Heart disease is a major cause of morbidity and premature mortality. Cardiomyopathy is an anatomic and pathologic condition associated with muscle and electrical dysfunction of the heart, often leading to heart failure–related disability. Dilated cardiomyopathy caused by mutations in A-type lamin gene (i.e., LMNA cardiomyopathy) is characterized by an increase in both myocardial mass and volume. The ventricular walls become thin and stretched, compromising cardiac contractility and ultimately resulting in poor left ventricular function. Despite current strategies to aggressively manage “LMNA cardiomyopathy,” the disorder remains a common cause of heart failure with decreased ejection fraction, and a prevalent diagnosis in individuals is referred for cardiac transplantation. Despite progress in reducing “LMNA cardiomyopathy”–related mortality, hospitalizations remain very frequent and rates of readmission continue to rise. It appears important and necessary to further increase our knowledge on the pathophysiology of “LMNA cardiomyopathy” to unveil novel molecular/cellular mechanisms to target future therapeutic approaches.
Part of the book: Cardiomyopathies