id:"168878",title:"Prof.",name:"Yutaka",middleName:null,surname:"Kunimatsu",slug:"yutaka-kunimatsu",fullName:"Yutaka Kunimatsu"},{id:"168879",title:"Dr.",name:"Emma",middleName:null,surname:"Mbua",slug:"emma-mbua",fullName:"Emma Mbua"}]},{id:"54964",title:"Intermittent Formation, Sedimentation and Deformation History of Cenozoic Forearc Basins along the Northwestern Pacific Margins as an Indicator of Tectonic Scenarios",slug:"intermittent-formation-sedimentation-and-deformation-history-of-cenozoic-forearc-basins-along-the-no",totalDownloads:1224,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"dynamics-of-arc-migration-and-amalgamation-architectural-examples-from-the-nw-pacific-margin",title:"Dynamics of Arc Migration and Amalgamation",fullTitle:"Dynamics of Arc Migration and Amalgamation - Architectural Examples from the NW Pacific Margin"},signatures:"Osamu Takano",authors:[{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"}]},{id:"45498",title:"East Asia-Wide Flat Slab Subduction and Jurassic Synorogenic Basin Evolution in West Korea",slug:"east-asia-wide-flat-slab-subduction-and-jurassic-synorogenic-basin-evolution-in-west-korea",totalDownloads:2960,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Kosuke Egawa",authors:[{id:"162584",title:"Dr.",name:"Kosuke",middleName:null,surname:"Egawa",slug:"kosuke-egawa",fullName:"Kosuke Egawa"}]},{id:"45213",title:"Rock Magnetic Properties of Sedimentary Rocks in Central Hokkaido — Insights into Sedimentary and Tectonic Processes on an Active Margin",slug:"rock-magnetic-properties-of-sedimentary-rocks-in-central-hokkaido-insights-into-sedimentary-and-tect",totalDownloads:1820,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"mechanism-of-sedimentary-basin-formation-multidisciplinary-approach-on-active-plate-margins",title:"Mechanism of Sedimentary Basin Formation",fullTitle:"Mechanism of Sedimentary Basin Formation - Multidisciplinary Approach on Active Plate Margins"},signatures:"Yasuto Itoh, Machiko Tamaki and Osamu Takano",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"161720",title:"Dr.",name:"Osamu",middleName:null,surname:"Takano",slug:"osamu-takano",fullName:"Osamu Takano"},{id:"169106",title:"Dr.",name:"Machiko",middleName:null,surname:"Tamaki",slug:"machiko-tamaki",fullName:"Machiko Tamaki"}]}],onlineFirstChaptersFilter:{topicSlug:"sedimentology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/162112/amit-jhala",hash:"",query:{},params:{id:"162112",slug:"amit-jhala"},fullPath:"/profiles/162112/amit-jhala",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()